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Abstract—Dynamic uncertainties, manifested as input noise or 

variable environment conditions, are an inherent part of most 

real world control applications. Recently, several researchers 

demonstrated that Type-2 Fuzzy Logic Controllers (T2 FLC) are 

able to cope with such uncertainty and reduce its negative effects. 

However, the design and optimization of T2 FLC and its 

subsequent unbiased comparison to T1 FLC are still an open 

question. This paper presents a comparative analysis of interval 

T2 (IT2) and T1 FLCs in the context of learning behaviors for 

mobile robotics. First, a T1 FLC is optimized using the Particle 

Swarm Optimization algorithm to mimic a wall-following 

behavior performed by an operator. Next, an IT2 FLC is 

constructed by symmetrically blurring the fuzzy sets of the 

original T1 FLC. The performance of the fuzzy controllers is 

compared using a wall-following sonar-equipped mobile robot in 

both noise-free and noisy environments. It is experimentally 

demonstrated that the IT2 FLC can cope better with dynamic 

uncertainties in the sensory inputs due to the softening and 

smoothing of the output control surface by the IT2 fuzzy sets. 

However, the IT2 FLC is outperformed by the T1 FLC when 

sudden and fast response of the controller is required, such as in 

the case of turning around corners. Those results suggest the 

difficulties of symmetrical blurring of T1 FLC (although 

commonly used) as a design methodology for obtaining the 

architecture of an IT2 FLC. 

 
Index Terms—Fuzzy Control, Interval Type-2 Fuzzy Systems, 

Mobile Robots, Behavior Learning, PSO. 

I. INTRODUCTION 

YPE-1 Fuzzy Logic Control (T1 FLC) have been used in 

many engineering applications [1]. Its main advantages 

are the abilities to incorporate human-understandable 

knowledge in the form of linguistic fuzzy rules and to cope 

with ambiguity, imprecision and uncertainty. However, 

dynamic uncertainties, inherent to many real world 

applications, can negatively affect the resulting performance 

of the control system [1]. The T1 FLC using crisp fuzzy 

memberships cannot directly address such variable conditions. 

Neglecting this uncertainty can lead to a subsequent 

deterioration of the system’s quality. 

 Type-2 fuzzy logic, introduced by Zadeh, has the potential 

to handle dynamic uncertainties of unstructured environments 

[2], [3]. T2 FLC uses additional dimension of uncertainty, 

where the fuzzy membership degrees are themselves fuzzy. To 

 
 

deal with the increased computational burden, Mendel et al. 

introduced the Interval T2 (IT2) fuzzy systems [1], [4]. 

Several researchers worked in recent years towards 

demonstrating advantageous properties of the IT2 FLC over 

the T1 counterparts. However, the design and optimization of 

IT2 FLC and its subsequent unbiased comparison to the 

original T1 FLC are still an open question [5]. 

 Several authors implemented the IT2 fuzzy systems in the 

context of mobile robotics [6] - [11]. In addition, Hagras et al. 

showed their superior performance in control of marine diesel 

engines [12]. However, in the work of Birkin and Garibaldi 

[13], [14], no statistical difference between the T1 and T2 

controllers is reported in a micro-robot context. 

The variability of the reported results can be attributed to a 

missing established methodology of designing the T1 and T2 

FLC and their subsequent comparison [5]. One commonly 

adopted approach for constructing the IT2 FLC is the partially 

independent approach of symmetrically blurring the 

membership function of the original T1 FLC. This paper 

contributes by providing an experimental analysis of the 

performance of T1 and the respective “blurred” IT2 FLC in 

the context of learning behaviors for mobile robotics.  

