
 
 

  
Abstract—Support Vector Machines (SVMs) represent a 

well known technique for data classification. However, the 
complexity of the training process makes the SVMs unsuitable 
for classifying large datasets. Examples of existing approaches 
to this problem are sampling of the input datasets or clustering 
of similar inputs. On the other hand, the Growing Neural Gas 
algorithm (GNG) is a robust tool for cluster analysis, capable 
of learning the topology of the data. It overcomes most of the 
common issues of clustering techniques such as predefined 
number of clusters or beforehand specified cluster radius. This 
paper presents a solution to the problem of classifying large 
datasets via learning of the data topology. The described 
algorithm combines the GNG algorithm with the SVM solver 
into a specific algorithm for classification of large datasets – 
the GNG-SVM framework. The input dataset is first 
preprocessed with the GNG algorithm. A new reduced training 
dataset is created from the extracted topological knowledge. 
Because the size of the dataset is significantly reduced, the 
training process of the SVM solver becomes substantially less 
memory demanding. The performance of the proposed GNG-
SVM framework is tested on both synthetic and benchmark 
real world datasets. 
 

Index Terms—Data Classification, Growing Neural Gas, 
Large Datasets, Support Vector Machines. 
 

I. INTRODUCTION 
ATA classification and pattern recognition have been 
attracting significant attention for many years [1]-[3]. 

Support vector machines (SVM) have proven to be very 
successful data classification technique [4], [5]. The 
successful generalization over previously unseen instances 
is a consequence of maximizing the width of the separation 
margin between different classes. To deal with linearly non-
separable problems the input space is transformed into a 
feature space by applying the kernel trick [5].  
 One of the deficiencies of the standard SVM solvers are 
the high memory requirements of the training process. This 
becomes a significant problem when classifying large 
datasets [6], [7]. The complexity of the training process is 
directly dependent on the size of the dataset. Hence, there is 
an obvious need for a dataset size reduction. 

Traditionally, the problem is solved by various data 

 
 

sampling or clustering techniques. Sampling techniques 
select a representative subset of instances from the original 
dataset [8], [9]. Clustering techniques group similar 
instances together in order to eliminate redundant 
information or to use the prototypes from the created 
clusters to represent the original data [7], [10], [11]. 

This paper investigates the possibility of dataset size 
reduction via topology learning. The topological 
information is of a key importance for the SVM training. It 
describes the density as well as the shape of the data 
distribution in the input space. This knowledge is used by 
the SVM algorithm to construct an optimal separation 
function. While the size of the dataset is significantly 
reduced, the ability of the learning algorithm to correctly 
distinguish between various classes is preserved. 

The introduced GNG-SVM framework uses the Growing 
Neural Gas (GNG) algorithm to significantly reduce the size 
of the input dataset [12]. The GNG is a prototype based 
vector quantization technique, which is capable of learning 
the data topology in arbitrary number of dimensions. The 
topology of each class is learnt by the GNG algorithm. This 
topological knowledge is then extracted from the network 
into a new reduced training dataset. This new reduced 
dataset is an approximation to the original data distribution. 
Clearly, some information is lost during the reduction 
process, but this is a tradeoff for the significant reduction of 
the problem complexity. Further, the GNG algorithm is 
inherently robust against noise in the training data and can 
improve the classification performance in such cases. 
Consequently, the SVM solver is trained on the new 
reduced dataset. The performance of the proposed GNG-
SVM framework is tested on a synthetically generated 
linearly separable and non-separable datasets, as well as on 
benchmark real world datasets from the UCI’s Machine 
Learning Repository [13]. 

The rest of the paper is organized as follows. Section II 
gives a brief overview of the SVM as well as the GNG 
algorithm. In section III, the GNG-SVM framework is 
presented. Section IV discusses the observed experimental 
results and a final conclusion is drawn in section V. 
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II. BACKGROUND OVERVIEW 
 This section presents an overview of the Support Vector 
Machine and the Growing Neural Gas algorithms. 

A. Support Vector Machines Overview 
 The Support Vector Machines (SVMs) are common 
machine learning technique performing well in 
classification as well as in regression analyses problems 
[14], [15]. Its main advantage is the solid mathematical and 
statistical background. SVM is based on the structural risk 
minimization principle [4]. The constructed separation 
boundary maximizes the margin between the data points 
from different classes. In the machine learning theory this 
means maximizing the capability of the classifier to 
generalize over the input data. 

