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a b s t r a c t

In lieu of the worldwide energy demand, economics and consensus concern regarding climate change,
nuclear power – specifically near-term nuclear power plant designs are receiving increased engineering
attention. However, as the nuclear industry is emerging from a lull in component modeling and anal-
yses, optimization for example using ANN has received little research attention. This paper presents a
neural network approach, EBaLM, based on a specific combination of two training algorithms, error-back
propagation (EBP), and Levenberg–Marquardt (LM), applied to a problem of thermohydraulics predictions
(THPs) of advanced nuclear heat exchangers (HXs).

The suitability of the EBaLM-THP algorithm was tested on two different reference problems in thermo-
hydraulic design analysis; that is, convective heat transfer of supercritical CO2 through a single tube, and
convective heat transfer through a printed circuit heat exchanger (PCHE) using CO2. Further, comparison
CHE
upercritical CO2

hermohydraulic performance

of EBaLM-THP and a polynomial fitting approach was considered. Within the defined reference problems,
the neural network approach generated good results in both cases, in spite of highly fluctuating trends
in the dataset used. In fact, the neural network approach demonstrated cumulative measure of the error
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. Introduction

In order to meet the increasing national (US) and global energy
electricity) demands and simultaneously address growing consen-
us concern with respect to climate change (thus curbing GHGs –
reenhouse gases), it is evident that we need to further develop
uclear power and alternative energy source, while reducing our
urrent dependence on foreign oil. Only a renaissance in nuclear
ower can meet the large demand for baseload power in the United
tates (Southworth et al., 2003).

To meet both the new technical and public acceptance criteria,
ext generation, “Generation IV”, nuclear power plants (NPPs) have

o be safe, economically competitive, proliferation-proof, and environ-
entally friendly. Specifically, the US Department of Energy (DOE)

s leading a number of initiatives, including the Next Generation
uclear Plant (NGNP) project (Schultz and Nigg, 2004), also known
s the very high temperature (gas-cooled) reactor (VHTR). Con-
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ressional mandate for the VHTR to be operational by 2021 with
ossible demonstration of a hydrogen generating plant has initiated
arious engineering design studies on both the NPP and secondary
lant components.

For the NGNP-VHTR or any other higher temperature energy
ystem, an power conversion system using an efficient heat
xchanger (HX) is key to overall plant efficiency, as well as avail-
bility of process heat (i.e. for hydrogen production). Ideally, the
unctional need for the HX needs to be compact (to minimize

aterial costs) yet thermal efficient is a non-linear and multi-
imensional exercise in parametric design optimization. In the
uclear industry, traditional design engineering has relied upon
rial-and-error, iterative methods with design constraints siding
n the side of conservatism with respect to margins of safety
n operation and off-normal anticipated and unanticipated sce-
arios. However, we expect these practices to change; that is,
esign conservatism will be reduced in search of efficiency in
ystem performance, while meeting regulatory (licensing) com-
liance. This research paper thus presents a specific artificial

eural network (ANN) model called error-back propagation (EBP)
nd Levenberg–Marquardt-thermal–hydraulic prediction (EBaLM-
HP), to support a design optimization of a key component in
eneration IV NPPs, namely the printed circuit heat exchanger

PCHE) (Lillo, 2005).

http://www.sciencedirect.com/science/journal/00295493
http://www.elsevier.com/locate/nucengdes
mailto:aridluan@vandals.uidaho.edu
dx.doi.org/10.1016/j.nucengdes.2008.10.027
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Nomenclature

dop desired output
f activation function of single neuron
f′ derivative of activation function of single neuron
F{zp} activation function of several neurons
F′{zp} derivative of non-linear function activation function

of several neurons
g gradient
H Hessian
J Jacobian
net weighted sum of input
o single neuron output
oop network outputs
TE total error
wi neural weight
wb bias weight
�w weight change

s
Z
t
l
t
b
H
c
t
t
c

c
n
p
p
q

a
U
w
e
a
c
G
p
B
s
fi
l
c
a
h
e
t
r

a
e
A
t

h
(
a
t
c
fi
(
t
a
s
1
o
i
o
d
a
t
m
f
g
p
a

w
s
a
e
i

a
m
s
s
t
z

2

2

t
H
a
e
m
2

p
f
h
a
c
F

2

i

xi neural net input
zp neuron output

Design analysis of heat exchanger is well documented in texts
uch as Incropera et al. (2007), as well as Shah and Sekulic (2003).
ig-zag micro-channel flow configuration with CO2 as the heat
ransfer medium under near-to-critical conditions adds both non-
inearity and complexity to the design analyses. As noted, existing
hermal–hydraulic analyses and design optimization methods are
ased on a number of assumptions; thus simplifying the approach.
owever, the thermophysical properties (cp, �, k, ˛ and related)

hange significantly over a small temperature/pressure range near
he critical point (NIST) and there is some evidence that for charac-
eristic flow length under 1 mm, the hydrodynamics deviate from
onventional analyses.

