
The Analysis of Dimensionality Reduction
Techniques in Cryptographic Object Code

Classification
Jason L. Wright1 and Milos Manic2

1Idaho National Laboratory, Idaho Falls, Idaho, USA,
2University of Idaho at Idaho Falls, Idaho Falls, Idaho, USA,

jlwright@ieee.org, misko@ieee.org

Abstract—This paper compares the application of three
different dimension reduction techniques to the problem of
classifying functions in object code form as being cryp-
tographic in nature or not. A simple classifier is used
to compare dimensionality reduction via sorted covariance,
principal component analysis, and correlation-based feature
subset selection. The analysis concentrates on the classifica-
tion accuracy as the number of dimensions is increased. It
is demonstrated that when discarding 90% of the measured
dimensions, accuracy only suffers by 1% for this problem. By
discarding dimensions, computational intelligence techniques
can be applied with a drastic reduction in algorithmic
complexity. The primary focus is on Intel IA32 instruction
set, but analysis shows consistent results on the Sun SPARC
instruction set.

Index Terms—correlation-based feature subset selection,
cryptography, dimensionality reduction, principal component
analysis (PCA), sorted covariance.

I. INTRODUCTION

Object code is the result of compilation of source
code (C, C++, etc.). Source code is generally processor
architecture independent, but the resulting object code is
tied to a particular CPU instruction set architecture. Object
code can also refer to a binary executable for a given
operating system and instruction set architecture.

The location cryptography in compiled object code has
three primary areas of application: malware analysis, hid-
den software feature detection, and export compliance. In
the malware analysis community, location of cryptography
is a concern as malware authors are employing strong
cryptography primitives. The much publicized Conficker
worm, for example, uses RSA and RC4 [1–2], and botnets
and other forms of malware are using similar methods [3–
4]. Hidden software feature detection is the detection of
unpublished, possibly malicious, features in software. The
idea here is to detect the presence of cryptography algo-
rithms in unexpected places. For example, the Microsoft
Calculator that ships with Windows should not contain
cryptography; encryption is not one of its listed features.
In the United States, an export license is required in many
cases if cryptography is to be exported in source or binary
form as a part of a product. To verify that cryptography is

This manuscript has been authored by Battelle Energy Alliance, LLC
under Contract No. DE-AC07-05ID14517 with the U. S. Department of
Energy. The United States Government retains a nonexclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
Government purposes.

not being unintentionally exported, at least one company
provides a service that will scan source code for known
algorithms based on a database [5].

This work focuses on the problem of identifying the
dimensions to be measured for accurate location of cryp-
tography algorithms within a sample of compiled object
code. Once a dataset is gathered, a the behavior of a
simple classifier (linear regression) is used to compare
and contrast three different dimensionality reduction tech-
niques: sorted covariance, Principal Component Analysis,
and Correlation-based Feature Subset selection (CFS).

A simplistic technique for identifying cryptography has
been implemented for the IDAPro disassembler [6–7]. The
constants used by various cryptographic algorithms are
used as search strings. If identified, the assumption is made
that the algorithm is present. References to the located
string can then be used to determine the location of the
cryptographic function within the binary. The problem with
this technique is the assumption that the constants have not
been tampered with.

In [8], a simplistic, expert driven approach was used to
identify the properties of cryptographic functions. Empiri-
cally defined weights were applied to a single neuron with
a linear activation function. The inputs were the density
of a few opcodes (XOR, SHL, SHR, ROR, ROL). This
method was refined to include the total number of each
opcode as well as the density in training a non-trivial neural
network [9].

In this work, analysis is done on the opcodes emitted
by compilers to determine which instructions correspond
most closely with cryptography. Initial work is performed
with the Intel IA32 (x86) architecture [10–11]. IA32 is
also classified as a Complex Instruction Set Computer
(CISC). The same method is then used on the SPARC
version 9 architecture [12]. SPARC is chosen because
it is a representative Reduced Instruction Set Computer
(RISC). Results should generalize to other instruction sets
(PowerPC, ARM, etc.).

