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Abstract—In an ideal case physically oriented vehicle models 
can reduce the required practical knowledge of a vehicle 
designer. These types of models are effective cost reducing tools 
used in industrial development cycles. There are many variables 
that can be used as input both internal and external to model 
automobile performance. The focus of this paper is on those 
external variable factors such as environment conditions that are 
not controllable by a human but are instantaneously measurable 
and affect performance. This paper presents CI-PASM, A 
Computational Intelligence Based Prognostic Automotive System 
Model. Initial feature reduction was accomplished by a human 
expert. Principal Component Analysis was performed to further 
reduce the input set. Using expert chosen features, the CI-PASM 
algorithm produced results having an error at worst in the 
hundredths of a second.  These output results were compared 
against a support vector machine implementation and were 
shown to be superior. The CI-PASM mean error was half that of 
the support vector machine error. Results from using PCA 
attributes and a support vector machine indicated that these are 
relevant alternative methods given different requirements. 

Index Terms—Neural Networks, Support Vector Machines, 
Road Vehicles, Regression 

I.  INTRODUCTION 
Automotive systems analysis and prognostics present a 

pinnacle point of interest in many industrial and engineering 
engine calibration and development systems [1],[2]. However, 
many aspects of these applications are problem specific [3]. For 
example, software models of diesel engines have been used to 
adjust parameters to reduce carbon emissions [4]. This paper 
focuses primarily on environmental, i.e. external conditions, 
which are difficult for humans to control but occur in real life 
applications outside a carefully controlled laboratory. This 
problem will be investigated on an extreme case study of drag 
racing, with understanding that the calibration problems will 
assume only a subset of the presented problem. 

Predicting the elapsed time of an automobile in a National 
Hot Rod Association (NHRA) drag race is one of the most 
important capabilities to support a victory in competition. 
Although commercial simulation packages that provide 
estimates can be found, academic information appears to be 
sparse. As the commercial entities practice a closed source 
code and they maintain a competitive advantage by keeping 
their process secret, it is not possible to determine the 

algorithms without some form of reverse engineering. 
Therefore, in order to form a baseline, this paper will explore 
the use of supervised learning techniques to provide time 
estimates.  

A drag race is an acceleration contest between two vehicles 
over a predefined distance. The goal is to traverse the distance 
and cross a finish line first.  In a simplification of the actual 
process, the winner is then subsequently paired against other 
winning drivers. This sequence repeats until only one driver is 
left. The distance measure is usually either a quarter mile (402 
meters) or an eighth mile (198 meters). 

Two different official measures are tracked for each 
performer, elapsed time and speed. Elapsed time (ET) is the 
more important measure as a handicap procedure is used to 
ensure a fair competition between two cars of differing 
performance. Each driver, in advance of a run, provides an 
anticipated ET value. The difference of these two values is 
computed and used to inhibit the start of the faster car. To 
discourage drivers from seeking an unfair advantage by giving 
slower ET values, they are disqualified if their actual time is 
better than the estimated time. This condition is referred to as a 
breakout. The ability to predict an accurate ET is vitally 
important to the success of a racing team. 

II. STATE OF THE ART 
The application of computational intelligence techniques to 

automotive system models can be found in literature such as 
fuzzy controllers, adaptive neural networks and proprietary 
solutions. In particular, engine performance simulations using 
experimental engine conditions have been successfully 
conducted using an adaptive neuro-fuzzy inference system [5]. 
The experimental system made use of standard engine output 
measurements such as power, torque and CO2 values to predict 
engine input measurements. 

In [6] the authors developed evolving artificial neural 
networks to warn drivers of dangerous situations. This showed 
that in principle the use of neural networks to predict the affect 
of driver and automobile interactions is feasible. The project at 
the University of Texas made use of an evolving neural 
network method called NeuroEvolution of Augmenting 
Topologies (NEAT) [7]. NEAT evolves the network topology, 
in addition to the weights, developing an arbitrary sized 
network. The resulting test systems output an estimated time to 



 

         

crash used to evaluate danger levels. An average under 0.04 
mean squared error in predicted time to crash showed a strong 
promise for the accuracy of such a system. 