Consider a set S of N vectors ix
r

 in m-dimensional space 
belonging to two disjoint classes denoted by class label li: 
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In case of linearly separable problem, there exists a 

unique separation hyper plane that maximizes the width of 
the separation margin. This hyper plane could be described 
by an m-dimensional weight vector w

r
, and a scalar bias b 

as: 
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The solution to this problem is obtained by constructing a 

Langrangian and transforming it into a dual form as follows: 
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Here ( )Nααα ...,,1=  specifies a vector of non-negative 

Lagrange multipliers. 
Input vectors ix

r
 with non-zero coefficients iα  are called 

support vectors (SVs). The decision hyperplane is 
determined exclusively by the set of support vectors.  In 
other words, the rest of the points are irrelevant for the final 
solution. 
 For instance, the iα  coefficients can be calculated by the 
quadratic programming technique or by the Sequential 
Minimal Optimization (SMO) algorithm [16], [17]. The 
decision surface defined by (2) is determined as: 
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Here SVS is the set of support vectors in dataset S, and 

SSVN is the number of these support vectors. 

Several approaches for training the SVM on large 
datasets have been developed. The training task can be 
reduced into a set of sub-problems, which are solved 
separately. Chunking, decomposition or the SMO are only 
some of the examples of this approach [17]-[19]. 
Furthermore, the size of the dataset can be reduced by 
removing irrelevant instances. Selective sampling, active 
learning, or random sampling, attempt to maximize the 
degree of learning by trying to learn as much as possible 
with as small number of input instances as possible [8], [9]. 
Various clustering approaches can be used to either select 
relevant data instances close to the separation boundary or 
to create prototypes of data points [7], [10], [11]. On-line 
SVMs and incremental SVMs were proposed to deal with 
the case of dynamic non-stationary data [20], [21]. The 
model is efficiently maintained and updated as new data are 
being supplied. 

B. Growing Neural Gas Overview 
Inspired by the original neural gas algorithm by Martinetz 

and Schulten [22], Fritzke proposed the Growing Neural 
Gas [12]. It was developed for clustering and vector 
quantization. The GNG is capable of overcoming some of 
the limitations of standard self-organizing maps. The 
algorithm combines the growth mechanism of the growing 
cell structures (GCS) with the topology learning ability of 
the competitive Hebbian learning [23]. There is no fixed 
dimensionality of the GNG dynamic structure. Instead the 
GNG algorithm is able to adapt itself to the local 
dimensionality and density of the input data. The GCS 
based update strategy makes it robust against noise and 
overfitting. 

The GNG network consists of a continually updated set 
of neurons. Each neuron ni has associated a reference vector 

N
i Rw ∈
r , where N denotes the dimensionality of the 

problem. The reference vector determines the position of the 
corresponding neuron in the input space. Moreover, every 
neuron has a set of undirected edges connecting it with 
neighboring neurons. These edges have no weights and are 
only used to determine the topological neighborhood. Thus 
neighbors are not determined by the Euclidean distance but 
rather by a direct connectivity through these edges.  

Every iteration an input signal ξ  is drawn from the input 
probability distribution ( )ξP . Using the Euclidean distance, 
the two nearest neurons for the input signal are determined. 
If not yet existing, a new edge is created between them. The 
local error counter errora of the nearest neuron na is updated 
according to the following rule: 
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The reference neighborhood  vectors of neuron na and its 
direct topological neighbors are updated as follows: 
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 Here eb and en are the coefficients for updating weights 
and symbol Γ  denotes the set of neurons directly connected 
through an edge to the given neuron.  
  The algorithm starts with two randomly initialized 

neurons. Every λ  iterations, a new neuron is added between 
the neuron with the highest accumulated local error and its 
neighbor with the highest local error. Therefore, new 
neurons are inserted in areas that do not approximate the 
training data well.  
 In order to maintain only the valid edges, an aging 
mechanism is implemented. Every time a new edge is 
created its age is set to 0. When the winning neuron na is 
located, the age of all its edges is increased by 1. Every 
iteration, the age of each edge is compared to the established 
maximum age amax. All edges older then amax are removed as 
well as any neurons having no edges.  
 The GNG algorithm is superior to other clustering 
techniques in several ways. It does not require an upfront 
specification of the number of clusters as it is the case with 
the K-Means or the C-Means algorithms [3], [24]. The 
network continuously grows inside the training data until a 
specified convergence criterion is reached. Also no cluster 
radius has to be fixed like in the case of the nearest-neighbor 
clustering or the subtractive clustering [3], [11]. The pattern 
is assigned to the nearest neuron; hence the radius is 
continuously adjusted for each neuron as the size of the 
network grows. The iterative nature of the GNG algorithm 
makes it suitable for the task of learning the topology of 
large datasets.  