The non-linear thermophysical properties, as well as micro-
hannel flow and operating parameters suggest using an artificial
eural network approach as a potential “tool” to facilitate the
resent design optimization task, especially to supplement com-
utational fluid dynamics (CFDs) based modeling of the design in
uestion.

The ANN approach has been considered in limited reported liter-
ture in nuclear science and technology. For example, Eryurek and
padhyaya (1990) studied the possibility of employing neural net-
ork to model the signals from a commercial power plant and the

xperimental breeder reactor-II (EBR-II). Roh et al. (1991) developed
system of thermal power prediction in nuclear power plant by

ombining a neural network with a signal validation model. Further,
uo and Uhrig (1992) applied a hybrid type of neural networks to
redict the heat rate, as linked to nuclear power plant performance.
oroushaki et al. (2005) applied cellular neural network (CNN) to
imulate reactor core kinetics. Guanghui et al. (2003) trained arti-
cial neural networks to predict the critical heat flux (CHF) under

ow pressure and oscillating conditions for both natural and forced
irculation. Garg et al. (2007) applied multilayer perceptron (MLP)
nd radial basis function (RBF) neural networks to predict thermo-
ydraulics of natural circulation boiling water reactor. Finally, Vaziri
t al. (2007) applied RBF and MLP neural networks to also predict
he CHF. ANN is evidently receiving consideration as a suitable in
eactor analysis.
Artificial neural network has also been used to evaluate, design,
nd optimize the thermohydraulic performance of compact heat
xchangers. Diaz and Sen (1999) developed and tested a several
NN structures with sigmoid activation function to predict the heat

ransfer rates for 1D conduction, 1D convection with one and two
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eat transfer coefficients, and a single-row plate-fin heat exchanger
PFHE). The authors used a back propagation (BP) algorithm,
pplied to train and test the networks of neuron. The results showed
hat the maximum error was less than 10% deviations. For the most
omplex application (plate-fin heat exchanger), 4–5–5–1 ANN con-
guration yielded the smallest standard deviation. Pacheco-Vega
2001) applied a feed-forward (FF) structure with sigmoid func-
ion to fin-plate type heat exchanger analysis for a refrigeration
pplication. The NN was trained using BP algorithm. A root-mean
quare estimation indicated that error predicted by ANN is less than
.5% relative to the experimental data and has the same degree
f uncertainty of experiment. Additional details regarding exper-
mental correlation and ANN model for steady-state performance
f a plate-fin-tube heat exchanger is contained in Pacheco-Vega’s
issertation (2002). Recently, Ping and Ling (2008) proposed using
combination of genetic algorithm (GA) and BP ANN to optimize

he PFHE size and its capital cost. Ermis (2007) applied ANN to esti-
ate heat transfer coefficient, pressure drop, and Nusselt number

or a 15-channel configuration compact heat exchanger with stag-
ered cylindrical and triangular ribs. The three-layer NN learning
rocess was carried out by a feed-forward back propagation (FFBP)
lgorithm.

Although heat exchanger analysis via application of neural net-
orks have been documented, these are mostly for extended

urface-type, traditional heat exchangers with heat transfer media
t conventional thermophysical conditions. Compact heat exchang-
rs with micro-channels using supercritical fluids have yet to be
nvestigated.

This paper demonstrates the predictive ability of an ANN-based
pproach to assess PCHE thermohydraulics with the heat transfer
edium near or at critical conditions. The application is limited to

upercritical carbon dioxide (CO2) which has been identified as a
uitable fluid. However, we first consider convective heat transfer
hrough a single tube. Subsequently, a heat exchanger with multiple
ig-zag micro-channels (PCHE) is considered.

. Printed circuit heat exchanger

.1. General description

PCHE was first introduced in Australia for refrigeration applica-
ions (ca 1985) (Feay, 1994). Subsequently since 1990 in the UK, the
eatric has continuously developed the design and extended the
pplication of the PCHE. In recent times, the PCHE has been consid-
red the key heat exchanger in the indirect Brayton cycle featured in
any advanced nuclear systems, including the NGNP-VHTR (Lillo,

005).
The PCHE consists of micro-channels acid etched into a zig-zag

attern on a plate as shown in Fig. 1(a and b). The plates are then dif-
usion bonded under high temperature and pressure. The resulting
eat exchanger has very good thermal contact between the plates
nd these plates can be arranged into counter-current, co-current,
ross-current or other combination and/or orientation as shown in
ig. 1(b) (Heatric website).

.2. Thermohydraulic behavior

According to Li et al. (2006), supercritical carbon dioxide (SCO2)
s attractive if the PCHE functions as the NGNP secondary loop

eat exchanger. To date, only few have reported research on
he thermal–hydraulic performance of the PCHE using SCO2. The
eported works are by Van Meter (2008), Song (2007), Song et al.
2006), Nikitin et al. (2006), Tsuzuki et al. (2007), Lomperski et al.
2006) and Ishizuka et al. (2005). This paper presents an artificial
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Fig. 1. The printed circuit heat exchanger configuration: (a) zig-zag micro-chann

eural network-based thermohydraulic analysis of a generalized
ompact heat exchanger under consideration for an advanced
uclear system. The heat exchanger uses a supercritical fluid (a fluid
ear or at its critical point) to maximize its performance. The study
ere suggests an alternative modeling approach to thermal system
omponent design optimization.

