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Abstract – Non-homogenous systems arise from the need to 
incorporate a variety of disparate systems into a cohesive 
functioning whole and may comprise many crucial elements of 
an industrialized, modern society.  As a result they must be 
constantly monitored to ensure efficient functioning and avoid 
expensive breakdowns. In particular, inter-connected 
computer-based systems must increasingly be aware of cyber 
and physical threats that are dynamic and evolutionary in 
nature.  However, difficulties arise in trying to ascertain 
threats and problems among the diverse sources of 
information generated by these systems.  Finally, there is the 
question of how best to present this data to a human operator.  
Human systems require not just analysis, but presentation 
which encourages timely, proactive or corrective decisions.  
This paper presents a software architecture to solve these 
problems based upon data fusion using temporal-spatial 
relationships.  As phase one of a three phase project, a 
prototype implementation of this architecture demonstrates 
application of this technique for a cohesive system.  Test 
results showed the system capable of real-time fusion of 
physical, cyber and process data elements as well as analysis, 
display and interpretation of threats. 

I. INTRODUCTION 

Modern complex systems, such as a nuclear power plant, 
consist of a multitude of subsystems, each of which has a 
specific, often critical, role [1].  Each subsystem attempts to 
address a particular need of the overall plant.  Ensuring 
component and overall plant health is extremely important 
for both economic and other reasons: 

1. Plant equipment tends to be very expensive to 
repair and replace. 

2. Any plant that is not running at capacity incurs 
both fixed costs and lost opportunity costs that can 
run into the many millions of dollars. 

3. Due to the hazardous nature of nuclear fuel and 
waste products, accidents can have devastating 
economic and environmental consequences. 

While failures in these and other large, complex systems 
tend to be rare, they can also be catastrophic.  Costs to 
repair or replace a typical steam generator can run over a 
billion dollars, not to include the revenue lost while the 
system is nonfunctional [2, 3].  Major accidents, such as 
Chernobyl (1986), France (1992), and Japan (1999) can 
have far-reaching consequences [4].  More recently, the 
prospect of terrorism adds an entirely new dimension and 
impetus for plant safety and security [5].  

In order to prevent accidents, equipment malfunctions 
and acts of sabotage, plant operators rely on a myriad of 
equipment sensors, networks and various layers of security 

[1, 5, 6].  Plant subsystems are monitored through use of 
sensors or other means of observation such as physical 
inspections.  Computer networks employ IDS, encryption 
and other forms of network security to detect and deter 
attackers.  The physical assets are protected as well by 
fences, doors and other barriers to entry which employ 
locks, card swipe systems, fingerprint/retinal scans or other 
means to allow access to the select few while denying 
access to others. 

Despite that fact that gathering data from plant sensors 
has been occurring for decades, preventable accidents and 
malfunctions still happen and security risks continue to be a 
major concern [1, 2, and 5].  Data repositories are often of 
limited use even though they are often quite extensive [7].  
Some key subsystems, while closely monitored, are still 
susceptible to malicious outside influence that can be 
difficult to trace and determine.  Even with increased 
awareness of security, better sensors and computers, 
databases and analysis tools, there is still a significant gap 
between available data and the ability to translate that data 
into actionable knowledge [7, 8]. 

Recent research into Resilient Control Systems (RCS) 
undertaken at the Idaho National Laboratory demonstrates 
the need for determining proper operation of a facility by 
considering and evaluating all possible threats and 
measures [6].  The goal of RCS Design is to be able to 
combine disparate system data for improved state 
awareness of a larger system.   

Better state awareness allows for a more proactive, rather 
than reactive application of resources for system operation 
and maintenance.  Implementing RCS design requires a 
much more cohesive approach to data collection along with 
better ways to combine and evaluate results across different 
yet interrelated systems.  This is necessary due to the 
greater complexity and sophistication of the modern plant 
as well as increased threat levels and means of attack. 

Traditional techniques to address this problem typically 
involve collecting the data in some sort of data repository.  
The repository may consist of a database, such as an ISAM 
or relational database, or just a set of text or binary files [7].  
If the data is retrievable, it is displayed in a number of 
formats which can range from stacks of paper to an 
advanced software dashboard.   

Advances in database technology have lead many 
organizations to create a data warehouse, which is often a 
large repository consisting of relational databases working 
in combination with multi-dimensional databases [8, 9].  
Data in these databases can be “mined” for information 
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either automatically using advanced data mining techniques 
or manually using reports or spreadsheets [10].   

