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Abstract – The U.S. Department of Energy (DOE) is leading a number of initiatives, including one known as the Next 
Generation Nuclear Plant (NGNP) project. One of the NGNP nuclear system concepts is the Very High Temperature (gas-
cooled) Reactor (VHTR) that may be coupled to a hydrogen generating plant to support the anticipated hydrogen economy. 

For the NGNP, an efficient power conversion system using an Intermediate Heat Exchanger (IHX) is key to electricity 
and/or process heat generation (hydrogen production). Ideally, it’s desirable for the IHX to be compact and thermally 
efficient. However, traditional heat exchanger design practices do not assure that the design parameters are optimized.  

As part of NGNP heat exchanger design and optimization project, this research paper thus proposes developing a recurrent-
type Artificial Neural Network (ANN), the Hopfield Network (HN) model, in whichthe activation function is modified, as a 
design optimization approach to support a NGNP thermal system candidate, the Printed Circuit Heat Exchanger (PCHE). 
Four quadratic functions, available in literature, were used to test the presented methodology. The results computed by an 
artificially intelligent approach were compared to another approach, the Genetic Algorithm (GA). The results show that the 
HN results are close to GA in optimization of multi-variable second-order equations.   
 
 

I. INTRODUCTION 
 
More and more engineering and scientific research relies 

on use of complex computational codes and performing 
computational experiments (simulations) to investigate a 
design point of an system of interest. In recent years, 
Experimental Fluid Dynamics (EFD) and Computational 
Fluid Dynamics (CFD) have been used to study complex 
flow systems and phenomena. The corresponding structural 
performance can then be analyzed and investigated using a 
Finite Element Method (FEM). The design space is studied 
by changing the system parameters during iterative 
computations; typically, based on the designer’s experience 
or via a trial-and-error basis. Thus for a given thermal 
component the optimal design point and best efficiency is 
not guaranteed. For complex convective phenomena, the 
design exercise (and optimization) can be computationaly 
expensive.  

To address these concerns, a combination statistical-
mathematical technique is introduced. The approximate 
model or so-called surrogate model (also metamodel),  
characterized by input factors and corresponding responses, 
is constructed. Supecifically, the “Response Surface 
Methodology (RSM)” has been successfully used to 
construct these surrogate models [1,2]. The RSM facilitates 
characterization of system behavior through functional 
relationships between input and output as shown by Fig. 1.  

 
 

 
 
 

 

 
 
 
 

 
Fig 1. NGNP PCHE design and functional requirements 

and reponse surface plot of hot- and cold-sided pressure 
drop with diameter and zigzag length 
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Fig. 1 shows a NGNP PCHE 3D distribution of data 
points on coordinates corresponding to targeted design 
parameters (as example): diameter (d), zigzag length (l) 
versus the hot- (DPh) and cold- (DPc) side pressure drops. 
The data points were each generated obtained by 
performing CFD simulation for a set of design parameters. 
Here one can imagine the ‘surface’ produce by such data. In 
general Fig. 1 shows that smaller diameter and shorter the 
zigzag length, higher pressure drops are observed. To 
mathematically describe the surface, a multi-variable 
polynomial model was applied. The generated equation is 
then used to obtain the optimal solution of the system.  

In the process of the RSM-based optimization and 
analysis, the Multi-Variable Quadratic Polynomial (MVQP) 
equation or the Quadratic Response Surface (QRS) are 
often used in regions where an optima (or optimum) exists. 
For example, Timothy et al. [3] constructed QRS models 
for weight, thrust, and GLOW in aerospike design. Chiang 
and Chang [4] applied RSM to construct MVQP equations 
for  parametric optimization of a pin-fin heat sink. In their 
work, the QRS models for thermal resistance and pressure 
drop were constructed. Lepadatu [5] optimized a 
springback in a bending process by applying the QRS 
model; the springback was related to the die corner radius 
and the tool clearance. 

In the current work, the multi-variable quadratic 
polynomial equations are written in the conventional 
summation form as, 
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 Here y is the response or output of the system, xi and xj 
are the input factors/design variables, 0β

 
is the intercept 

and 2,1β
 
and ijβ

 
are the coefficients of the MVQP of the 

first and second orders, respectively.  
When constructed, the MVQP equation is applied to the 

design optimization task. Various techniques have been 
used to obtain the optimal response point. Chiang [6] 
minimized QRS models of thermal resistance and pressure 
drop by a Sequential Approximation Optimization (SAO). 
Adinarayana [7] solved the QRS optimization by means of 
multi-stage, Monte-Carlo for the critical medium 
components, of maximum alkaline protease1 production. 
Gangadharan [8] considered the optimum level of the alpha 
amylase production2 by bacillus amyloliquefaction using 
the Box-Behnken design3. Shyy [9] used artificial neural 
network techniques to enhance the QRS models for rocket 
engine trajectory predictions. Here the rocket injector 
optimization problem was solved using the Generalized 