.3. Experimental database

We selected two experiments to serve as our training and testing
atabase for the present ANN application. These thermohydraulic
atasets are characterized with respect to increasing flow configu-
ation complexity for convective heat transfer.

The experimental dataset by He et al. (2005) is first described.
e’s group conducted experiments and numerical simulations of
onvective heat transfer in a vertical micro-channel with SCO2 as
eat transfer medium. They validated the simulations with exper-
mental data under conditions noted in Table 1. He’s experiments
ere carried out in a stainless steel (1CR189NT) vertical tube with

n internal and external diameters 0.948 and 1.729 mm, respec-
ively. The critical pressure range of SCO2, is 8.5–9.5 MPa. The test
ection, 55 mm in length was heated by passing a low voltage alter-

b
s
z
t
a

able 1
hermohydraulic database (He et al., 2005).

ass flow rate, ṁ (kg/h) Inlet temperature, Ti (◦C) Inlet pressure, Pi (MPa)

.48 32.7 9.59

.53 37.8 9.54

.49 39.6 9.5

.37 51 9.43

.69 32.8 9.52

.6 36.1 9.42

.63 40.9 9.57

.65 48.3 9.49

.48 32.7 9.59

.71 32.7 9.49

.93 33.4 9.47

.45 31.7 9.55

.17 31 8.56

.06 33.4 8.57

.03 33.4 8.47

.08 33.3 8.51

.08 33.3 8.51

.06 33.4 8.57

.51 33.5 8.46

.52 35 8.46

.5 38.4 8.47

.49 44 8.48
a plate and (b) stacked plates. Both during geometric modeling using STAR-CD.

ating current. The experimental uncertainty was reported to be
1.3%. In the present work, we chose the following parameters from
e’s work: the inlet pressure (Pi), the inlet temperature (Ti), the
ass flow rate (ṁ), the Reynolds number (Re), and the Buoyancy

arameter (Bo). He et al. defined Bo as

o ≡ Gr∗

Re3.425Pr0.8
(1)

here Gr* is the Grashof number, defined by

r∗ ≡ ˇgD4q′′
w

��2
(2)

ere, Pr, ˇ, �, and � are Prandtl number, coefficient of thermal
xpansion, thermal conductivity, and kinematic viscosity, respec-
ively. The output is the wall heat flux, q′′

w .
An additional experimental dataset for a PCHE using SCO2 as

eported by Ishizuka et al. (2005) was also referenced. The data
rom this work is listed in Table 2. The capacity of the PCHE reported

y Ishizuka is 3 kW; each PCHE consists of 12 hot and 11 cold
emi-circular, zig-zagged flow channel plates, made of SS316L. The
ig-zag was defined by 115◦ and 100◦ for hot and cold plates, respec-
ively. The cross-sectional areas of hot and cold channel are 0.0002
nd 0.000092 m2, respectively. An electrical heater was utilized to

Reynolds number, Re Buoyancy number, Bo Wall heat flux, q′′
w (kW/m2)

9,237 936 × 10−10 31,534
11,639 790 × 10−10 31,194
12,629 796 × 10−10 30,722
20,864 208 × 10−10 29,400
10,641 1360 × 10−10 71,843
11,474 1610 × 10−10 71,703
14,765 1240 × 10−10 70,242
23,417 367 × 10−10 70,005
9,237 936 × 10−10 31,534

10,761 719 × 10−10 39,554
18,888 131 × 10−10 45,561
20,972 62.1 × 10−10 37,744
24,837 34 × 10−10 39,558
29,255 37.5 × 10−10 37,700
29,585 68.6 × 10−10 66,583
29,558 99.2 × 10−10 100,770
29,558 197 × 10−10 200,000
29,255 9.96 × 10−10 10,000
11,173 1160 × 10−10 38,993

12,537 1100 × 10−10 38,692
19,379 467 × 10−10 36,287
24,138 174 × 10−10 37,079
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Table 2
Thermohydraulic database (Ishizuka et al., 2005).