Numerous commercial applications exist to monitor and/or 
predict automobile performance [8]-[10]. These applications 
require several inputs and appear to base their predictions upon 
the physics of automobile behavior. Most of the vendors’ 
publicly available information provided inadequate details to 
make an objective evaluation of this observation. However a 
review of one vendor’s patented application for monitoring and 
controlling wheel traction does provide supporting evidence for 
the supposition [11]. This patent was filed in support of a 
system created by Davis Technologies. 

Davis Technologies offers a patented two stage system that 
applies a retarding timing correction signal to the ignition 
system. The term retarding means that the system is effectively 
reducing engine output power to the transaxle by means of 
engine timing adjustments. Their system controls wheel slip by 
sensing over rev and a few unmentioned signals. This 
information is then used to throttle back the engine. Wheel slip 
information is sampled and a feedback signal is applied at up to 
400 times per second to the ignition system. This information is 
learned by running trial runs and then used for predicting future 
race car performance. The claim behind their system is that 
unlike other systems their product learns from previous trial 
runs and applies that information to the present run, their 
system learns from previous runs as well as using instantly 
acquired information to adjust the traction control. The patent 
description of learning is different than that typically applied to 
computational intelligence techniques like neural networks. 

III. BACKGROUND 
This section provides background on two machine learning 

techniques artificial neural networks with back propagation and 
support vector machines. These algorithms are used in the CI-
PASM and comparison routines respectively. In addition the 
concept of input vector preprocessing is presented. 

This paper presents a solution that can utilize similar 
instantaneous forms of information as those mentioned section 
II. The information is used to generate an acceleration profile 
for a given vehicle regardless of track location. The algorithm 
described uses measured external forces to compensate for 
driver and environmental variations acting on the vehicle 
chassis during a drag racing event. Environmental temperature 
and barometric pressure are two examples of several variables 
that are monitored and used as input. The algorithm learns 
overall system behaviors and then adjusts for varying 
conditions. After the algorithm has been trained on a series of 
recorded runs, it functions in a prediction mode. In this mode, 
the algorithm can perform predictions of future run times based 
on measured environmental conditions and learned knowledge 
acquired from past performance. 

Preprocessing of input data is one of the most important 
steps in development of a neural network solution [15]. In 
some cases the data set may be missing or its meaning 
obscured by excessive number of attributes. This is referred to 
as the curse of dimensionality. In addition, the numerical 
values of the data are normalized to help equate the strength of 

the variables. Encoding of features such as weather conditions 
is performed. This data point is a categorical discrete value that 
has no natural ordering. Bishop in [15] suggests using a 1-of-c 
coding for this kind of input. The data points that most affect 
the solution are optimal candidates for inputs while others are 
discarded. If too much information is removed, the resulting 
prediction ability will be affected. 

A standard multi-layer feed forward Error Back 
Propagation network, or EBP for short, is at the heart of the CI-
PASM algorithm. EBP networks are another well researched 
supervised learning method. The learning vectors are presented 
to the network and the results are fed forward through the 
network. Results are calculated and compared to the desired 
output producing an error measurement. The power of a 
multilayer neural network lies in its ability to train the network 
to model multidimensional nonlinear problems. 

Back propagation solves the problem known as the credit 
assignment problem i.e. the determination of a specific node to 
be adjusted in a multilayer network with a hidden node layer. If 
the error function such as a simple sum-of-squares equation, 
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is used then this is a differentiable function of the weights. The 
derivatives of the error with respect to the weights can be 
performed and applied to find weight values that minimize the 
error function.  

Multiple approaches can be taken to adjust the neural 
network output. One method is to produce an output, based on 
historical data of an entire event, and adjust engine output 
power by adding or subtracting a single set value to the entire 
relevant event. Another approach is to break the profile up into 
smaller segments of time and allow the network to make 
adjustments within each time segment. Considering the initial 
attempt to predict an overall time without corrective feedback 
during the run, the former is followed in this solution. 

For comparison purposes a regression version of the 
Support Vector Machine [17] was implemented. It has been 
shown to have good empirical performance and has a strong 
research history [18]. The SVM was originally proposed by 
Vladimir Vapnik in 1963 as a linear classifier. In 1992 the idea 
was extended to be a non-linear classifier by Vapnik, Boser and 
Guyon. A non-linear kernel function was added. Vapnic and 
others extended the SVM for regression (SVR) in 1996 [19]. 
The idea behind an SVM is to maximize the distance of a 
decision surface between examples in a training set. For 
example, given a set of two points the midpoint of the 
euclidean distance would be the maximum distance between 
them. As pointed out by Rychetsky (2001), classical learning 
systems like neural networks suffer from their theoretical 
weakness, e.g. back-propagation usually converges only to 
locally optimal solutions. SVMs can provide a significant 
improvement in this regard. For this reason an SVR 
implementation was chosen as a comparison algorithm to EBP. 