Here, fuzzy T1 and IT2 controllers are constructed using 

recorded experimental data. The data are sampled from control 

maneuvers of an operator performing a wall-following 

behavior with a tele-operated mobile robot. Such learning task 

inherently requires mechanisms for coping with noisy, 

imprecise and uncertain data. First, a T1 FLC is optimized 

using the PSO algorithm [15], [16]. Next, two IT2 FLCs are 

constructed by symmetrically blurring the T1 fuzzy 

membership functions. The two IT2 FLCs use T1 and IT2 
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Fig. 1 Type-2 fuzzy logic system [1].  
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fuzzy consequents, respectively. The control performance of 

all three fuzzy controllers was compared in both noise-free 

and in noisy environment. The experimental results revealed 

the advantageous properties of the IT2 fuzzy controller when 

dealing with dynamic noise around the set-point of the 

controller. However, the IT2 FLC was outperformed by its T1 

counterpart, when fast response was required while turning 

around corners. Such results experimentally demonstrate some 

of the difficulties of the symmetrical blurring method as a 

design tool for deriving an IT2 FLC from the original T1 FLC. 

 The rest of the paper is organized as follows. Section II 

provides a primer on T1 and IT2 FLC. Section III describes 

the optimization of T1 FLC and the subsequent blurring 

construction of the IT2 FLC. Experimental results are 

presented in Section IV. The paper is concluded in Section V. 

II. REVIEW OF TYPE-1 AND TYPE-2 FUZZY CONTROL 

 This section reviews fundamentals of T1 and IT2 fuzzy 

control. 

A. T1 Fuzzy Control 

 In general, T1 fuzzy controller is composed of four major 

parts – input fuzzification, fuzzy inference engine, fuzzy rule 

base and output deffuzification. The considered Mamdani 

FLC maintains a fuzzy rule base populated with fuzzy 

linguistic rules Rk in the implicative form as follows: 

 

 Rule Rk: IF x1 is kA1 AND … AND xn is k
nA  

               THEN yk is Bk (1)
 

  

Here, symbol k

jA and Bk denote the jth input fuzzy set and 

the output fuzzy set of the kth rule, respectively and n is the 

dimensionality of the input vector x


. Using the minimum t-

norm the degree of firing of rule Rk can be calculated as: 
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The output fuzzy sets are aggregated using the maximum 

operator, resulting in a fuzzy output set B. Upon discretizing 

the output domain into N samples, the centroid defuzzifier can 

be used to produce a crisp output value y as follows: 
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B. IT2 Fuzzy Control 

 T2 FLC uses T2 fuzzy sets, which introduce additional 

dimension of uncertainty – the secondary membership grade. 

The structure of T2 FLC is depicted in Fig. 1 [1]. The interval 

T2 FLC is considered here due to its computational in-

expensiveness. This computational efficiency is achieved by 

using the Footprint of Uncertainty (FOU) for describing each 

IT2 fuzzy set. The FOU of an IT2 fuzzy set A
~

can be 

conveniently described by its upper and lower membership 

functions: 
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 The system then uses similar inference mechanism utilizing 

the modified IT2 fuzzy join and meet operations [1]. The 

resulting IT2 output fuzzy set must be first type reduced and 

then defuzzified in order to obtain the crisp output value. 

Despite the widespread use of the Karnik-Mendel iterative 

procedure, the Nie-Tan (N-T) type reduction method is 

considered in this work [17]. This method was selected due to 

its lower computational complexity and the lack of need to 

calculate the actual centroid of the output IT2 fuzzy set in the 

presented application. Briefly, the N-T method first computes 

the centroid of each vertical slice of the output fuzzy set and 

then defuzzifies the resulting type-reduced set. For the IT2 

fuzzy sets, the centroid uj of the jth vertical slice is expressed 

as: 

 )(
2

1
jjj uuu   (5) 

 

 Here, ju and 
j

u  are the membership grades of the upper 

and the lower membership functions at the jth vertical slice. 

Assuming that the output domain was discretized into N 

samples, the defuzzified output is obtained as [17]: 
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III. LEARNING ROBOTIC BEHAVIORS USING PSO ALGORITHM 

 The PSO algorithm is used to obtain the design of the T1 

FLC [15], [16]. The partial independent approach is used for 

the subsequent design of the IT2 FLC via symmetrical 

blurring the membership functions. Using a fully independent 

design using the PSO algorithm for the IT2 FLC optimization 

would introduce variance associated with the optimization 

method. By using a partially independent approach, the 

difference in the performance of both controllers can be fairly 

attributed to the controller’s architecture rather than to the 

optimization method. However, as demonstrated by the 

experimental results, the widely adopted IT2 FLC design via 

 

 
 

Fig. 2 The wall-following control loop.  
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symmetrical blurring of membership functions can impose 

some limitations to the controller’s performance. 