There are significant problems, however, in trying to 
store, mine and interpret data which comes from many 
different sources and appears to have little by way of 
“relateability” to other data. 

 This paper presents a software architecture and 
methodology for use in a nuclear plant or other large 
organization, designed to improve its capability to monitor 
key subsystems and employ both preventative and reactive 
techniques to minimize plant disruption and downtime.  
Section II presents a problem statement.  Section III 
describes the architecture in detail.  Section IV presents a 
prototypical implementation of the architecture.  Section V 
presents conclusions and future work. 

II. PROBLEM STATEMENT 
A typical nuclear plant will employ a vast array of 

sensors, computers and other equipment that generate data.  
Because of the considerable cost of modern plant 
maintenance and protection, a resilient design is essential 
[6].   

This design must incorporate data that leads to proactive 
rather reactive control and account for both mechanical and 
human threats.  Consider a plant that gathers data from 
three major subsystems.   

The first is physical security, which records time and 
activity around various access points throughout the plant.  
Physical security sensors record access times, physical 
breaches and the like.   

The second is cyber security, which consists of an 
Intrusion Detection System and network monitoring 
software of the plant network.  Cyber systems record 
network traffic along with analysis to identify potential 
security problems and threats.   

The third is a chemical mixer, which much precisely 
maintain both the chemical consistency of a solution and 
then pump to resulting mixture to a receiving tank.  The 
mixer has sensors which record volume, composition and 
flow rates.  All the major subsystems form an integral part 
of plant function as shown in Fig. 1. 
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 Fig. 1. Nuclear plant implementing methods of security 
 
Aside from the large amounts of data generated that must 

be stored and analyzed, there are a number of other issues 
that prevent that data from providing useful information: 

1. Different sensors, e.g. a volume sensor and card 
swipe, often do not share a common means of 
transmission; so any robust data collection system 
must be able to support a wide variety of input 
mechanisms. 

2. Data formats are usually tailored to a specific device 
and generally incompatible with other subsystems. 

3. Sensor data is susceptible to noise, incompleteness or 
nonstandard metrics. 

4. Even in the event data can be gathered and 
correlated properly, there exists limited capability for 
relating events occurring between disparate systems such 
as an access control system and a proximate subsystem 
process.  Take, for example, an intruder who forces open a 
door in order to gain access to a pump and tamper with a 
valve.  Consider also, a cyber attack where regulator 
inputs are spoofed so that the unit wrongly calculates unit 
pressure.  In either case, there significant damage may 
occur but if the break-in, cyber attacks and resulting 
damage are looked at in isolation there is limited 
capability for a plant manager to determine causality 
between them. 
Relational Database Management Systems (RDBMS) 

provide useful tools for storing and retrieving datasets but 
require a “relationship” in order to merge disparate datasets.  
Multi-Dimensional Databases (MDD) suffer from the same 
issues, even when employing advanced schemas such as the 
constellation [7].  Binding different factual elements 
requires introducing informational ties, even if those ties 
are artificial. 
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Fig. 2. Typical Entity Relationship linking sales to products and 

customers 
 

Furthermore, in order for the data that is stored to be 
mined effectively, it must be formatted in such a way so as 
to lead to mining models that are understandable and lead to 
successful classifications and predictions.  This often 
requires Extraction, Transform and Load (ETL) functions to 
clean, discretize and transform data from a source input to 
final repository. 

Finally, once all that is accomplished, a human interface 
must be devised that presents the knowledge in a usable 
format.  The information must be accurate, timely and 
actionable or suggestive enough that an operator can 
quickly isolate problems and take corrective measures and 
achieves the stated goals for a resilient design.  

III. DATA FUSION ARCHITECTURE 
Data Fusion is defined as integrating disparate data 

elements into a coherent and usable framework for storage, 

analysis and display.  By “fusing” different data elements, 
relations are made possible and the advantages of RDBMS 
and MDD can be brought to bear.  In the test nuclear 
facility that requires combining physical, cyber and process 
into a unified data model that can be analyzed and 
interrogated.  This is accomplished via a series of steps: 

1. The various data sources (physical, cyber and 
process sensors) export data to a central location. 

2. The data is time-stamped and cross-referenced to 
obtain sufficient temporal-spatial characteristics for 
data mining. 