                                                            
1 Protease is any enzyme that conducts proteolysis; that is, initiates 

protein catabolism by hydrolysis of the peptide bonds liniking amino acids 
together in a polypeptide chain. Cf. en.wikipedia.org/wiki/Protease 

2 A-amylase is a major form of amylase found in humans; it can cut 
alpha-bonds in large sugar molecules. 

3  These biological examples are given to substantiate its general 
applicability in science and technology. 

Reduced Gradient (GRG) method.   
The weakness of the existing optimization methods for 

solving the MVQP equations are their stochastic nature and 
high complexity. To alleviate these drawbacks, the present 
work proposes a design optimization methodology for 
multi-variable quadratic polynomial equation by means of 
artificial neural network, namely via the Hopfield network. 
The developed Hopfield Network (HN)-based design 
optimization constitutes a novel method that is relatively 
easy to implement, fast, and does not require a specific 
complex algorithm for solving the MVQP equation. 
Moreover, we demonstrate the ability of the HN method to 
solve MVQP-based design optimization problems; thus 
encompassing many types of engineering problems.  

The paper is organized as follows. Section II discusses 
the general optimization problem. We then describe the 
artificial neuron and the Hopfield neural network model in 
Sections III and IV respectively. Results from the HN-based 
design optimization and comparison against the Genetic 
Algorithm (GA) approach developed by Schreyer [10] are 
presented in Section V. Conclusion to date are given in 
Section VI. 

 
II. GENERAL OPTIMIZATION PROBLEM 

 
In the design optimization excercise, an optimization 

model is composed principally of three components: design 
variables or parameters, objective function, and constraints. 
Fundamentally, the optimal design problem is 
mathematically formulated as follows. For a single 
objective optimization: 
                                                        
Optimize,               y(X) 
 
subject to, 

h(X) = 0 
 

g(X) ≤ 0 
 

X l ≤ X ≤ X u 
 

Here y(X) is cast in the form of the MVQP equation. 
 

For many engineering and science problems, the 
process of design optimization begins by defining the input 
factors that are relevant for the system of interest. In the 
design optimization, the input factors are associated with 
the design variables (X). For specific design variables, 
system outputs are generated. Based on the relationship 
between design variables and system output, an objective 
function y(X) can be constructed. The function y(X) is either 
maximized or minimized (optimized), while satisfying 
applicable equality and inequality constraint functions h(x) 
and g(x); further, X is bounde by lower and upper limit 
values, Xl and Xu.     
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III. ARTIFICIAL NEURON AND HOPFIELD MODELS 
 
A biological neuron is idealized as a computational unit, 

as in Fig. 1, and connected to other neurons (synapses) and 
receives input via its input connections (dendrites).  A 
weighted sum of input signals (net value) is then compared 
to the threshold or a certain activation function. An output 
signal is transmitted via other synapses to other neurons. 

 
 
Fig. 2. Single artificial neuron with input and output 

connections. 
 
To mimic a biological neuron, its artificial counterpart 

performs similar functions; that is, it calculates a weighted 
sum of input signals (represented by Σ) and compares it 
against the activation function or a threshold (indicated by 
graphical interpretation), as shown in Fig 2.  

If the weighted sum of input signals (net) is above the 
threshold, a neuron will generate an output signal. The 
general neuron function can be expressed in conventional 
form as, 

 
net = wi xi + wb (2) 

 
 Here, xi is the neuron’s input, while wi and wb are the 
neural and bias weights. 

An output of neuron (o) is computed as,  
 

f(net)o =  (3) 
  
where f represents the activation function.  

 
The applicability of artificial neural networks (ANN) 

are not only limited to data classification and prediction but 
equally, it can be used to solve optimization problems. For 
example, Lee and Chen [11] applied the back-propagation 
neural network to solve a generalized design optimization 
problem. In this section, the recurrent type of ANN, the 
Hopfield Network (HN), is described and used to solve  
specific problems frequently found in RSM-based design 
optimization.  

The HN is illustrated in Fig. 3. The HN consists of a 

single layer neural network. The output of each neuron is 
fed back to the input, which is propagated to each neuron 
except itself. Therefore, no self feedback (dash line) is 
presented in the HN. Further, the HN constitutes a specific 
network with delayed dynamic flow of input data. The HN 
can be considered dynamic since the inputs are fed to the 
network and the HN will ‘run’ until it stabilizes. The HN 
can also be considered a network with delay because the 
input data are propagated through the recurrent feedback 
connections and given time is required for the network to 
stabilize. The stabilization of the HN ‘energy’ represents the 
optimal solution. 

