
978-1-4244-2800-7/09/$25.00 ©2009 IEEE                              ICIEA 2009 

SVM-Inspired Dynamic Safe Navigation Using 
Convex Hull Construction 

 

Ondrej Linda 
Department of Computer Science 
University of Idaho, Idaho Falls 

1776 Science Center Dr., Ste. 306  
Idaho Falls, ID 83402, USA 

lind0812@vandals.uidaho.edu 

Todd Vollmer 
Idaho National Laboratory 

2525 Freemont Avenue 
Idaho Falls, ID 83415, USA 

Todd.Vollmer@inl.gov 

Milos Manic 
Department of Computer Science 
University of Idaho, Idaho Falls 

1776 Science Center Dr., Ste. 306  
Idaho Falls, ID 83402, USA 

misko@ieee.org 

 
Abstract— The navigation of mobile robots or unmanned 
autonomous vehicles (UAVs) in an environment full of obstacles 
has a significant impact on its safety. If the robot maneuvers too 
close to an obstacle, it increases the probability of an accident. 
Preventing this is crucial in dynamic environments, where the 
obstacles, such as other UAVs, are moving. This kind of safe 
navigation is needed in any autonomous movement application 
but it is of a vital importance in applications such as automated 
transportation of nuclear or chemical waste. This paper presents 
the Maximum Margin Search using a Convex Hull construction 
(MMS-CH), an algorithm for a fast construction of a maximum 
margin between sets of obstacles and its maintenance as the input 
data are dynamically altered. This calculation of the safest path is 
inspired by the Support Vector Machines (SVM). It utilizes the 
convex hull construction to preprocess the input data and uses 
the boundaries of the hulls to search for the optimal margin. The 
MMS-CH algorithm takes advantage of the elementary 
geometrical properties of the 2-dimensional Euclidean space 
resulting in 1) significant reduction of the problem complexity by 
eliminating irrelevant data; 2) computationally less expensive 
approach to maximum margin calculation than standard SVM-
based techniques; and 3) inexpensive recomputation of the 
solution suitable for real time dynamic applications. 

Index Terms— Autonomous Navigation, Convex Hull, 
Machine Learning, Support Vector Machines 

I. INTRODUCTION 
 Successful navigation of mobile robots or UAVs in an 

environment full of static and dynamic obstacles is the key to 
the automation of transportation and work in many industrial 
areas [1], [2]. When moving to the desired destination, it is 
absolutely necessary for the UAV to avoid any possible 
accident with the obstacles in the environment. This not only 
prevents the UAV from damaging itself but also from posing 
risk to its load, other UAV’s or the whole environment. The 
navigation algorithm should minimize the risk of any collision 
and try to construct the safest path possible. Generally this 
kind of a safe navigation is needed in any application such as 
navigating an autonomous transporter through a factory hall or 
through an airport environment, but it is of a vital importance 
in tasks such as automated transportation of nuclear or 
chemical waste [3].  

The task of constructing the safest path through a set of 
obstacles is similar to the problem of constructing the optimal 
separation margin, which is successfully solved by the Support 
Vector Machines (SVMs) [4], [5]. The SVM technique 
constructs a linear separation between clusters of points in 
arbitrary number of dimensions, attempting to maximize the 
distance from the separation hyper-plane to the clusters 
boundaries. However, the SVM construction can be 
computationally expensive and the solution is hard to maintain 
as the input data are dynamically modified.  

This paper presents the Maximum Margin Search using a 
Convex Hull construction (MMS-CH) algorithm for finding 
the optimal path between a set of obstacles. Because the 
navigation path is calculated on a 2D map of the environment 
and each recorded obstacle is represented as a pair of x and y 
coordinates, the problem can be reduced to this simple case 
and several advantageous properties of the 2D Euclidean 
space can be utilized. Under such conditions the presented 
MMS-CH algorithm is computationally less expensive than 
standard algorithms for solving the SVM. The optimal 
separation margin determines the optimal safest path for the 
UAV navigating through a set of obstacles, thus minimizes the 
risk of a collision during the movement. The input data are 
preprocessed by constructing convex hulls around the clusters 
of input data and then using the boundaries of the hulls to 
adaptively search for the optimal margin. Furthermore the 
MMS-CH algorithm maintains the solution and updates it only 
when and where it is necessary as the input data are 
dynamically changed.  

The rest of the paper is organized as follows. Relevant 
background is discussed in section II. Section III defines the 
problem to be solved. Section IV presents the analyses of the 
MMS-CH algorithm and particular steps of the algorithm are 
explained in section V. Experimental results are demonstrated 
in section VI and section VII concludes the paper. 