Mass flow rate,
G (kg/h)

Inlet hot CO2

pressure, Ph,i

(MPa)

Inlet cold CO2

pressure, Pc,i

(MPa)

Inlet hot CO2

temperature,
Th,i (◦C)

Inlet cold CO2

temperature,
Tc,i (◦C)

Cold CO2-sided
pressure drop,
DPc (kPa)

Hot CO2-sided
pressure drop,
DPh (kPa)

Heat transfer,
Q (kW)

42.8 2.26 6.59 280.1 107.8 34.93 9.96 2.067
52.6 2.22 6.53 280.2 107.8 53.52 15.23 2.539
79.6 2.5 7.34 279.9 107.9 93.07 26.66 3.860
66.2 2.5 7.38 279.7 107.9 70.34 20.29 3.210
55.9 2.48 7.47 279.8 107.9 49.47 14.60 2.710
45.3 2.56 7.45 279.6 107.9 36.83 10.50 2.196
33.5 2.49 7.44 279.8 107.9 20.09 5.99 1.624
74.9 2.54 8.35 279.9 107.9 73.22 24.18 3.661
66.6 2.58 8.24 279.9 107.9 61.49 19.72 3.259
55.6 2.56 8.27 279.9 108.0 44.65 14.48 2.720
44.0 2.54 8.31 279.9 108.1 28.03 9.23 2.151
83.3 2.99 9.48 280.0 108.1 79.17 25.63 4.120
72.0 3.0 9.49 280.1 108.1 61.09 19.72 3.558
60.7 3.05 9.54 280.1 108.1 44.40 14.13 3.004
48.6 3.06 9.5 280.1 108.1 29.68 9.34 2.410
87.0 3.23 10.09 280.1 108.2 80.35 25.91 4.324
76.3 3.33 10.04 279.9 108.3 64.62 20.07 3.798
63.8 3.31 10.06 280.8 108.1 46.39 14.44 3.177
52.1 3.34 10.08 280.1 108.2 32.83 10.13 2.601

and G

c
p
d
p
c
m
w

a

Fig. 2. 3D graphical representation of: (a) heat transfer rate Q vs. Ph

ontrol the temperatures of CO2. The pressure on each side and the
ressure loss in PCHE was measured using a pressure gage trans-

ucer (±0.25% precision) and a differential pressure gage (±0.15%
recision). The temperature was measured by using the copper-
onstantan thermocouples, ±0.15 ◦C accuracy. The flow rate was
easured using both a turbine flow meter and the area flow meter
ith ±2% precision.

w
p
p
t
r

Fig. 3. 3D graphical representation of: (a) heat transfer rate Q vs. Th and
and (b) heat transfer rate Q vs. Pc and G from data given in Table 2.

The hot (Ph,i), and cold (Pc,i) CO2 inlet pressures, hot (Th,i)
nd cold (Tc,i) inlet CO2 temperatures, and mass flow rate (G),

ere considered as input factors that influenced three output
arameters: the pressure drop through cold CO2 side (DPc); the
ressure drop through hot CO2 side (DPh); and heat transfer (Q). A
hree-dimensional (3D) graphical representation of the dataset cor-
esponding to Table 2 is given in Figs. 2 and 3 and depicts the linear

Ph (b) heat transfer rate Q vs. Tc and Pc from data given in Table 2.
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of LM algorithm.

Physics-based modeling and corresponding experiments are
undeniably the best approach to prediction modeling, when avail-
able. However, in case where such practices are difficult or (too)
costly, the practical approach to modeling via ANN represents a
12 A. Ridluan et al. / Nuclear Engine

o (very) non-linear nature of the dataset, based on the input vari-
bles. In fact, in Fig. 3, we see the sharp features (large gradients) in
he ‘functional space’ as mapped. Needless to say, the relationship
etween input and output is non-linear.

.4. Thermal system design and artificial neural networks

A brief summary of the ANN approach is given below. ANN and
urther, fuzzy approaches in engineering have matured such that
evelopments are contained in texts such as Tsoukalas and Uhrig
1997). In thermohydraulics, Mi, Ishii, Tsoukalas and co-workers
1996, 1998, 2001) used a neural network approach for two-phase
ow regime identification in vertical pipe-flow. The ‘adaptability’
f ANN in characterization of non-linear phenomena is evident;
owever, its acceptance as a research ‘tool’ is ongoing. We thus
resent a case here for convective heat transfer applications using
upercritical fluids.

In traditional log-mean temperature difference (LMTD) heat
xchanger analysis, the set of equations used to calculate the log-
ean temperature, convective heat transfer correlation and overall

eat transfer coefficient, are non-linear relationships. In fact, as
he LMTD method assumes constant properties, HX analysis with
upercritical heat transfer media introduces another element of
on-linearity (Song, Van Meter, Song et al.). Thus, in the course of
X design via the LMTD method (or modified as needed for super-
ritical fluids), we undertake an iterative process to meet one or
ore objectives. Thus, similar to flow regime identification, there

re input and output parameters, between which there exists a
known) set of equations which links one to the other. Further
ithin the experimental realm, one must realize that there is not

nly non-linearity but ‘noise’ associated with quantification of phe-
omena (spatio-temporal changes in impedance in the case of Ishii;
eat transfer and pressure drop in the present case). Thus if one
an quantitatively reproduce or ‘mimic’ the non-linear character of
phenomena, and link this to physical design parameters, one can
otentially facilitate the accurate design of thermal systems and
omponents. The present work aims to demonstrate this ability (as
id by Mi, Ishii, Tsoukalas and co-workers).

. EBaLM-THP – a neural network algorithm for
hermohydraulic prediction

Neural networks (ANN) are computational architectures con-
tructed with a goal of mimicking biological neural networks. ANNs
an contain several layers of neurons, which can be fully or partially
onnected.