Various techniques have been applied to the problem
of identifying malware. Several of the techniques have
focused on statistical properties of malware. N -grams of
opcodes [13] and Bayesian analysis [14] have been demon-
strated as being capable of identify a sample of object
code as being malicious. This work differs in that ultimate
goal is classification of individual functions instead of the
program as a whole.

HSI 2010 Rzeszow, Poland, May 13-15, 2010

157

admin
Tekst maszynowy
978-1-4244-7561-2/10/$26.00 ©2010 IEEE

II. STATISTICAL DIMENSIONALITY REDUCTION

Informally, covariance is the measure of dependence of
two variables [15]. A high positive covariance indicates
that large and small values of one variable occur with
large and small values of the other. If small values of
one variable occur with large values of the other variable,
the covariance will tend to be negative. A covariance
close to zero means that the two variables do not possess
a strong relationship. Formally, the covariance of two
random values, X and Y is defined in (1) where µX and
µY are the mean of X and Y , respectively, and p(x, y)
is the joint probability mass function of x and y or the
probability that X = x and Y = y, (2).

cov(X,Y) =
∑
x

∑
y

(x− µX)(y − µY)p(x, y) (1)

p(x, y) = P (X = x and Y = y) (2)

A matrix of covariance values can be computed for n
random variables Xi, Xj for i = 1, . . . , n, j = 1, . . . , n as
shown in (3). The resulting matrix is symmetric because
cov(X,Y) = cov(Y,X).

ci,j =

{
var(X) i = j

cov(Xi, Xj) i 6= j
(3)

Taking a vector (row or column) from the matrix, the
covariance with a particular variable can be determined.
Sorting by the absolute value gives a ranking of the
covariance of one variable to the variable of interest. This
is a naı̈ve form of dimensionality reduction by which
the highest magnitude covariance dimensions are ranked
against the classification dimension. It does not, however,
take into account redunancy amongst the variables (those
that have a covariance with each other).

Principal Components Analysis (PCA) is robust form of
dimensionality reduction. The results of PCA are a linear
transformation of the data to a new coordinate system.
Given n dimensions, PCA produces n linear transforms of
the original dimensions of the data as shown in (4), where
pc1 is the result of the linear transformation an,m (n is
the principal component number and m is the dimension
number) and xn is the value for dimension n for a given
data point.

pc1 = a1,1x1 + a1,2x2 + · · ·+ a1,nxn
...

pcn = an,1x1 + an,2x2 + · · ·+ an,nxn

(4)

Each linear transformation is orthogonal. The first prin-
cipal component captures the majority of the variance of
the original data, and each successive principal component
captures less. The total variance is equal to the original data
variance. Dimensionality reduction is achieved by keeping
some number of the principal components that capture the
majority of the variance in the data set, and discarding
the rest. Practically this means that all of the original
dimensions must be measured for each data point, but only
the most important principal component results need to be
stored.

The last technique applied in this paper is that of
Correlation-based Feature Subset selection (CFS) [16].
This algorithm finds dimensions that are predictive of the
type of the object, but have little correlation with each
other. Simple covariance analysis across the classification
dimension does not capture the effect of covariance of
other dimensions with each other. CFS seeks to address
this problem by applying a greedy search of the covariance
matrix to maximize covariance to the classification dimen-
sion and minimize the covariance of the selected variables
with each other.

III. DIMENSIONALITY REDUCTION ANALYSIS

The three dimension reduction techniques described in
Section II (sorted covariance, PCA, and CFS) are applied to
two different data sets. Performance is measured in terms
of accuracy (AC), precision (P), False Positive rate (FP),
and False Negative rate (FN). Each of these is defined
in terms of a confusion matrix [17], like that in Table 1.
Accuracy, (5), is a measure of correctly classified items
(positive and negative). Precision, (6), is a measure of
correctly classified positive cases. False positive, (7), and
false negative, (8), measure the proportion of incorrectly
classified positive and negative cases, respectively

classified as:
non-crypto crypto

(a) (b) non-crypto
(c) (d) crypto

TABLE 1: EXAMPLE CONFUSION MATRIX.