Fig 1 and Fig. 2 show examples of the topology learned 
by the GNG algorithm. 

III. GNG-SVM FRAMEWORK 
 The presented GNG-SVM framework constitutes a hybrid 
data classification algorithm specifically developed for 
classifying large datasets. The binary decision problem with 
two disjoint classes is described by (1). Generally, a 
machine learning problem can have an arbitrary number of 
classes. Hence, (1) can be generalized for a learning 
problem with C  classes as follows:  
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Here m denotes the dimensionality of the problem, N is 

the number of training instances and ix
r  and li are the input 

vector and class label respectively.  
Detailed description of multi-class SVM techniques can 

be found in [25]. For instance, the multi-class solver can be 
a combination of multiple binary SVM classifiers or it can 
be transformed into a complex optimization problem.  

The SVM training process is directly dependent on the 
size of the input dataset. This makes the SVM unsuitable for 
handling large datasets. Therefore, dataset size reduction is 
necessary. However, this reduction has to preserve the 
relevant information, which is crucial for a successful 
training.  

The presented GNG-SVM framework consists of two 
phases. In the first phase the topology of the data is 
extracted by training multiple instances of the GNG 

 
 

Fig. 1.  The results of approximating 2D distribution with the GNG
structure. 

 
Fig. 2. Visualization of the topology learning of a 3D spherical data
distribution. The sphere, composed of 10.000 points, is approximated by a
GNG structure with 50 neurons. 
  



 
 

algorithm. The original dataset is reduced to this extracted 
topological information. In the second phase the SVM 
solver is trained using the new reduced dataset.  

The GNG-SVM framework will be presented on a 
multiclass classification problem (11). For an input dataset S 
with C classes the algorithm goes as follows: 

 
Step 1.1: Divide the training dataset S into C subsets Si, 

each containing instances of one class. 
 
 { }CSSS ...,,, 21   (12) 

 
Step 1.2: Construct a set of C instances of the growing 

neural gas algorithm GNGi. 
 
 { }CGNGGNGGNG ...,,, 21   (13) 

 
Step 1.3: Assign each subset Si to its instance of the 

growing neural gas GNGi. 

Step 1.4: Train each instance GNGi on the training set Si 
until a specified convergence criteria is met (e.g. certain 
number of iteration, certain number of neurons in the 
network). 

Step 1.5: Extract the topological knowledge from each 
converged instance of the GNG algorithm GNGi. The 
topological knowledge is contained in the set of reference 
vectors Wi. 

 { }CWWW ...,,, 21   (14) 
 
Step 1.6: Extend each set of reference vectors Wi into a 

set *
iW  by assigning class label li of class i to each reference 

vector jw
r  in the class. 
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 Here Ni denotes the number of reference vectors in set Wi. 

Step 1.7: Create a new reduced input dataset S*
 by 

joining all labeled sets of reference vectors *
iW . 
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Step 2.1: Train the SVM solver on the new reduced 

training dataset S*. 
 
Fig. 3a shows the separation margin computed by the 

SVM solver on the original training dataset consisting of 
two classes. The separation hyper plane is marked with a 
straight line, while the boundaries of the margin are drawn 
with dashed-and-dotted lines. For a comparison, Fig. 3b 
illustrates the separation margin constructed by the SVM 
solver on the new reduced training dataset. The original 
dataset was reduced into 20 neurons per class. The dotted 
line in Fig. 3b shows the original separation hyper plane 
from Fig. 3a. This comparison demonstrates that while the 
size of the training dataset was significantly reduced, the 
constructed separation margin was altered only slightly. 

IV. EXPERIMENTAL RESULTS 
 The implementation of the GNG-SVM framework 
consists of two parts. The input dataset is first processed 
with a GNG algorithm implemented in C++ programming 
language. Consequently the new reduced input dataset is 
supplied to the SMO SVM solver in Weka [3]. In this 
section, the experimental results are presented and analyzed. 
First the performance of the GNG-SVM framework is 
evaluated on both synthetic and real world classification 
problems. Additionally the tradeoff between the training 
time and the performance of the algorithm is investigated.   
 The parameters of the GNG algorithm were set in all 
cases according to Table I, following the original 
implementation in [8]. These parameters’ values yield 
satisfactory behavior of the GNG algorithm. The SMO 

 
(a) 

 

 
(b) 

Fig. 3.  Decision boundary computed by the SVM solver between two
classes using the original dataset (a) and using the reduced dataset (b).  