A biological neuron is a computational unit which connects to
ther neurons via its interconnections (synapses), and receives the
timulated input via its inputs dendrites. A weighted sum of input
ignals (net value) is then typically compared against the thresh-
ld or certain activation function. An output signal produced in
uch a way is further transmitted via other synapses to other neu-
ons.

To mimic a biological neuron, its artificial counterpart repro-
uces a similar functionality, i.e. calculates a weighted sum of

nput signals and compares it against the activation function (or
hreshold), as shown in Fig. 4. If the weighted sum of input signals
net) is above the threshold, a neuron will emit the output signal.
he general neuron functionality can be expressed in conventional

ummation as

et = wixi + wb (3)

here xi is a neural net input, while wi and wb are neural and bias
eights.
Fig. 4. Single artificial neuron with input and output connection.

An output of a neuron (o) is defined as

= f (net) (4)

here f represents the activation function.
Typically, the unipolar sigmoid activation function such as

(net) = 1
1 + exp(−net)

(5)

s used.
Neural network architectures will here be described as “ANN

–n–k”, where m, n, and k represent the number of neuron in the
nput, hidden, and output layers, respectively (Fig. 5). Such architec-
ure will be used throughout this paper. For instance, ANN 7–5–1

eans that the neural net is composed of an input, hidden, and
utput layers as follows: 7 neurons in the input layer; 5 neurons in
he hidden layer; and 1 output layer.

The EBaLM-THP algorithm for thermohydraulic prediction mod-
ling of the advance nuclear system component presented in this
aper was implemented in Matlab 6.0 environment. The EBaLM-
HP algorithm combines the two specific neural network training
lgorithms, EBP and Levenberg–Marquardt (LM). Here the former
ne is used for a specific error propagation, the latter one is used for
raining of specific neurons. In this way, the two expected advan-
ages are combined; that is, the robustness of EBP with the speed
Fig. 5. An artificial neural architecture with input and output connection.
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iable alternative. We also note that the neural network approach
equires the existence of (accessible) data. In case where exper-
mental data is not available, the development of physics-based

odel is preferred over an ANN approach without an appropriate
ataset.

Thermohydraulic modeling, especially in the design of nuclear
ystem components requires time-consuming iterations (trial-and-
rror). This is partly because a closed form solution rarely exists
nd/or physical models not only take time but call for reasonable
nderstanding of key phenomena. The strength of the EBaLM-THP
eural network algorithm is in its ability to learn and optimize
he complex interdependencies of the variables, existing in the
hermohydraulic prediction modeling. This is achieved through a
articular neural network architecture on which the specific combi-
ation of two learning algorithms, namely, error-back propagation
nd Levenberg–Marquardt, algorithms was applied.

Here we presented the EBaLM-THP neural network algorithm
ased on a “data driven” approach. Performance analysis is strictly
ased on the total error calculated from the dataset available. The
raining process is executed as follows. The initial dataset is divided
n two equal sets; one was used for training, and the other, used
or testing of the presented model. As will be shown, the result
resented in terms of total error, showed better agreement with the
ata (relative to a common polynomial ‘trendline’ approximation).

At this juncture, the benefits of this approach appears as fol-
ows: (1) trained neural networks are capable of predicting ‘system’
haracteristics in situations beyond the training dataset, as long as
he ‘consistency’ of the data is preserved. Data consistency here
s beyond the scope of the research; we anticipate that it will be
onsidered; (2) if one can have confidence in ANN-based mod-
ls, one can potentially better understand the underlying physics
ia consideration of small variations in both the input and out-
ut parameter; (3) if one can have confidence in the ANN-based
odels, one can adjust the experimental parameters to elucidate

hysical parameters that may or may not yield similar non-linear
haracteristics.

Historically, the EBP algorithm was the first approach that coun-
ered a negative viewpoint on artificial neural networks via a text
Minsky and Papert, 1969). In fact, the EBP work by Werbos (1994)
epresented a real breakthrough in ANN research; he introduced
multilayer network approach and sigmoid activation functions,

hereby solving linearly non-separable problems, as well as other
omplex, highly non-linear and multidimensional problems.

The main concept behind EBP is that calculated errors are prop-
gated back after the transmitted inputs from the first layer have
eached the output layer. During the backward propagation of
rrors, weights of neurons that produced the error are modified
ccordingly, going back from one layer to another, as illustrated
n Fig. 6. Therefore, the EBP algorithm consists of two phases as
ollows: a forward propagation and then, backward propagation
hase. In order to minimize the output error, the weight change is
pplied to the gradient change as

wpi ∼ 2

np∑
p=1

[(dp − op)F ′{zp}f ′(netp)xpi] (6)

ere, Eq. (6) is extended to all weights applied to neurons. The
ssociated EBP diagram is presented in Fig. 7. Equally,

wp = ˛

no∑ np∑
[(dop − oop)F ′{zp}f ′(netp)xp] (7)
o=1 p=1

here xp represent network input pattern while dop, zp, and oop

re desired, neuron, and network outputs, respectively. The term,
′(netp), is the derivative of activation function f with respect to the
Fig. 6. Diagram of the propagation of error in EBP algorithm (Zurada, 1992).

euron net value (netp) and F′{zp} is the derivative of non-linear
unction F{zp} based on activation function of several neurons with
espect to the neuron output (zp)

The adjustment of weights on neurons plays a key role in ANN
raining. Such weighting update is typically described as

k+1 = wk + �wk (8)

here wk and �wk are weights and weight increment in iteration
, while wk+1 is updated weight in the following, k + 1 iteration.