AC =
a+ d

a+ b+ c+ d
(5)

P =
d

b+ d
(6)

FP =
b

a+ b
(7)

FN =
c

c+ d
(8)

The first step in the process is to gather a representative
data set. It must be evaluated by an expert to determine
which functions are cryptographic in nature. After some
preliminary data analysis, each dimensionality reduction
technique is applied and evaluated for its impact on accu-
racy, precision, false positive rate, and false negative rate.

A. Gathering Data Set

Various disassembly and reverse engineering tools are
available. In this work, the GNU objdump utility is used to
disassemble libraries and applications. The general method
is to take a representative library and for each function
to compute the total number and density of each opcode
observed. Density is defined as the total number of a
particular opcode divided by the total number of opcodes
in the function, (9).

ρi,f =
of opcode i in function f

total opcodes in function f
(9)

The library is augmented with expert knowledge of
which functions are cryptography and which functions are

158

not (a simple binary “yes” or “no” for each function in the
library). The opcode totals and densities combined with
the binary “iscrypto?” value forms the matrix on which
this paper is based.

The representative library chosen is the C library from
OpenBSD on the Intel (32 bit) platform (IA32). This
library contains 1727 functions. Included in those func-
tions are several cryptographic algorithms: SKIPJACK,
BLOWFISH, DES, 3DES, MD5, MD4, SHA1, SHA2, etc.
(23 of the 1727 functions). To increase the number of
cryptographic algorithms, implementations of GOST, TEA,
LUCIFER, RC5, RC4, and IDEA were taken from [18],
compiled, and added to the base C library. System calls
like open(), close(), read(), and write() were removed from
the library. In total, 1776 functions were evaluated: 1723
non-cryptographic and 53 cryptographic.

The representative library was compiled with the GNU
Compiler Collection (GCC) using four different compiler
optimization levels (O0, O1, O2, and O3). Each level
changes the scheduling of instructions, as well as ordering
and may involve loop unrolling and function inlining. All
of these may have an impact on the instruction counts and
densities.

An oddity of the IA32 instruction set is that the cheapest
way to zeroize a register is using the xor instruction, e.g.
xor %eax,%eax. This is not truly an XOR operation; it
is an assignment of zero to the register %eax. As a result,
instructions using this idiom were not included in the data
set except as a part of the total number of instructions in
each function.

The definition of what, precisely defines an opcode
is also somewhat ambiguous. Originally this work used
strictly the mnemonic output by the disassembler to
uniquely determine the opcode. For the IA32 instruction
set, there are two commonly used assembly syntaxes,
referred to as AT&T and Intel. The objdump disassembler
uses AT&T syntax which adds a type modifier to the end of
many instructions [19]. For example, movb, movw, movl
are 8bit (byte), 16bit (word), and 32bit (long) movement
instructions. In Intel syntax the mnemonic is simply mov
for all three, because the width of the data type is inferred
by the registers involved. The authors decided to translate
AT&T syntax to Intel syntax.

The final list of instructions used and the opcode trans-
lations are shown in Table 2. For each function in the
representative library, the total number of each opcode and
the density (number of that particular opcode divided by
the total number opcodes in the function) was computed.

B. Initial Classification

At this point, there are 94 measured dimensions for
each function in the representative library: 47 totals and
47 densities. The addition of the classification dimension
makes for 95 total dimensions. A simple linear regression,
chosen for computational inexpensiveness, was performed
on this data matrix.