3. Data is then cleaned and transformed and stored in a 
temporary data repository. 

4. Processes then migrate and transform the data from 
the repository to a permanent data warehouse. 

5. Analysis, data mining is performed on the new data. 
6. Existing rules are applied and new information 

obtained from the analysis is applied to the rules 
engine. 

7. Any appropriate alerts are generated. 
8. Display data is created and made available for 

retrieval. 
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Fig. 3. Data Fusion Architecture 
 
Fig. 3 shows what an implementation of such an 

architecture might look like.  In addition, it is highly 
desirable that all data transactions be as secure as possible 
to avoid corruption and tampering.  For that various 
techniques are available such as SHA (Secure Hash 
Algorithm), DES (Data Encryption Standard) over TCP. 

Achieving the above requires a number of software 
components (and applicable hardware). 

1. A relational database. 
2. A data warehouse 
3. Data mining tools 
4. Presentation tools 
5. Software for data input and extraction 
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6. APIs between the sensors, databases and presentation 
software. 

 
Advanced Data Mining Techniques (ADMTs), combined 

an expert system provide the necessary sophistication and 
analysis of the data.  ADMTs are automated algorithms 
used for classifying data and making predictions based 
upon recognizable patterns and lie at the heart of this 
architecture.  ADMTs have been used successfully in 
Intrusion Detection Systems (IDS), image and character 
recognition, adversarial game-play and a host of other 
applications.   

At the heart of each ADMT is an algorithm that looks for 
patterns in the data that can be described or classified.  This 
description or classification becomes knowledge which can 
then be turned into rules for analysis or prediction [7]. 

There are a number of different types of ADMT.  One 
such ADMT is the Artificial Neural Network (ANN).  Each 
neuron of an ANN separates data elements into one of two 
groups.  This is done by running data inputs through a 
neuron’s processing unit combined with a series of weights 
applied to each input.  For a set of n inputs x and weights w 
the output signal o is given by the following: 

 


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iixwfo
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By combining the output of neurons into an ANN, it is 

able to perform more sophisticated classifications, such as 
the one demonstrated in Fig. 4. 

 

  
Fig. 4. Neurons in a Neural Network classify squares and circles 

 
  There are a number of algorithms in the ADMT family 

including decision trees, Support Vector Machines, k-
means/medoids clustering, fuzzy c-means and others.  Each 
brings certain advantages and disadvantages to data 
classification and rule generation and used together can 
provide an even more comprehensive overview of the data. 

An example in the practical use of ADMTs is in credit 
card fraud detection.  A person’s card usage history forms a 
“pattern” that can be compared against recent usage.  
Significant deviation from the expected pattern is flagged as 
potential fraud and investigated.  Because of the huge 
volume of transaction data, the ADMT is able to explore 
and analyze in a manner impractical and too time-
consuming for a human. 

  ADMTs are automated and designed to run against large 
datasets that would typically overwhelm human 
interpretation, but are also capable of working with humans 
to develop extensive knowledge bases and rule sets.  
ADMTs search for information that is often hidden from 
traditional search/query techniques and attempt to “learn” 
from data behavior.  This new knowledge can then be 
incorporated into additional rules that can govern an expert 
system [7]. 

ADMTs are particularly valuable because, unlike a 
traditional static expert system, they can adapt more readily 
as new knowledge becomes available.  Threats today are 
very sophisticated and can evolve rapidly.  Software that 
must identify these threats must be able to respond in kind.  
ADMTs ability to adapt quickly provides the final key 
component of the fusion architecture.   

A research grant in partnership with the Idaho National 
Laboratory was initiated to implement a data fusion 
architecture with the express goal of improving human 
system interaction between plant operators and the systems 
they monitor.  The intent is to improve plant up-time as 
well as threat detection and response.   

Because the data fusion architecture involves a number of 
sophisticated components, work was divided into three 
phases.  The first phase, described in this paper, involved 
developing input models, threat scenarios, test procedures 
and building a prototype architecture to demonstrate the 
overall concept. 