The neuron training process is executed using
evenberg–Marquardt (LM) algorithm (Levenberg, 1944;
arquardt, 1944). The weight increment equation of LM algorithm

s derived from Newton method and written as

wk = A−1
k

g (9)

here A and g are Hessian and gradient such as:

∼= 2JJ
k
Jk (10)

nd

= 2JJ
k
e (11)

ere, e is the error vector, while J is the Jacobian of the partial deriva-
ive of error with respect to each of the weights. The Hessian and
radient can be written in the matrix form as follows:

⎡
⎢⎢⎢⎢

∂2E

∂w2
1

∂2E

∂w2∂w1
· · · ∂2E

∂wn∂w1

∂2E ∂2E
2

· · · ∂2E

⎤
⎥⎥⎥⎥

⎡
⎢⎢⎢

∂E

∂w1
∂E

⎤
⎥⎥⎥
Fig. 7. Diagram of EBP algorithm with multi-outputs.
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Table 3
Total error of single tube thermohydraulic prediction.

Group 1 (five neurons in IL) Group 3 (seven neurons in IL)

Network Total error Network Total error

ANN 5–3–1 1.295980084 ANN 7–3–1 0.450298264
ANN 5–5–1 0.954825917 ANN 7–5–1 1.158208468
ANN 5–6–1 1.458969153 ANN 7–6–1 2.725470938
ANN 5–7–1 0.683982214 ANN 7–7–1 2.662471685
ANN 5–8–1 0.989711546 ANN 7–8–1 0.730554961

Group 2 (six neurons in IL) Group 4 (eight neurons in IL)

Network Total error Network Total error

ANN 6–3–1 3.503557982 ANN 8–3–1 0.450298264
ANN 6–5–4 0.764594655 ANN 8–4–1 1.158208468
A
A
A

w
(

a
l
T
r
s
v
F
t

n
T
A
t
w
g

the new initial weight set versus experimental measurements is
14 A. Ridluan et al. / Nuclear Engine

To anticipate issues with ill-defined Jacobian matrix, an identity
atrix, I, can be introduced that results in the following version of
eighting update Eq. (8), that is:

k+1 = wk − (JT
k Jk + �I)

−1
JT
k e (12)

The LM algorithm combines the speed of the Newton algorithm
ith the stability of the steepest decent method. The LM algorithm

12) calculates weights in subsequent iterations. It is important to
ote that the parameter � controls the LM algorithm. For � = 0, the
M algorithm reduces to the Gauss–Newton method while for very
arge �, the LM algorithms is reduced to the steepest decent.

. Simulation results

As noted, testing was undertaken on two different thermo-
ydraulic cases (CASE 1 and CASE 2) on heat exchanger using
upercritical CO2 as the heat transfer media. The first problem was
onvective heat transfer in a mini-tube; the second, convective heat
ransfer in multiple, zig-zagged micro-channel based, PCHE. Finally,
comparative analysis of ANN versus polynomial fitting (PF) was
ndertaken. The datasets were equally divided into training and
esting datasets.

.1. CASE 1: convective heat transfer CO2 through a single tube

In the first example, EBaLM-THP algorithm was tested on a
roblem of supercritical CO2 flow through a straight tube. One
alf of the data was used for training, the other half for testing.
raining and testing datasets are illustrated in terms of heat flux
q′′

w) versus temperature (T) in Fig. 8. All of values are normalized
y the corresponding maximum values. That is, Ti,max = 51 ◦C and
′′
w,max = 200, 000 kw/m2 both as noted by He et al. As shown, both
he training and testing datasets fluctuate but are closely matched
nd bounded.

Twenty neural network structures were classified into four
roups to investigate the predictive ability of EBaLM-THP algorithm.
he performance of these ANN architectures is characterized here
y the total error (TE); that is, the cumulative overall error of the

ataset is defined as

E =
np∑

p=1

[dp − ap]2 (13)

Fig. 8. Training and testing datasets.

s

7

F
A

NN 6–6–1 0.294291329 ANN 8–5–1 2.725470938
NN 6–7–1 0.500910836 ANN 8–6–1 2.662471685
NN 6–8–1 2.879453675 ANN 8–7–1 0.730554961

here dp and ap are the reference (experimental) and actual data
ANN output), respectively.