Table 3 shows the resulting confusion matrix after
several minor expert classification errors were fixed. The
false negative rate is 53.9% as classified by the linear
regression, but the overall accuracy is 98.2%. The poor
performance on cryptography functions suggests that if

addl, addw, adc ⇒ add
cmpb, cmpw, cmpl ⇒ cmp
incb, incw, incl ⇒ inc
movb, movw, movl ⇒ mov

movsbl, movswl, cltd ⇒ movs
movzbl, movzbw, movzwl ⇒ movz

shrd, shrl ⇒ shr andl ⇒ and
decl ⇒ dec divl ⇒ div idivl ⇒ idiv
negl ⇒ neg pushl ⇒ push roll ⇒ rol
shld ⇒ shl subl ⇒ sub testb ⇒ test
call cld imul ja jae jb
jbe je jg jge jl jle
jmp jne jns js lea leave
nop not or pop repnz ret
ror sar sete setg xchg xor

TABLE 2: OPCODES MEASURED FOR EACH FUNCTION AND ALIASES.

a solution exists for robust classification of cryptography
versus non-cryptography it is non-linear in nature. It is, at
least, close to being a linear.

classified as:
non-crypto crypto

6824 (a) 12 (b) non-crypto
112 (c) 96 (d) crypto

Classification rate
0.18% false positive
53.9% false negative
98.2% accuracy
88.9% precision

TABLE 3: LINEAR REGRESSION RESULTS (94 MEASURED
DIMENSIONS).

Figure 1 shows the residual case order plot of the
data. Of the 7048 points, 235 are identified as outliers
by the residuals (outside the 95% confidence level); 128
of these outliers are misclassified by the linear regression
and 107 are correctly classified outliers. In no case was
an outlier identified using the residual that was not also
misclassified by the linear regression. This suggests that
there are extreme values in the outliers.

Fig. 1. Residual case order plot.

C. Dimensionality Reduction

The data matrix was standardized to zero mean and unit
standard deviation. Zero mean simplifies (1) by making

159

µX = µY = 0. By standardizing, each dimension is given
equal weight in the covariance (i.e. columns with high
numerical values do not dominate the covariance).

Figure 2 depicts the twelve columns with the highest
covariance of the data set to the expert determination.
Figure 3 depicts the columns with the lowest covariance.

According to Figure 2, the density of xor instructions
is the single most telling feature of the dataset followed
closely by the total number of right shifts (shr). This
makes intuitive sense as the xor operation is rarely used
outside of cryptography and is quite common in the confu-
sion part of of Feistel networks [20]. Other indicators are
simple bitwise operations, like and, or, and rol (Rotate-
Left) or arithmetic operations like add. One oddity is the
movz (Move with Zero-extension) instruction. Upon closer
inspection, this instruction is commonly used to compute
modulo 256 or 65536. This is used in table references in
cryptography algorithms like RC4 and others.

In Figure 3, no feature has a strong negative covariance
with the expert determination. Several of these instructions
make intuitive sense as well. For example the call
instruction is used to call subroutines. Most core cryp-
tography algorithms are written to avoid calling other
subroutines.

Rank -O0 -O1 -O2 -O3 all
1 ρxor ρxor ρxor ρxor ρxor
2 σxor σshr σshr σshr σshr
3 σshr σxor σxor σxor σxor
4 σmovz σmovz σmovz σmovz σmovz
5 σor σor σor σand σor
6 σadd σand σand σor σand
7 σand ρor ρor σshl ρor
8 ρlea σshl σshl ρshr σshl
9 σlea ρrol ρrol ρrol ρrol
10 σmov σmov ρshl ρor σrol
11 σrol σrol σrol σadd σmov
12 ρor ρshl σmov σrol ρshr

Fig. 2. Covariance analysis of positive features.

Using the standardized data matrix, a principal compo-
nents analysis is performed. Figure 4 is a Pareto chart of
the first ten principal components (PCs) and the amount
of variance in the data set that is captured by those
components. There is a bar for each of the ten PCs and the
line is a running some of the variance captured. In a well
behaved data set, the first few PCs would capture 80% or
more of the total variance of the set. However, in this set,
the first 10 PCs represent less than 45% of the variance of
the data set.