A. Experimental Setup 

 The experimental problem considered in this paper is 

learning a wall-following behavior performed by an operator. 

A remotely controlled Lego NXT mobile robot equipped with 

a sonar sensor was used in this experiment. The operator drove 

the robot starting from various distances along the wall. The 

goal of the operator was to stabilize the robot at a predefined 

distance from the wall by controlling its differential motor 

drives. The system control loop is depicted in Fig. 2. During 

the data collection stage, the operator was determining the 

control output based on a visual inspection of the robot’s 

performance. In the following experimental stage, the T1 and 

IT2 fuzzy controllers were used to reproduce the same wall-

following behavior autonomously. Additional uncertainty can 

be introduced into the system by adding a specified amount of 

noise into the sensory inputs. 

 The training data were recorded from multiple runs. The 

sonar distance input and its derivative together with the 

operator’s control actions were recorded. Altogether 1300 data 

samples were obtained. The normalized recorded data are 

plotted in Fig. 3. 

B. PSO Optimization of Type-1 FLC 

 A simple T1 FLC was constructed for reproducing the 

observed wall-following behavior. The controller fuzzifies 

both inputs e and e  using three input Gaussian fuzzy sets. 

Each fuzzy set is defined by its mean and standard deviation. 

Each combination of input fuzzy sets produces a unique fuzzy 

rule. The output of each fuzzy rule is modeled as an output 

Gaussian fuzzy set. Altogether, the structure of the system is 

defined by 6 input fuzzy sets and 9 output fuzzy sets. This 

structure yields 30 control parameters (mean and standard 

deviation parameters for each fuzzy set).  

 The PSO algorithm was used as a suitable optimization 

technique for learning the optimal structure of the T1 FLC 

[15], [16]. The PSO algorithm was chosen due to its stable 

convergence and its known ability to generate solutions for 

many non-linear highly complex problems. Due to the limited 

space, the details of the PSO algorithm are not described here.  

 Each particle represents a single design of a T1 FLC, 

determined by its 30 parameters. The fitness of each particle is 

evaluated as the total RMSE of the respective T1 FLC on the 

given training dataset. The optimized input and output fuzzy 

sets of the T1 FLC are depicted in Fig. 4.  

C. Partially Independent Design of IT2 FLC 

 In order to prevent biasing the performance of the IT2 FLC 

by the optimization method, the IT2 FLC architecture is 

directly derived from the optimized T1 FLC. Each T1 fuzzy 

set was transformed into its IT2 counterpart by symmetrically 

blurring the respective fuzzy membership function. The IT2 

fuzzy sets with uncertain mean were implemented.  

 The mean mk of the T1 fuzzy set k was shifted 

symmetrically to both sides by a specified offset. The blurring 

offset was selected arbitrary to provide reasonable overlap 

between the neighboring fuzzy sets. This resulted in an 

interval of means [mk1, mk2]. The upper and the lower 

membership function of the resulting IT2 Gaussian fuzzy set 

can then be analytically expressed as [1]: 

 

         
 

Fig. 5 Input T2 fuzzy sets obtained by blurring the T1 fuzzy sets. 

  

  
 (a) (b) (c) 

 

Fig. 4 Optimized input (a), (b) and output (c) fuzzy sets of the wall-following T1 FLC. 

  

 
 

Fig. 3 Recorded operator’s wall-following behavior.  
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 As a demonstration, the IT2 counterparts of the optimized 

input T1 fuzzy sets are depicted in Fig. 5. Three wall-

following controllers were constructed in this work. FLC1 is a 

purely T1 FLC that has all membership functions of T1 and 

uses the centroid defuzzifier (3). FLC2 uses blurred IT2 rule 

antecedents, but it maintains the T1 consequents. In this 

manner the controller handles uncertainty by its IT2 input 

fuzzy sets, but the output of the inference process is a T1 

fuzzy set and the centroid defuzzification is used. Finally, 

FLC3 is a purely IT2 FLC, which uses IT2 membership 

functions for both rule antecedents and consequents. The 

result of the inference process is an output IT2 fuzzy set, 

which is defuzzified by the N-T method (6). 