 
 

SVM solver in Weka was used with polynomial kernels and 
the complexity parameter set to 1.  

A. Synthetic Dataset 
 Firstly, the GNG-SVM framework was evaluated on two 
synthetic dataset. Both generated datasets consisted of data 
points in 2D space divided into two classes. Each class had 
50,000 instances and was generated using several Gaussian 
distributions. In the first dataset the classes were linearly 
separable, while the second dataset contained two linearly 
non-separable classes with overlap between their 
boundaries.  

The number of neurons in the network was used as the 
convergence criterion. The training of the GNG algorithm 
terminated upon reaching 50 neurons in the network.  

The datasets were 10 times split randomly into training 
and testing sets each containing about 50% of the data 
instances. After learning the topology of the training set 
with the GNG algorithm, the SVM algorithm was trained on 
the new reduced dataset, containing 50 input instances for 
each class. The trained SVM was tested on the testing 
dataset consisting of 50,000 data instances. Table II and III 
summarize the obtained results averaged over 10 runs. 
 The testing on the linearly separable synthetic dataset 
proved the correctness of the proposed algorithm. The 
classification accuracy of the GNG-SVM framework was 
nearly perfect. In the case of the linearly non-separable 
dataset, the overall percentage of correctly classified 
instances dropped by about 4%.  However, the size of the 

original input dataset was reduced by two orders of 
magnitude (500 times).   

B. Real World Data Set 
Secondly, the GNG-SVM framework was tested on 

benchmark real world datasets with higher dimensionality. 
Two datasets were chosen from the UCI’s Machine 
Learning Repository [22]. The Magic gamma telescope 
dataset consists of 10-dimensional instances of two classes, 
with 12,332 and 6,688 examples respectively. The Shuttle 
dataset consists of 43,500 9-dimensional instances. 
Originally, 7 different classes were included in this dataset, 
80% of which belonged to a single class. For the purpose of 
the GNG-SVM framework testing, the 6 less abundant 
classes were grouped into a single class.  

Among the other available benchmark datasets, these two 
were chosen for the following reasons. They are typical 
examples of datasets that could significantly benefit from 
using the presented GNG-SVM framework. Both are large 
datasets with higher dimensionality and real valued 
attributes.  On the other hand, they still have reasonable size 
for the training with a classical SVM algorithm. This is 
necessary for the performance comparison between the 
training of the SVM solver using the whole dataset and the 
performance of the GNG-SVM framework. 

In this testing the convergence criterion was set to 100 
neurons in the network. The original datasets were 10 times 
split randomly in half (training and testing datasets). The 
results, averaged over 10 runs, are presented in Table IV 
and V. 

The 10-dimensional Magic dataset proved to be a 
relatively difficult problem for the SVM classifier. This is 
shown in Table IV by the relatively lower classification 
accuracy (79.09%), when training with the whole original 
training dataset. On the other hand, the 9-dimensional 
Shuttle dataset proved to be a relatively easier task for the 
SVM solver. This is shown in Table V by the relatively 
higher classification accuracy (96.57%), when training on 
the whole original training dataset. However, in both cases, 

TABLE III 
PERFORMANCE OF THE GNG-SVM FRAMEWORK ON LINEARLY  

NON-SEPARABLE SYNTHETIC DATASET 

Dataset preprocessing No GNG 

Correctly Classified Instances 97.59% 93.52% 

Class 1 True Positive Rate 98.21% 88.69% 

Class 2 True Positive Rate 96.91% 98.35% 

TABLE II 
PERFORMANCE OF THE GNG-SVM FRAMEWORK ON LINEARLY SEPARABLE 

SYNTHETIC DATASET 

Dataset preprocessing No GNG 

Correctly Classified Instances 99.99% 99.94% 

Class 1 True Positive Rate 99.99% 99.98% 

Class 2 True Positive Rate 99.98% 99.92% 

  
TABLE V 

PERFORMANCE OF THE GNG-SVM FRAMEWORK ON THE SHUTTLE 
DATASET 

Dataset Preprocessing No GNG 

Correctly Classified Instances 96.57% 91.34% 

Class 1 True Positive Rate 98.42% 99.18% 

Class 2 True Positive Rate 89.73% 62.79% 

 
TABLE IV 

PERFORMANCE OF THE GNG-SVM FRAMEWORK ON THE MAGIC DATASET 

Dataset preprocessing No GNG 

Correctly Classified Instances 79.09% 79.01% 

Class 1 True Positive Rate 89.78% 90.18% 

Class 2 True Positive Rate 59.51% 58.54% 

 

TABLE I 
SUMMARY OF PARAMETERS VALUES FOR THE GNG ALGORITHM 

 

λ  100 

bε  0.2 

nε  0.006 

α  0.5 

maxa  200 
 

 



 
 

the significant reduction of the size of the training datasets 
(from the 9,510 and 21,750 training instances respectively 
to 200 instanced in the reduced data set in both cases), 
resulted in a slight decrease of performance.  