The TE was calculated for various three-layered NN architectures
nd summarized in Table 3. The calculations with the number of
ayers different than three are not presented, because of the higher
E. Results were organized into groups, where the number of neu-
ons in input layer (IL) is fixed, while the numbers of neurons in the
econd and third layers were varied. A graphical illustration of TE
ersus selected neural network architectures is presented in Fig. 9.
or the architectures ANN 7–n–1 and ANN 8–n–1, the TE versus the
otal number of neurons is nearly identical.

We have learned that the initial weight associated with each
euron has an influence on the performance of ANN simulation.
he initial weights were determined heuristically. The weights for
NN 6–6–1, ANN 8–4–1, ANN 7–5–1 and others were selected and

hen, their initial weights modified. The total error of the modified
eights relative to the original, for each chosen ANN structure is

iven in Table 4.
A comparison between ANN predictions by ANN 8–4–1 with
elected and graphically shown in Fig. 10.
Fig. 10 depicts the apparent effectiveness of ANN 6–6–1, ANN

–5–1, and ANN 8–4–1 architectures. In spite of the highly fluc-

ig. 9. The comparison of total error vs. total number of neuron for each group of
NN architectures.
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Table 4
Modified total error of single tube thermohydraulic prediction.

Network Previous total error Modified total error

A
A
A

t
b

4

f
t
m
s
v
a

F

F

NN 6–6–1 0.294291329 0.23138004
NN 8–4–1 1.158208468 0.32930703
NN 7–5–1 1.158208468 0.1976367

uating data, these networks were able to successfully learn the
ehavior of the heat exchanger with supercritical CO2.

.2. CASE 2: convective heat transfer through PCHE

Similarly for PCHE one half of the complete dataset was used
or training, while the rest was used for testing the EBaLM. The
raining and testing data for the PCHE is here plotted against
ass flow rate (G), hot-sided pressure (Ph), and cold-sided pres-
ure (Pc), and shown in Figs. 11–13, respectively. All of the
alues were normalized by the corresponding maximum values,
s follows: DPcmax = 93.07 kPa, Gmax = 87 kg/h, DPhmax = 26.66 kPa,

ig. 10. The comparisons of experimental data vs. ANN outputs for ANN 8–4–1.

ig. 11. The plots of training data and testing data for cold-sided pressure drop.

Fig. 12. The plots of training data and testing data for hot-sided pressure drop.

P
t
t

t
T
T
b
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e
l

T
T

N

A
A
A
A

Fig. 13. The plots of: (a) training data and (b) testing data for heat transfer.

hmax,i = 3.34 MPa, and Qmax = 4.324 kW. Though different to CASE 1,
he test and training datasets again fluctuate and oscillate. In fact,
here are sharp ‘hi-and-low’ changes as shown.

For the PCHE thermohydraulics, four neural network architec-
ures were investigated and their performance measured using the
E Eq. (13). The performance of each ANN architecture is given in
able 5. We can see that ANN 7–5–3 and ANN 9–7–3 yielded the

est results, while ANN 8–4–3 yielded relatively poorer results. It

s evident that the PCHE experimental data reported by Ishizuka
t al. (2005) is highly non-linear (Fig. 3). As indicated in Table 5, a
arger number of neurons does not necessarily yield better per-

able 5
otal error of PCHE thermohydraulic prediction.

etwork DPc DPh Q

NN 7–5–3 0.00469135 0.006787571 0.002496384
NN 7–7–3 0.01833685 0.051948002 0.12572272
NN 8–4–3 0.08875032 0.18246256 0.093324986
NN 9–7–3 0.01929302 0.007677054 0.002277966
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Fig. 14. The comparisons of experimental data vs. ANN 7–5–3 outputs for (a) cold-
sided pressure drop, (b) hot-sided pressure drop and (c) heat transfer.

Fig. 15. The comparisons of experimental data vs. ANN 8–4–3 outputs for: (a) cold-
sided pressure drop, (b) hot-sided pressure drop and (c) heat transfer.
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ormance. We also note that in CASE 2 (PCHE), the data does
ot exhibit ‘jumps’ as observed in CASE 1. Consequently, the TE

n CASE 2 is lower than in CASE 1. As might be expected in a
ighly fluctuating ‘signal’ the error associated with modeling of
uch processes (peak in Fig. 10), is inherently higher than the error
ssociated with less ‘chaotic’ processes (fluctuating but gradually
arying or oscillating, as in Figs. 11–13). For example, the TE result-
ng from applying network architecture ANN 7–5–1 (CASE 1), is
pproximately 250% higher that the TE resulting from applying
f ANN 7–5–3 architecture that was used in CASE 2. This shows
hat in spite of the fluctuating data, neural networks have the
bility to ‘adapt and learn’ the thermohydraulic character of the
CHE.

A comparison of simulation, ANN 7–5–3, versus the experimen-
al reference, for cold-sided pressure drop, hot-sided pressure drop,
nd heat transfer is shown in Fig. 14(a)–(c), respectively. We can
ee that the ANN results are generally in good agreement with the
xperimental data.