II. BACKGROUND 
Although the MMS-CH algorithm is only inspired by the 

SVM techniques, its overview is provided. From the presented 



 

 

theory the correctness of the presented approach can be 
derived. Further, the SVM theory supports the claims that by 
preprocessing and eliminating of some input data, the solution 
of the problem will not be modified. Additionally, an 
overview of the properties and algorithms for construction of 
convex hulls is given. 

A. Support Vector Machines (SVM) 
SVM is well known machine learning technique performing 

well in both classification and regression problems [6]-[8]. Its 
success is due to the solid mathematical foundations and 
following the structural risk minimization principle [4]. The 
constructed separation function maximizes the margin 
between different classes. In machine learning theory this 
means maximizing the capability of the classifier to generalize 
over the input data. The SVM problem and solution could be 
described as follows.  

Set S of N training points in m dimensional space belonging 
to two disjunctive classes li can be described as: 
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There exists an optimal linear separation hyper-plane 

maximizing the separation margin described by m dimensional 
weight vector w and a scalar bias b: 
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The solution could be calculated by constructing the 

Langrangian and transforming it into a dual form: 
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Here ( )Nααα ...,,1=  is a vector of non-negative Lagrange 

multipliers. 
Support vectors (SVs) are input points xi with non-zero 

coefficient iα . The final separation hyper-plane depends 
exclusively on the set of SVs and the remaining data points are 
irrelevant for the final result. 

The iα coefficients can be obtained for instance by 
Quadratic Programming (QP) or by Sequential Minimal 
Optimization (SMO) algorithm [10], [11]. The decision 
surface is found as: 
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Here SVS is the set of SVs of data set S and NSV is the 
number of SVs. 

B. Convex Hull 
The convex hull of a set S of N points in m dimensional 

space can be described as the intersection of all convex sets 
containing S. The convex hull C of points p1,…,pN is described 
as: 
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In 2-dimensional space the term convex hull usually refers 

to the boundary of the smallest enclosing polygon around the 
given set of points S.  

Several algorithms for computing the convex hull exist in 
2D space. An elegant solution is the Jarvis march algorithm 
with the time complexity of O(nh), where h is the number of 
points in the hull [12]. More sophisticated solution is the 
Graham Scan algorithm that requires only O(n logn) time [13]. 
The same time complexity is needed for a divide and conquer 
and for the incremental approach [14], [15]. 

 The Akl-Toussaint heuristic can effectively preprocess the 
input dataset and eliminate points that cannot be part of the 
convex hull in linear time [11]. First, the points with min and 
max x and y coordinates are found and a quadrangle 
connecting these points is created. Then all points located 
inside this quadrangle cannot be part of the convex hull and 
are irrelevant for the solution. 

III. PROBLEM DESCRIPTION 
Computing the navigation through a cluttered environment 

requires input information about the obstacles in it. For 
instances, this information can be presented as a static 2D map 
of the environment, as inputs from the UAV’s sensors or as 
dynamically received data from a central control unit 
monitoring the environment. Commonly, the planning unit of 
the UAV is supplied with a mixture of static and dynamic data 
points constituting the input dataset at the given time. 

 A typical situation where the UAV knows its position and 

 
Fig. 1.  Map of the environment with marked position of the UAV, its desired
target location (T) and obstacles divided into 2 clusters. 



 

 

the location of the obstacles and tries to navigate to the desired 
location is shown in Fig. 1. The vector of the desired direction 
can partition the obstacles into two disjunctive clusters. This 
partition could be non-trivial and will eventually require 
decomposition of the problem into multiple sub-problems. The 
desired trajectory has to be decomposed into multiple 
segments. This decomposition stage will be necessary for the 
MMS-CH algorithm to be applicable in any general situation 
and it is an object of future research.  

IV. ANALYSES OF THE MMS-CH ALGORITHM 
The MMS-CH algorithm has two main phases. Firstly, the 

irrelevant input data are eliminated and the complexity of the 
problem is reduced. Secondly, the sequence of candidate 
edges is constructed and the optimal margin search is 
performed by rotating the separation boundary around the 
convex hull.  

A. Irrelevant Data Elimination 
Assuming that the obstacles in the environment were 

partitioned into two linearly separable clusters as denoted in 
Fig. 1, each data input can be defined as a triplet of 
coordinates (x, y) and label l of the cluster it belongs to. The 
whole data set S of N inputs can be defined as: 
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Similarly as in the case of SVMs, the optimal linear 

separation between the clusters, subject to the width of the 
margin, has to be calculated. The optimal separation line Lo in 
2D is given by: 
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Lo must correctly separate all the input data, meaning that 

for all i=1,2,…,N: 
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For Lo to be optimal it also has to maximize the distance 

distSV to the nearest point in the data set S from both clusters: 
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Input points at distance SVdist  from the separation line are 

the Support Vectors of the set S (SVS). Based on the convex 
shape property of the convex hull 

lSC of cluster l, we can 
derive the following observation:  
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From this observation it is clear that: 
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Hence eliminating the input points located inside the 

convex hull will not change the final solution. The constructed 
convex hulls on the input dataset are shown in Fig. 2. 