IV. IMPLEMENTATION 
The architecture implements and extends previous 

research and design work in Resilient Control Systems 
performed at the Idaho National Laboratory [6].  The 
prototype implementation consists of a combination of 
Commercial, Off-The-Shelf (COTS) software, along with 
customized third party libraries and number of internal 
modules.  A Microsoft SQL Server 2008 RDBMS served as 
the platform for the relational database and data warehouse.  
SQL Server also provides a suite of fairly sophisticated data 
mining tools for training models and testing results.  The 
presentation layer and dashboard was built using software 
components from Dundas Software and Infragistics 
Software along with custom software programmed in 
Microsoft Visual Studio.   

In a large and diverse environment such as a nuclear 
plant, it is not reasonable to expect input devices to all share 
a common interface, data format or even protocol [8].  The 
architecture must accommodate this by being robust enough 
to support a wide variety of input types as shown in Fig. 5. 
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 Fig. 5. Input from various sources to data repository 
 

Sensor data is simulated using custom software created in 
Visual Studio, PHP and Matlab and consists of flat files, 
excel files and direct input via software simulator.  A series 
of relational databases house the data and a callable API 
was built to interface the simulation software with the 
RDBMS.  For data mining, a basic rules engine was 
constructed along with a knowledge base.  Stored 
procedures handle the ETL process and provide timestamp 
information to “fuse” the various components. 

 In order to determine overall system status as well as 
each subsystem, an algorithm and lookup table was used to 
determine the seriousness of each event, and assigning it a 
value.  Event values are cumulative, but degrade with the 
passage of time.  Alerts become a function of the combined 
event values over some time t.  Hence for n subsystem 
events e, at any given point in time t0 alerts are calculated 
as follows: 
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“Relateability” R of a subsystem event sa  is also a 

function of the time proximity of an event in one subsystem 
to events occurring in other subsystems: 
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This relationship forms the basis of the data fusion and 

provides the rules engine and knowledge base with enough 
information to determine problem areas and possible 
actions to take. 
 
 

 
 

Fig. 6. Application Dashboard 
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V. RESULTS 
Data files and software simulation combined to simulate 

the output of a live system with input from physical, cyber 
and process system data.  These were imported into the 
database and processed as described.  Performance was 
acceptable.  On a single-processor laptop, the system was 
able to provide real-time information, raise alerts and make 
actionable suggestions.  Information was presented in a 
dashboard format, shown in Fig 6., and successfully related 
a pump malfunction with a recent simulated series of cyber 
attacks.  In a more traditional setting, an operator might be 
completely unaware of the cyber tampering and could 
inadvertently damage the pump unit by adjusting it 
improperly.  By combining the different data streams in a 
more coherent collection, an operator might now better 
respond to the real threat, a cyber attack and tampering, 
instead of simply responding to a pump malfunction.  The 
Resilience Control System Design goal of combining 
disparate system data for improved state awareness is 
achieved. 

VI. CONCLUSION AND FUTURE WORK 
The phase 1 prototype demonstrated basic data fusion 

capabilities combined with data analysis and display 
functionality, demonstrating a mock attack against a nuclear 
subsystem.  Disparate data from physical sensors, cyber 
sensors and process data were joined along a timeframe and 
combined with a rules engine to produce basic threat 
analysis. 

The prototype provides a generic interface in support of a 
diverse array of potential inputs, a relational staging area, 
ETL functions, a data warehouse and display software.  The 
dashboard is considered acceptable to users and similar to 
those an operator might see in an actual facility. 

Phase 2 and phase 3 work needs to be done to upgrade 
the prototype.  These upgrades will include more advanced 
ADMTs, a more robust data warehouse, sophisticated rules 
engine and knowledge base.  Security components will also 
be required in order to bring this design to a production 
system that can be used to support a live nuclear facility.  
Along with overall improvements in functionality and 
display, work must be done to train and evolve ADMTs, 
requiring and better models with more detailed and real-
world data.

 
Future work also will involve implementing the data 

fusion architecture with additional ADMT techniques using 
Fuzzy type-1 and type-2 contextual rules along with 
improved and more flexible neural network algorithms than 
is provide with the software.  These techniques will allow 
human-based reasoning and interpretation to be more 
closely aligned with data analysis and presentation.  Being 
able to use human-relatable terms such as THREAT 
LEVEL = VERY HIGH or CAUSE = SOMEWHAT 
LIKELY or SOLUTION = MODERATELY 
APPLICABLE allows human-system interaction to occur 
much more understandably.  Finally, fusion using spatial 
information needs to implemented and tested. 
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