 

         

IV. PROBLEM DESCRIPTION 
It is well known that several external environmental 

measures factor into a vehicles performance [12],[13]. Over a 
given day as temperatures increase and other environmental 
factors vary so does a vehicles elapsed time. The data acquired 
for this paper shows this as well. The effectiveness of this 
system is based in part on the ability for a given expert driver to 
perform in a predictable manner time after time. The more a 
driver’s behavior departs from an optimal winning behavior, 
the more of an effect it has on vehicle performance. The better 
drivers in turn will require little compensation by the system. In 
this way an overall drag racing system and driver become tuned 
together for optimal performance. In this case optimal 
performance means getting to the finish line as close as 
possible to a predefined time without going over. 

Race teams generally maintain meticulous log books 
recording track and automobile conditions for each race. In 
support of this project, a log book for an NHRA record setting 
Ford Mustang was obtained that covers the 2003 and 2004 race 
seasons. The logged measures are shown in Table I.  Other than 
time values and exhaust temperature, measurements were taken 
prior to an individual race.  

For a vehicle to move the energy generated by the engine is 
used to overcome two forces that act in resistance. Rolling 
friction is the resistance of the tire in contact with the track 
surface. This friction force is nearly independent of car speed. 
For drag racing vehicles this value is generally much higher 
due to special tires, vehicle weight distribution and pavement 
conditions [14]. For instance, track crews spray a special 
chemical compound on the starting line area to improve tire 
traction. The second force is air resistance force, and it 
increases rapidly with speed 

 The power from an engine must supply sufficient 
forward force to the driven wheels in order to overcome these 
two resisting forces. The density of air and friction coefficient 
can change with variations in atmospheric density and air 
temperature. These and other values such as shock settings and 
wind can affect the performance of a race car. Power is 
required to apply force at a rate fast enough to do the work of 
accelerating the vehicle.  

A vehicles power rating measured in an uncontrolled 
environment with varying environmental conditions will vary 
greatly based on the data presented in this paper. As the 
atmospheric temperature, barometric pressure and other factors 
vary over a given day so does car performance. Both tire-to-
track friction and engine performance are affected. If all the 
forces acting on the frame of the racer are understood, then 
accurate methods of controlling and predicting race care 
acceleration and time to finish line can be developed. 

V. CI-PASM ALGORITHM 
The conjecture of this paper is that automobile performance 

can be accurately modeled based on historical measurements of 
atmospheric, geographical and car performance. This 
prediction process is formulated as a regression analysis 
computation. Regression problems can be viewed as a specific 
case of function approximation. The outputs should 
approximate the conditional averages of the target data.  

In order to reduce the dimensionality of the independent 
data sets and choose those that are most appropriate two 
methods were employed: human expert analysis and Principal 
Component Analysis (PCA). Initially the expert chosen 
categories were used for input to provide a baseline for future 
feature reduction effectiveness. Even though this solution 
provided the best results, feature set reduction was still 
considered. Computation performance is improved with fewer 
points and a relatively accurate answer is produced.  

Information gathered from a specific run down the track, as 
depicted by Fig. 2, by a vehicle is represented as a feature 
vector F = {f1,f2,...,fn} where fi is a feature in an independent 
feature set.  Given a set FS ={F1,F2,...Fk } that contains all 
instances of available recorded feature vectors Fi we want to 
predict the elapsed time value ti where set T = {t1,t2,...tx}. 