B. Candidate Edges 
Knowing the equations of the boundaries of the separation 

margin is sufficient for calculating the actual separation 
function Lo: 
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Parameters 1c and 2c are the c parameters of the linear 

equations of the boundaries. Therefore, after locating the 
boundary of the optimal separation margin, the optimal 
separation function can be constructed.  

Having computed one side of the separation boundary, the 
second one can be easily obtained and consequently the 
separation function computed. It is possible to reduce the set 
of edges in the set 

lSC to a set of candidate edges
lSE , which 

could be a potential position of the optimal boundary. The 
reduction is based on the fact that also the boundaries of the 
margin are linear separators between the clusters. Therefore 
each line Lj going through an edge in the set of edges

lSE must 
fulfill the following condition: 
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In other words a separation line Lj going through a 

particular edge in the set 
lSC that locates all the data points 

into the same half space cannot be a position of the separation 
line. The input dataset with constructed candidate edges is 
shown in Fig. 3. 

The sets 
lSE of both clusters can be ordered in clockwise 

(CW) or counter-clockwise (CCW) direction forming a 

 
 

Fig. 2.  Clusters of data points with constructed convex hulls (outer dashed
line) and the quadrangle of the Akl-Toussaint heuristic (inner dashed line). 



 

 

sequence of edges. The slopes of edges in these sequences 
form a monotonically ordered sequence. Based on the slope of 
one boundary, a pair of neighboring edges in the sequence 

lSE of the opposite cluster can be found, with slope interval 
containing the slope of the first edge. The shared point of 
these two edges is the position of the second boundary parallel 
to the first one. The width of the boundary is calculated as the 
distance between these two parallel lines. 

C. Boundary Rotation 
An operation of rotating line Lj around the set of 

edges
lSE can be defined as follows: 

),,(1 lSanglejj ELRotateL Δ=+  

Initial Step: Set L0 to the first edge e0 in the sequence
lSE . 

Step  1: ( ) ( ) anglejj LslopeLslope Δ+=+1  

Step 2: If ( )11)( ++ > kj eslopeLslope then set 1+jL to the 

edge 1+ke , where 1+ke  is the next edge in the ordered sequence 
of edges

lSE . 

Due to the convex shape of the clusters boundaries, the 
width of the margin is a function of the position on the 
boundary and has only one global maximum. This maximum 
is located in the optimal position of the margin. Further, it 
contains no local maximums as it smoothly increases from the 
beginning to the optimal position and consequently decreases 
after the optimum is passed. Hence, during the rotation of the 
boundary around the sequence of edges the gradient of the 
margin’s width can be used to guide the search towards the 
optimal position.  

V. MMS-CH ALGORITHM 
This section describes the MMS-CH. As explained earlier 

the UAV is given a mixture of static and dynamic data. 
Therefore, the algorithm also manages additional insertions 
and deletions of data from the input dataset. 

The algorithm can be divided into the following steps: 
Step 1: Find the extreme points and construct the quadrangle 

of the Akl-Toussaint heuristic in both clusters. 
Step 2: Apply the heuristic and eliminate data points 
irrelevant for the construction of the convex hulls.  
Step 3: Construct the convex hulls

lSC from the reduced 

datasets. 
Step 4: Construct the ordered sequence of candidate 
edges

lSE from both convex hulls. 

Step 5: Search through the sequence of edges 
lSE and find the 

edge with the widest margin. 
Step 6: Rotate the boundary around the located position as 
long as the width of the margin increases. 
Step 7: If the difference in the width of the margin between 
consecutive rotations falls under the specified threshold 
terminate the rotation and go to step 8. Otherwise reduce 

angleΔ  and go to step 6. 
Step 8: If a new point is inserted, go to step 2 and apply the 
heuristic for the given cluster. If the point is located inside the 
quadrangle of the heuristic, nothing has to be recomputed. If it 
is located outside, recompute steps 1 through 4 for the given 
cluster. Test if the new point lies inside the previous margin. If 
it doesn’t, the margin does not have to be recomputed. If it 
passes the test, steps 5 through 7 are repeated. 
Step 9: If a point is deleted from the input set S go to step 2 
and apply the heuristic for the given cluster. If the point was 
located inside the quadrangle of the heuristic, nothing has to 
be recomputed. If it is located outside, recompute steps 1 
through 4 for the given cluster. Test if the point being deleted 
was located on the boundary of the previous margin. If it was 
not, the margin does not have to be recomputed. If it was, 
recompute steps 5 through 7. 