With so little variance captured in each principal com-
ponent, an examination of the weights assigned to each
input dimension is difficult to interpret. Again, in a well

Rank -O0 -O1 -O2 -O3 all
1 ρpush ρcall ρtest ρcall ρcall
2 ρcall ρpush ρcall ρtest ρpush
3 ρsub ρje ρpush ρpush ρtest
4 ρje ρtest ρje ρje ρje
5 ρleave ρleave ρleave ρleave ρleave
6 ρjne ρret ρret ρjne ρjne
7 ρcmp ρjne ρjne ρret ρret
8 ρret ρsub ρjmp ρjmp ρsub
9 ρtest σtest σtest σcall σtest
10 σjne σcall ρsub ρsub σje
11 σje σje σcall σtest ρjmp
12 σcmp ρjmp σje σje σjne

Fig. 3. Covariance analysis of negative features.

behaved data set, examination of the weights assigned to
each dimension in each PC would provide insight into the
behavior of each dimension and provide an indication of
its relative importance.

Fig. 4. Variance captured per principal component.

Finally, Correlation-based feature subset is performed.
This technique attempts to find features that are predictive
to the type of the object, but with little correlation with
each other. The results of this analysis are shown in
Table 4. CFS is compared with the covariance analysis
already discussed for several optimization levels (O0, O2,
and the whole data set). To obtain a ranking of attributes,
10-fold cross validation was used with CFS and rank is
determined by the number of folds for which the attribute
was selected.

All of the attributes selected for the whole data set
also appear in the top covariance ranking. An interesting
quirk, however, is that CFS picked exactly one negative
covariance dimension: ρcall. It was only selected for the
O2 optimization level.

Figure 5 shows the linear regression classification results
of selecting attributes based on sorted covariance, PCA,
and CFS. In the graphs, accuracy, precision, false positive
rate, and false negative are plotted versus the number of
dimensions used (X axis). The dotted line (COV) repre-

160

-O0 -O2 All
COV CFS COV CFS COV CFS
ρxor ρadd/10 ρxor ρxor/10 ρxor ρje/10
σxor ρxor/10 σshr ρrol/10 σshr ρshr/10
σshr σxor/10 σxor σxor/10 σxor ρxor/10
σmovz ρjne/9 σmovz ρjle/9 σmovz ρmovz/10
σor σrol/9 σor σmovz/9 σor σrol/10
σadd ρshr/8 σand ρshr/8 σand σxor/10
σand ρlea/6 ρor ρtest/8 ρor σshl/7
ρlea σmovz/6 σshl ρcall/7 σshl ρor/4
σlea ρje/5 ρrol σshl/7 ρrol —
σmov ρor/5 ρshl ρxchg/6 σrol —
σrol ρmovz/4 σrol ρor/2 σmov —
ρor ρpop/4 σmov σshr/2 ρshr —

TABLE 4: COMPARISON OF COVARIANCE ANALYSIS TO CFS
ANALYSIS.

sents attributes sorted in order by their covariance with
the classification dimension. The solid line represents the
attributes selected by CFS. The dashed line is the number
of principal components used for the linear regression A
logarithmic scale is chosen for the number of dimensions
axis to emphasize the shape of the curve along the lower
number of dimensions. There is no improvement in false
positive rate for CFS with more than 7 dimensions, and
little improvment (0.2%) in accuracy with more than the 8
dimensions identified by CFS. In the case of false negative
rate, CFS and covariance are closely matched at eight di-
mensions (within 0.5%), but adding more dimensions with
covariance drops the false negative rate by approximately
5%. PCA has a lower false positive rate until almost all
PCs are used. However, it maintains a consistently higher
false negative rate until approximately the same number of
PCs are used. PCA also lags behind both COV and CFS
on accuracy. Based on these results, it would be difficult
to pick a “best” dimensionality reduction technique; each
one has its strengths.

Fig. 5. Covariance, PCA, CFS effect on AC, P, FN, and FP (IA32).