PCA is a technique for combining inputs together to make a 
generally smaller subset [16]. The goal is to compute a basis to 
express as a representation of a noisy data set. In other words, 
what are the most important aspects of this data set and which 
are redundant or noise. Formally stated the process of mapping 
a given vector set xn of dimension D (x1...xd) to an alternative 
vector set yn of a smaller dimension M where M < D. Exact 
details of this process are described in literature and are not 

Figure 1.  Data Flow Diagram 

  

TABLE I.  MEASURES 

Time of Day Reaction Time 

Light Conditions Air Temperature 

60 ft. Time 330 ft. Time 

660 ft. Time 660 ft. Miles Per Hour 

990/1000 ft. Time  

1320 feet Time 1320 feet Miles Per Hour 

Launch RPM Shift RPM 

Fuel Pressure Tire Pressure Front/Rear 

Weight Shock Settings Front/Rear 

Humidity Barometric Pressure 

Exhaust Temperature (Post race)  



 

         

 
Figure 2.  Network Diagram 

covered here [16],[17]. However the basic principles are 
outlined as follows: Organize the data into an m x n matrix 
where m is the measurement and n is the number of samples. 
Subtract off the mean for each measurement type. Calculate the 
eigenvectors and eigenvalues of the covariance. The 
eigenvectors corresponding to the largest eigenvalues are 
retained. 

The ultimate goal is to predict elapsed time values for a 
given vehicle. This can be achieved by training a regression 
function g such that g(Fi)=>Ti. An Error Back Propagation 
Neural Network (EBP) implementation is used to perform this 
regression analysis. A regression form of Support Vector 
Machine (SVR) was used for comparison purposed but is not a 
required portion of CI-PASM.  

The algorithm steps are as follows: 

 Step 1:  From the recorded historical information 

about the vehicle construct a sequence TS of ordered attribute 

vectors it
v
r

. Each it
v
r

 should contain the elapsed time in a given 
position. 

 Step 2: Transform the set of attributes TS into a new 

attribute set WS  by reducing the cardinality of each vector to a 
constant length. Feature selection is accomplished by a human 
expert followed by PCA over the ordered sequence of 

vectors it
v
r

. Compute a new attribute vector jw
r

. Dimensionality 
reduction should be accomplished by choosing enough 
eigenvectors to account for a 95% variance in the original data. 

 Step 3:  Create training and testing sets. T1 contains 
training feature vectors using human expert features and testing 
sets S1. T2 contains training feature vectors using a PCA 
features and test sets S2.  The features should be split, with 2/3 
for training and the rest for test. 

 Step 4:   Train the EBP with both training sets T1 and 
T2. The feed forward neural network with back propagation of 
errors is constructed with three layers as can be seen in Fig. 2. 
The input layer consists of the twelve expert feature values. Six 
nodes reside in the middle hidden layer. These nodes feed into 
a single output node which is ultimately responsible for 
delivering the elapsed time estimate. The network is fully 
connected with all nodes in a layer connected to each node in 
the next layer. The connectivity depicted in fig. 2 is not 
complete to avoid cluttering the image. 

The input signal of the hidden and output node is defined in 
(2) where w is the weight and x is the input value from the 
previous node and m is the number of connections including 
the bias term. 
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The output from each node is computed using (3). The k 
value is the gain and is defined as a set constant of 0.2. 

)tanh( jj netko •=                           (3) 

After the value for the output layer is produced the error is  

computed and fed back through the hidden and output layers 
and the weights w are adjusted. Equation 4 provides the delta to 
apply to each weight, np is the number of patterns, d is desired 
value 
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After a complete set of updates for each training input 
pattern, the sequence of calculating outputs and feeding error 
information back through the network layers is reiterated 400 
times the output error is acceptably small.  

 Step 5:  Using the trained EBP to evaluate against 
testing sets S1, S2. 

An important tool used for analysis and implementation of 
the algorithms is Weka from the University of Waikato [20]. 
Weka is a collection of machine learning algorithms 
implemented in Java and issued under the GNU General Public 
License. It is very flexible in its usage allowing for users to link 
against a library or make use of graphical user interface. Data 
can be imported and manipulated in comma separated data or 
in its own well defined ASCII format arff. Once the data is 
imported it is possible to make multiple runs with different 
algorithms. Results are then saved as a text file for later 
consumption.  This software package was used exclusively to 
perform all computation during this project. 

 



 

         

VI. RESULTS 
The data set used for training and testing consists of forty-

five runs at five different geographic sites. Each site is located 
in the United States and has an elevation in the range 1,374 to 
5,860 feet above sea level. After evaluating the raw data, it 
became evident that elevation affects performance. The average 
ET at 5,860 feet was 13.2 seconds while at 1,374 feet the 
average ET was 12.5 seconds. The physical aspects of the car 
such as engine parts, suspension and tires were not changed, 
other than simple adjustments, between track sites.   