IV. EXPERIMENTAL RESULTS 

 The three types of FLCs were used to implement the 

autonomous wall-following behavior of the mobile robot. 

First, the control surfaces produced by the respective FLCs are 

compared. Next, the performance of each fuzzy controller 

autonomously driving a sonar-equipped mobile robot using the 

input sonar measurements is evaluated. 

A. FLCs Structure Comparison 

 The control surfaces of the all FLCs are plotted in Fig. 6. 

Recall, that FLC1 was fully T1 FLC, FLC2 used IT2 fuzzy 

antecedents, and FLC3 was fully IT2 FLC. It can be observed 

that there is only a negligible difference between the FLC1’s 

and FLC2’s control surfaces. Both controller surface feature 

several abrupt changes. On the other hand, the FLC3’s control 

surface is rather smooth. Thus, less performance variation can 

be expected from the purely IT2 FLC, should the environment 

conditions change. 

 Such conclusions are further supported by inspecting the 

differences between pairs of control surfaces, as shown in Fig. 

7. In Fig. 7(a), the FLC2 control surface was subtracted from 

FLC1 control surface. Here, it is visible that only subtle 

changes were introduced into the control performance by 

using the IT2 antecedent membership functions. However, 

when comparing the control surfaces of FLC1 and FLC3 in 

    
 (a) (b) 

 

Fig. 7 Differences between FLC1 and FLC2 (a) and differences between FLC1 and FLC3 (b). 

  

  
 (a) (b) (c)  

 

Fig. 6 Comparison of control surfaces of FLC1 (a), FLC2 (b) and FLC3 (c). 
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Fig. 7(b), substantially greater changes can be observed. The 

amount of introduced smoothing is apparent from the plotted 

difference surface. 

B. Performance in Noisy Environment 

 This experiment investigated the capabilities of each 

controller to cope with unexpected dynamic uncertainties in 

the real-world applications. Here, the constructed FLCs were 

autonomously controlling the mobile robot. The control loop 

is displayed in Fig. 2. The controllers took the measurements 

from the mounted sonar sensor together with the derivative of 

the signal as the inputs. The output of the controllers was a 

control signal for the differential drives of the robot. Based on 

the provided training data, it was expected that the controllers 

should perform a wall-following behavior, resembling the 

behavior performed by the operator. 

 First, noise-less sonar measurements were supplied to the 

controllers and the distance to the wall of the autonomously 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 8 Exemplary wall-following control performance of all three FLCs in three testing cases. 

  

TABLE I 

RMSE OF THE WALL-FOLLOWING BEHAVIOR 

Test Case 
FLC1 FLC2 FLC3 

Mean Std Mean Std Mean Std 

Test A 10.1115 2.1655 10.3832 2.0573 8.0934 3.0451 

Test B 7.9698 1.5157 7.9178 0.8733 4.5375 1.2324 

Test C 7.1617 2.6356 7.5100 1.6693 5.4681 1.5455 

Total 8.4143 2.1056 8.6037 1.5333 6.0330 1.9410 
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controlled robot was recorded. In the second set of 

experiments, the environmental conditions were artificially 

altered by introducing a uniform noise distribution into the 

incoming sonar measurements. The amplitude of the 

introduced noise reached 20% of the desired wall following 

distance. The experiment was started from three different 

initial positions: near the wall, far from the wall and at the 

desired wall-following distance. The performance 

deterioration in the noisy environment of each FLC was then 

studied. Each set of runs was repeated 5 times. Fig. 8 shows an 

example of the recorded driving performance for all three 

controllers during one set of runs. The performance of each 

controller in noise-less conditions is depicted by thin lines, 

while the performance when using the noisy sonar 

measurements is visualized using bold lines.  