IV. TEST RESULTS

To test the methodology of dimensionality reduction
for consistency, the same techniques were applied to the
SPARC version 9 instruction set. SPARC is a Reduced

Instruction Set Computer whereas Intel IA32 is a Complex
Instruction Set Computer. The same representative library
used in Section III-A was compiled for SPARC using the
same compiler as before: GCC. Four different optimization
levels (O0 through O3) were applied as before.

The library was disassembled with objdump. Each in-
struction used in a cryptographic function was counted and
the density was computed. As with IA32, objdump uses
AT&T syntax and the type specifiers were removed from
the instructions so that, for example, ldb (Load Byte),
ldh (Load Halfword), ldw (Load Word), and ldx (Load
Extended Word) are counted as ld (Load Integer). Several
other translations were performed as well, including condi-
tional move instructions like movge (Move, if Greater or
Equal) being translated to simply mov and addcc (Add
and set Condition Codes) being translated to add. The final
list of instructions and translations is shown in Table 5. In
all, 49 different opcodes were measured resulting in 98
dimensions (count and density for each).

movcc, movcs, move, movg, movge, movl, movle, movne ⇒ mov
clrb, clrh, clrx ⇒ clr andcc ⇒ and
addc, addcc ⇒ add ldsb, ldsw ⇒ lds
ldub, lduh ⇒ ldu stb, sth, stx ⇒ st
ldx ⇒ ld mulx ⇒ mul orcc ⇒ or
sllx ⇒ sll srax ⇒ sra srlx ⇒ srl

subc ⇒ sub udivx ⇒ udiv andn b
bcc bcs be bg bge bgu
bl ble bleu bne bneg bpos

brnz brz btst call cmp inc
neg nop orn restore ret retl
rett save sdiv sethi smul wr

xnor xor

TABLE 5: OPCODES MEASURED FOR EACH FUNCTION AND ALIASES
(SPARC).

Figure 6 shows the covariance analysis of positive
features with the classification label. The instructions that
have high covariance with the classification dimension are
quite different from IA32, but there are some similarities.
The ldu (Load Unsigned) instruction figures highly in
the covariance of all optimization levels. Like IA32, xor
(eXclusive OR) and sll (Shift Left, Logical) also rank
quite high.

classified as:
non-crypto crypto

7613 0 non-crypto
75 141 crypto

Classification rate
0% false positive

34.72% false negative
99.0% accuracy
100% precision

TABLE 6: LINEAR REGRESSION RESULTS FOR SPARC (98
DIMENSIONS).

Figure 7 shows the effect on a linear regression classifier
based on dimension selection using sorted covariance, CFS
and PCA. The accuracy of CFS closely follows sorted
covariance and adding 89 more dimensions only improves
it by 0.2%. Similiarly for false negative rate, sorted co-
variance and CFS follow a similiar curve with only slight
improvement as additional dimensions are added. PCA

161

Rank -O0 -O1 -O2 -O3 all
1 ρld ρldu ρldu ρldu ρldu
2 ρldu ρsll ρsll σsll σsll
3 σst σsll ρxor ρxor ρsll
4 σld ρxor σsll ρsll ρxor
5 σsll σand σand σand σand
6 σand σsrl σsrl σsrl σsrl
7 σsrl σldu σldu σxor σxor
8 ρst σxor σxor σor σor
9 ρxor σor σor σldu ρld

10 ρsll σld σld σld σldu
11 σldu ρor ρor ρor σld
12 σor σadd σadd σadd ρor

Fig. 6. Covariance analysis of positive features on SPARC.

shows inverse behavior on the FP and FN graphs: FP grows
as PCs are added (slowly) and falls on FN. Interestingly,
precision for PCA is consistently higher than the other
techniques.

Fig. 7. Covariance, PCA, CFS effect on AC, P, FN, and FP (SPARC).

V. CONCLUSION

A method for automatically determining the correct
opcodes to measure for the problem of identifying crypto-
graphic functions in object code has been presented. The
method was first applied to the Intel IA32 instruction set,
a complex instruction set computer, and then applied to a
reduced instruction set computer: SPARC. In both cases,
accuracy was demonstrated to be less than one percent
different after removing 90% of the measured dimensions.