Data value instances of the expert chosen categories shown 
in Table II were normalized and all available sets were offered 
as input to the CI-PASM algorithm. This included running the 
principal component analysis process. The result was a 
reduction to six attributes. Both sets of data, expert and PCA 
derived, were used as input to the SVR implementation for 
comparison purposes. 

Of the 45 instances of input vectors 39 were used to train 
and 16 were for test. Runs at all tracks were represented in both 
training and test sets. The 1320 foot elapsed time attribute is 
the output value the algorithm is trying to predict and 
consequently used to compare accuracy.  

For comparison purposes, Table III presents the correlation 
coefficient and error results of four different combinations of 
algorithms. These include the two input selection methods and 
both machine learning methods of SVR and EBP that were 
presented in section 3. An implementation of Alex Smola and 
Bernhard Scholkopf's sequential minimal optimization 
algorithm with a polynomial kernel was used as the support 
vector regression model [20]. The EBP data was produced 
using a multilayer neural network that uses the method of error 
back propagation to adjust network node weights. A good 
reference for this method can be found in the book Neural 
Network Design [21].  

The graphs shown in Fig. 3 on the next page depict the 
predicted ET’s with triangles overlaid with the actual ET’s 
represented as squares. All four instances follow the general 
solution curve well. It can be observed that the different 
algorithms had accurate predictions at different data points. 
However A few run instances such as 8 and 14 caused accuracy 
problems for all the solutions and may indicate an issue those 
points.  

Table IV contains a sample output of the CI-PASM 
algorithm using EBP with expert features. Measured actual 
ET’s are shown next to that of the predicted values. Error is 
represented as a simple difference between the two time values. 
Overall the EBP with expert chosen features had the highest 
correlation coefficient and the smallest error. In all cases the 
expert picked attribute set performed better than that of the 
PCA attributes. However the error difference may be 
acceptable depending upon the solution requirements.  

VII. CONCLUSIONS 
Based on the results shown in this paper supervised 

learning algorithms implemented to model automotive 
performance is not only feasible but also very accurate. Current 
industrial practices leverage similar models to reduce cost and 
shorten development cycles. The presented CI-PASM 
algorithm demonstrated the use of a multi-layer error back 
propagation neural network and compared its performance with 
a support vector regression model. Two methods of input 
feature dimensionality reduction, human expert selection and 
PCA were presented as well. All showed promising results with 
the combination of human expert feature selection and EBP 
network performing best with a correlation coefficient of 0.995 
and a mean absolute error of 0.029. 

Human performance enhancement is an interesting topic 
and use of a CI-PASM system may find application elsewhere. 
The algorithm could be enhanced to include a mode where 
historical data is actively applied to instantaneous data and used 
to correct human behavior in real time. There may be an 
optimal mixing factor for such a hybrid system that allows the 
human to maintain control while allowing for fine accuracy 
adjustments by the artificial network. For example, a similar 
approach is typically used to increase stability and pilot control 
of highly maneuverable forward swept wing tests.  
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TABLE  II.  EXPERT ATTRIBUTES 

Reaction Time Rear Shock Setting 

Launch RPM Shift RPM 

Tire Pressure Front Tire Pressure Rear 

Humidity Barometric Pressure 

Elevation Weight 

Temperature 1320 feet Miles Per Hour 

TABLE IV.  EBP EXPERT SAMPLE DATA 

Actual Predicted Error Actual Predicted Error 

12.464 12.344 -0.12 … … .. 

13.295 13.239 -0.056 13.173 13.176 0.003 

12.366 12.512 0.146 12.56 12.627 0.067 

12.494 12.485 -0.009 13.184 13.183 -0.001 

… … … 13.142 13.173 0.031 

TABLE III.  SUPERVISED LEARNING RESULTS 
 

 SVR 
Expert 

SVR PCA EBP Expert EBP 
PCA 

Correlation 
coefficient 

0.979 0.975 0.995 0.970 

Mean absolute error 0.063 0.089 0.029 0.079 

Root mean squared 
error 

0.089 0.124 0.038 0.100 

Relative absolute 
error 

16.44% 23.38% 7.95% 20.77% 

Root relative 
squared error 

21.83% 30.10% 9.96% 24.39% 
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Figure 3.  Graphs showing predicted outputs with actual ETs. 
  