 First thing to notice is that the wall-following performance 

of all three controllers is far from perfect. Nevertheless, this 

was expected since the training data provided by the operator 

were far from perfect as well. However, the attempts to 

stabilize the robot at a certain optimal wall-following distance 

are apparent. It is important to point out, that the purpose of 

this paper is not to design an optimal wall-following 

controller. This paper investigates the amount of performance 

deterioration under dynamic uncertainties in the environment 

conditions. This was achieved by matching the performance of 

each FLC under the noisy conditions with its noise-less 

counterpart. It can be observed that the FLC3 features 

substantially lower performance deterioration and 

overshooting when the noisy sonar measurements are used 

(e.g. substantial smaller overshoot at t=15s in Fig. 8(c)).  

 In order to quantify the performance deterioration, the 

RMSE measure was calculated for all pairs of noise-less/noisy 

signals. Here, the error is defined as the change in the robot’s 

position under the altered environmental conditions. This 

measure reports the expected performance variation under 

dynamic uncertainty. The RMSE for all controllers in the three 

testing cases is summarized in Table I. 

 It can be seen that the fully IT2 FLC outperformed both of 

the other two controllers by nearly 30% lower RMSE, in terms 

of the performance deterioration. The FLC3 controller 

featured steadily the smallest RMSE during all three test 

cases. This suggests that the designed IT2 was capable of 

coping with the dynamic uncertainties by the means of its 

smoother and softer control surface. 

C. Controller Responsiveness Analysis  

Next, the FLC-controlled robot was forced to navigate into a 

situation where sudden and responsive action is needed. Such 

situation was encountering a corner during the wall-following 

behavior. The desired response of the controller was to turn 

around the corner and continue in the wall-following behavior. 

The experiment was run 5 times for each of the 3 considered 

FLCs. The distance to the wall was recorded. The average 

distances over all test runs are plotted in Fig. 9. The corner 

encounter is apparent as the sudden increase in the measured 

distance.  

Analysis of the measured signals reveals an interesting 

result. The IT2 FLC was vastly outperformed by the T1 FLC, 

due to its slow responsiveness. Since the smoothed IT2 control 

surface was not able to react fast enough to the abrupt input 

signal change. The robot was not able to properly turn and the 

controller overshot the turning maneuver and consequently 

must have compensated for this. On the other hand, the 

relatively rough control surface of the T1 FLC enabled fast 

response and the robot turned around the corner with minor 

difficulties. Similar observation is reported by Wagner in [11]. 

V. CONCLUSION 

This paper presented a comparative analysis of Type-1 and 

Interval Type-2 FLCs in context of learning behaviors for 

mobile robotics. The controllers were trained to autonomously 

perform a wall-following behavior for a sonar-equipped 

mobile robot. First, the PSO algorithm was used to optimize a 

T1 FLC using recorded data of a wall-following behavior. 

Next, the IT2 FLC was constructed by symmetrically blurring 

the membership functions of the original T1 FLC. 

 First the smoothing of the control surface introduced by 

blurring the T1 membership functions was demonstrated. 

Next, it was experimentally verified that the IT2 FLC 

outperforms the T1 FLC near the set point of the controller 

when coping with dynamic uncertainties such as noisy inputs. 

However, it was also experimentally demonstrated that the 

smoothing of the IT2 control output (obtained by the 

symmetrical blurring design) reduces the ability of the 

controller to quickly react to sudden and abrupt changes in the 

input signal (e.g. when turning around corners). In this case 

the T1 FLC outperformed the IT2 FLC. 

Besides the comparative analysis of T1 and IT2 FLC, this 

 
 

Fig. 9 Averaged sonar distance measurement for the wall-following robot when turning around a corner. 
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paper demonstrated the tradeoffs of the symmetrical blurring 

process as a methodology for obtaining an IT2 FLC from a T1 

FLC. Such blurring method results in a global smoothing of 

the output surface, which is advantageous when dealing with 

dynamic uncertainties near the controller set point, but it can 

result in difficulties when fast controller response is required. 
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