 The percentage of correctly classified instances dropped 
by less than 1% in the case of the Magic dataset and by 
about 5% in case of the Shuttle dataset. This can be 
considered as an acceptable tradeoff for the significant 
reduction of dataset size. However, Table V also shows that 
the true positive rate of the less abundant class 2 in the 
Shuttle dataset decreased by almost 27%, which is very 
significant. Analyses of possible causes revealed that this 
class was created by combining 6 classes in the original 
Shuttle dataset. Thus, most likely this class consists of 
multiple clusters in different areas of the attribute space. 
This complex topology in 9-dimensional space would 
require higher number of neurons. The following test 
demonstrates that the performance improves as more 
neurons are used. 

C. Training Time vs. Performance Tradeoff 
When using the number of neurons in the network as the 

convergence criterion, there are two boundary cases for the 
GNG-SVM framework. If only a single neuron is allowed in 
the network, the whole algorithm reduces to computing the 
center of gravity (COG) of each class in the training set. The 
SVM separation hyper-plane is then constructed using only 
the COGs, which would lead to a poor performance in case 
of clusters with complex shapes. In the opposite case, when 
the number of neurons allowed in the network is equal to the 
number of training patterns, the GNG network only stores 
the position of all data points and no reduction is achieved. 
The performance in this case would be identical as if 
training on the SVM solver on the whole original training 
dataset.  

The tradeoff between the training time and the 
performance of the GNG-SVM framework was investigated. 
The classification performance on the Shuttle dataset was 
measured for different values of the convergence criterion 
for the GNG algorithm. It was expected that as the number 
of neurons in the network increases the more topological 
knowledge is extracted and the better should be the 
classification performance of the SVM solver. 

Fig. 4 and Fig. 5 show the percentages of correctly 
classified instances and class 1 and class 2 true positive 
rates as functions of the number of neurons for the GNG 
training convergence criterion. 

The experiment revealed the benefits of allowing more 
time for the learning of the topological information. Fig. 4 
shows that the overall percentage of correctly classified 
instances as well as the class 1 positive rate stays nearly the 
same, while the size of the network is increasing. However, 
because of the disproportional size of each class in the 
dataset (20% and 80% respectively), the default 
classification rate on the Shuttle dataset is 80%. In such 
cases the classification rate achieved on the less abundant 
class is a more relevant measure than the overall 
classification accuracy. As shown in Fig. 5, the class 2 true 

positive rate is continually raising as the number of neurons 
in the network increases. In other words, the more time is 
allocated for the training of the GNG algorithm, the better 
will be the performance of the SVM solver.  

V. CONCLUSION  
 The GNG-SVM framework was presented in this paper. 
It combined the Growing Neural Gas algorithm with the 
Support Vector Machine into a specific algorithm for 
classifying large datasets. The input data set was first 
preprocessed with the GNG algorithm. A new reduced 
training dataset was created from the extracted topological 
knowledge. Because the size of the dataset was significantly 
reduced, the training process of the SVM solver became 
substantially less memory demanding. 

The performance of the GNG-SVM framework was tested 
on synthetic as well as on real world datasets. Testing on the 
linearly separable and non-separable synthetic datasets 
proved that the presented algorithm can significantly reduce 
the size of the input dataset, while preserving important 
topological information. The classification accuracy of the 
GNG-SVM framework on the Magic dataset stayed nearly 
the same compared to the SVM training on the whole 
original dataset. In case of the Shuttle dataset, the less 
abundant class 2 experienced a significant decrease of 
performance, which was attributed to the complexity of the 
problem. This showed that the GNG-SVM framework is 

 

Fig. 4.  The percentage of correctly classified instanced (solid line) and the
class 1 true positive rate (dashed line) as a function of the number of neurons
in the GNG network. 

Fig. 5.  The class 2 true positive rate as a function of the number of neurons
in the GNG network.  



 
 

suitable for a certain type of problems where classes form 
more compact clusters in the attribute space. 

Further, the tradeoff between the training time and the 
classification accuracy of the GNG-SVM framework was 
investigated. It was demonstrated that the more time is 
allocated for the GNG training phase; the better the 
performance of the SVM solver will be. 
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