Step 5 is similar to the operation of rotation around the 
sequence of candidate edges

lSE . It quickly identifies the 

position of the boundary and the rotation can be performed 
only around this position. This is a significant speed-up 
compared to the rotation of the boundary around the whole 
sequence

lSE from its start. The steps of the algorithm are 

shown in Fig. 4. The final result is shown in Fig. 5. 

 
 

Fig. 3.  Sequences of candidate edges.. The arrows show the CCW ordering of
the sequences of edges. 

 
 
Fig. 4.  Particular steps of the adaptive rotation search for the position of the 
optimal boundary. 



 

 

VI. EXPERIMENTAL RESULTS 
The MMS-CH algorithm was implemented in the 

MATLAB environment. Due to the difficulty of obtaining real 
world data, manually created distribution of input points was 
used. Further, the input points were beforehand partitioned 
into two disjunctive clusters. The graphical user interface 
(GUI) of the application is shown in Fig. 6. 

The GUI displays the input dataset. The MMS-CH 
algorithm can be applied to the data and the computed result 
visualized. Along with the results, the convex hull, the 
sequence of candidate edges and the quadrangle of the 
heuristic can be displayed to illustrate the preprocessing of the 
input data. 

In order to simulate the dynamic scenario, data points can 
be manually inserted into or deleted from the input dataset. 
The MMS-CH algorithm updates the solution online. After 
each update the new solution is visualized and the GUI 
outputs description of the performed steps. This output log 
confirms that the solution is not recomputed when it is not 
necessary to do so.  

To demonstrate the process of dynamic update of the 
solution, simple case is considered in Fig. 7. There is a 
moving object inside one of the clusters of obstacles moving 
in a given direction. The sequence in Fig. 7 demonstrates 
when and what part of the solution has to be re-calculated. 
Only when the updated position of the moving object 
interferes with the boundaries of the previously computed 
margin, the separation has to be re-computed to reflect the 
new obstacle in the way.  

Testing on various input data distributions and scenarios of 
insertion and deletion of input points showed the suitability of 
the MMS-CH algorithm for the real-time dynamic input data. 
The solution is computed and updated in a fast manner and the 

elimination of irrelevant input data helps prevent the algorithm 
from performing unnecessary computations.  

VII. CONCLUSION AND FUTURE WORK 
In this paper the MMS-CH algorithm for calculating the 

safest path in dynamic environment was presented. The 
algorithm utilizes the construction of convex hulls over the 
input data to eliminate data points irrelevant for the solution 
and to use the boundary of the hulls to search for the optimal 
separation margin between sets of obstacles. The testing of the 
algorithm showed that it performs well in dynamic scenarios 
where the input data might be altered by insertion or deletion 
of data points. The preprocessing phase of the MMS-CH 
algorithm can recognize whether the change in the data set 
does or does not require any recalculation of the previous 
solution and thus prevents unnecessary computations.    

In order for the MMS-CH algorithm to be applicable in any 
general situation, the desired path will have to be decomposed 
into multiple sub-sections. This is necessary due to the linear 
property of the calculated solution, which might not always be 
a global optimum or might not even exist. Furthermore the 
combination of the MMS-CH algorithm with the kinetic 
convex hulls should be investigated [16], [17]. In the case of 
kinetic convex hull all points in the data set have their own 
direction vector and specified speed. Maintaining such a 
structure enables the calculation of events that change the 
shape of the convex hull and consequently lead to the change 
of the optimal separation margin. This extension to the MMS-
CH algorithm would bring the possibility of computing the 
solution ahead in time, enabling a prediction of the position 
and the width of the optimal margin and thus improving the 
ability of the MMS-CH algorithm to minimize the risk of 
navigating the UAV into a dangerous situation eventually 
leading to a collision in the near future. 

 
 
Fig. 6. The GUI of the MMS-CH application implemented in the MATLAB
environment. 

 

 
 

Fig. 5. The margin’s boundaries (dashed-and-dotted) and the separation
function (solid) computed by the MMS-CH algorithm. 
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(a)                                                                                                                          (b) 

                                       
(c)                                                                                                                                 (d) 

Fig. 7. Example of the dynamic solution calculated by the MMS-CH algorithm. Object located inside the cluster is moving in the given direction (a). When
the object moves out from the quadrangle of the heuristic the convex hull has to be recomputed (b). When the object moves out from the convex hull of the
cluster, the convex hull is re-computed and the separation margin is checked (c). When the object moves inside the previously computed separation margin,
the optimal margin has to be re-computed (d). 