The simulation trends of the 8–4–3 ANN architecture, which
as relatively poor performance, is presented in terms of the cold-
ided pressure drop, hot-sided pressure drop, and heat transfer in
ig. 15(a)–(c), respectively. Even here, we can see that the neural
etwork architecture, in fact for ANN ‘8–n–3’ is in good agree-
ent with the experimental reference. For example, the ANN 8–4–3

rchitecture (the one with the lowest prediction performance), the
E has good values, 0.088750320, 0.182462560, 0.093324986, for
Pc, �Ph, and Q, respectively.

.3. Comparison of ANN versus polynomial fitting (FT)

To demonstrate the predictive ability of EBaLM, the ANN
pproach was also compared against a 10th order polynomial ‘fit’
Matlab) of the reference conditions. A comparison of ANN versus
he 10th degree polynomial for first example is shown in Fig. 16,
hile the second example is shown in Fig. 17(a)–(c).

As illustrated in Figs. 16 and 17, the EBaLM is ‘superior’ to the
0th polynomial as the polynomial essentially serves as a ‘mov-
ng average’ of the non-linear trend exhibited by the reference

ondition. It cannot in any way mimic the fluctuating nor oscil-
atory trend in the data. Meanwhile, ANN predicts many to most
ata points. For the first example, the total error of the 10th poly-
omial fitting was 2.299016210, while that of ANN 8–4–1 was a
maller 0.329307030. The computed total errors of 10th polyno-

Fig. 16. The first example: the comparisons of ANN 8–4–1 vs. 10th order PF.

Fig. 17. The second example: the comparisons of ANN 8–4–3 vs. 10th order PF for:
(a) cold-sided pressure drop, (b) hot-sided pressure drop and (c) heat transfer.
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Table 6
Total error comparisons.

Network vs. polynomial Total error

ANN 8–4–1 (q′′
w output) 0.32930703

Polynomial fitting of 10th order (q′′
w output) 2.29901621

ANN 8–4–3 (DPc output) 0.08875032
Polynomial fitting of 10th order (DPc output) 0.360642
ANN 8–4–3 (DPh output) 0.18246256
Polynomial fitting of 10th order (DPh output) 1.645394
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NN 8–4–3 (Q output) 0.093324986
olynomial fitting of 10th order (Q output) 2.056541

ial for �Pc, �Ph, and Q were 0.360642000, 1.645394000, and
.056541000, respectively whereas those of ANN 8–4–3 which had
he poorest performance were only 0.088750320, 0.182462560,
nd 0.093324986, for three different output variables modeled
�Pc, �Ph, and Q, respectively). The ANN approach clearly yields

ore representative results. Thus, if the parameter space for an
ngineered thermal system component is designed to work under
on-linear load and/or in conjunction with significant changes in
he ‘equation of state’, then the above described ANN approach can
acilitate the design and analysis tasks.

. Conclusion

The paper presents the EBaLM algorithm, a combination of
wo neural network training methods, the error-back propagation
nd the Levenberg–Marquard algorithms. The EBaLM algorithm
as tested on two different thermohydraulic reference problems.

he first was convective heat transfer of supercritical CO2 through
single tube and the second on convective heat transfer in a
ulti-zig-zagged channel printed circuit heat exchanger. Further,
comparison was made between the ANN algorithm EBaLM and
10th order polynomial fit. The neural network approach per-

ormed better than the polynomial fit; the latter could not mimic
he given, oscillatory nature of the reference data. In the first
xample, the performance of a 20 neural architecture divided
nto 4 groups and 5 different neural configurations was investi-
ated. In the second example, four neural network architectures
ere investigated and applied to predict thermohydraulics of

CHE.
The results revealed that all of the ANN architectures were

n good agreement with the referenced conditions. In fact, even
hough the reference data was fluctuating and oscillatory, the neu-
al network was able to follow these characteristic changes. It is
vident that the advantage of neural network approach is the net-
ork’s ability to learn the dataset. In contrast, a polynomial fit is

t best able to follow the stepwise average of the oscillatory nature
f the reference dataset. Thus at each step, it fails to fully capture
ature of both the non-linearity and ‘noise’ contained in experi-
ental data. In fact, the total error of a 10th order polynomial fit was

ne to three orders of magnitude larger than that associated with
he neural networks. As substantiated in Table 6, even the relatively
oor simulation of the ANN 8–4–3 architecture showed a figure of
erit two orders of magnitude better in terms of TE than the 10th

rder polynomial (0.093324986 vs. 2.056541 for the output Q).
The engineering task of designing an advanced nuclear system

ith systems, subsystems and components optimized for perfor-
ance while in regulatory compliance requires a tremendous effort
nd iteration-intensive engineering design. We are thus interested
n considering methods and/or practices that may reduce the trial-
nd-error in design optimization. Thus, if the parameter space for
thermal system component is designed to work under non-linear

oad and/or in conjunction with significant changes in the thermo-

S

and Design 239 (2009) 308–319

hysical ‘equation of state’, then the above described approach may
acilitate the design engineering process.
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