With the reduced dimensionality, computational intelli-
gence algorithms can be applied without wasting time on
dimensions which add no useful information. This can be a
substantial computational savings as dimensionality is usu-
ally a multiplicative factor in the algorithmic complexity
of computational intelligence techniques.

In previous work, the dimensions of the problem were
expert defined, but the method presented here provides an
automatic, statistically driven method for identifying those
opcodes most indicative of cryptographic functionality. The
only task left for the human is the expert determination of
the cryptographic nature of each of the test samples.

REFERENCES

[1] P. Porras, H. Saidi, and V. Yegneswaran, “An analysis of conficker’s
logic and rendezvous points,” SRI International, Tech. Rep., March
2009. [Online]. Available: http://mtc.sri.com/Conficker/

[2] ——, “Conficker c p2p protocol and implementation,” SRI
International, Tech. Rep., September 2009. [Online]. Available:
http://mtc.sri.com/Conficker/P2P/index.html

[3] J. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon,
“Peer-to-peer botnets: overview and case study,” in HotBots’07:
Proceedings of the first conference on First Workshop on Hot
Topics in Understanding Botnets. Berkeley, CA, USA: USENIX
Association, 2007, pp. 1–1.

[4] K. Chiang and L. Lloyd, “A case study of the rustock rootkit and
spam bot,” in HotBots’07: Proceedings of the first conference on
First Workshop on Hot Topics in Understanding Botnets. Berkeley,
CA, USA: USENIX Association, 2007, pp. 10–10.

[5] “Export KnowledgeBase,” Black Duck Software. [Online].
Available: http://www.blackducksoftware.com/export/encryption-
source-code

[6] I. Guilfanov, “FindCrypt,” January 2006,
http://hexblog.com/2006/01/findcrypt.html.

[7] ——, “FindCrypt2,” February 2006,
http://hexblog.com/2006/02/findcrypt2.html.

[8] J. L. Wright, “Finding cryptography in object code,” in Security
Education Conference Toronto (SecTOR), October 2008.

[9] J. Wright and M. Manic, “Neural network approach to locating
cryptography in object code,” in IEEE Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE, September
2009.

[10] Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A: Instruction Set Reference A–M,
Intel Corporation, September 2009. [Online]. Available:
http://www.intel.com/products/processor/manuals/index.htm

[11] Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A: Instruction Set Reference N–Z,
Intel Corporation, September 2009. [Online]. Available:
http://www.intel.com/products/processor/manuals/index.htm

[12] D. L. Weaver and T. Germond, Eds., The SPARC Architecture
Manual (Version 9). SPARC International, Inc., 2000.

[13] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman,
S. Dolev, and Y. Elovici, “Unknown malcode detection using opcode
representation,” in Proceedings of the 1st European Conference on
Intelligence and Security Informatics EuroISI. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 204–215.

[14] D. Bilar, “Opcodes as predictor for malware,” International Journal
of Electronic Security and Digital Forensics, vol. 1, no. 2, pp. 156–
168, 2007.

[15] J. L. Devore, Probabiliy and Statistics for Engineering and the
Sciences, 3rd ed. Duxbury Press, 1991, ch. Expected Values,
Covariance, and Correlation, pp. 200–206.

[16] M. A. Hall, “Correlation-based feature subset selection for machine
learning,” Ph.D. dissertation, University of Waikato, 1999.

[17] R. Kohavi and F. Provost, “Editorial: Glossary of terms,” Machine
Learning: Special Issue on Applications of Machine Learning and
the Knowledge Discovery Process, vol. 30, no. 2-3, 1998.

[18] B. Schneier, Applied Cryptography. John Wiley and Sons, 1996.
[19] GNU Assembler (as) Version 2.20, Free Software Foundation.

[Online]. Available: http://sourceware.org/binutils/docs-2.20/
[20] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of

Applied Cryptography, 5th ed. CRC Press, August 2001.

162