 

   
Fig. 3. A representation of the Hopfield network. 

 
The general form of the HN is written in the indexed 

notation as follows, 
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Here inet  is the weighted sum of each neuron, ijw  is 

the neural weight associated with an output I,  of neuron j, 

jb  is the bias weight of each neuron, and ini
ix  is the 

initial input. 
For the HN, the so-called computational energy function 

is used to evaluate the stability of the system.  The 
principle is that a dynamic system should stabilize at some 
point and that this state of stability is identified by no 
further change in its energy state. The Lyapunov Energy 
Function is written as,  
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or in matrix form, 
 

BYWYYE t +−=
2
1  (6) 

 
Here iy  and Y  are the output and the output matrix 

respectivelly. 
The gradient of the energy function is then given as: 
 

BYYWWE t ++−=∇ )(
2
1  (7) 

 
If the weight matrix, W , is symmetrical and contains 

zeros along its diagonal, the energy equation reduces to,  
 

BYWYE +−=∇  (8) 
 
The change in energy is proportional to the gradient 

and the output is,  
 

YEE t Δ∇=Δ )(  (9) 
 
Substituting eq. (8) into eq. (9) gives: 

YBYYWYBYYWE tt Δ−−=Δ+−=Δ )()(  (10) 
 
or in the tensor form, 

iii

n

j
iij

t
ij ynetyybywE Δ=Δ−−=Δ ∑

=1

)(  (11) 

 
We note here that for HN, the optimal point is 

equivalent to no change in the energy state (ΔE=0). To 
facilitate considerations of constraints, a linear activation 
function is modified. A comparison of a simple linear to a 
modified linear activation functions is shown in Figs . 4 (a) 
and (b). 

 
 
 
 
 
 
 

 
(a)  (b)    

 
Fig. 4. The plot of (a) the linear activation function  

and (b) the modified linear activation function. 
 
To apply the HN for the optimization problem, the 

quadratic polynomial equation is first differentiated with 
respect to xi and then rearranged into a form, expressed by 

equation (6). In this way, the weight and bias sets of the HN 
are specified. An example and also an algorithm used for  
training the HN is given in section IV. 

 
IV. OPTIMIZATION RESULTS 

 
The HN optimization exercise for a quadratic model is 

performed by testing the following functions; first, 
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The second test function is,  
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The third test function is,  
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subject to, 1,,1 321 ≤≤− xxx   
 
The fourth test function is,  
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(15) 

subject to,   7.03.0 1 ≤≤ x ,      8.03.0 2 ≤≤ x , 
  35.015.0 3 ≤≤ x ,    5.25.0 4 ≤≤ x ,

 90.1220.10 5 ≤≤ x  
         

Note that the quadratic models available in literature 
were obtained by the technique, so called Response Surface 
Methodology (RSM) [1,2].  

The function expressed by eq. (12) is a quadratic 
polynomial test function with three independent variables 
(x1, x2, and x3). Lepadatu et al [5] proposed ae relationship 
between springback to a die’s corner radius (R) and tool 
clerance (C) in the quadratic form as written in eq. (13). 
The third equation originates from the bio-energy field. It 
presents the MVQP equation for the optimization of the 
hydrogen production [12]. Eq. (14) was constructed to 
account for process control conditions for hydrogen 
production. The rate of hydrogen production, 

constraint 

constraint
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),,( 321 xxxf , is written as the function of three factors: 
glucose (x1), Fe2+ (x2), and Mg2+ (x3). Finally, the natural 
length of a ‘cyclone’ [13] is described in terms of the 
MVQP equation and shown as eq. (15). The cyclone here is 
a fluid power system that moves and separates airborne 
solid particulate through flow channels. The natural length, 

),,,,,( 54321 xxxxxf , is written as the function of five 
factors: diameter (x1), height of the inlet (x2), width of the 
inlet (x3), difference of the cylinder and depth of the vortex 
finder (x4), and the logarithm of the Reynold number (x5). 
This problem is substantially more complex due to the 
increased number of input variables and constraints.  

To demonstrate the HN in the search for an optimal 
point, equation (12) is selected. As noted, we then first 
differentiate the second-order polynomial equation (12) 
with respect to x1, x2 ,and x3., respectively; 
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By rearranging eq. (16), the weight (W) and bias (B) 

matrices of the HN are specified, respectively, 
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Note that the first row of matrix W and B is the weight 

and bias of the fist neuron and so on. The HN algorithm for 
optimization is schematically shown in Fig. 5. A set of the 
initialzed inputs is used to compute the ‘energy function’ 
and the net (weighted sum) of each neuron in the HN. The 
output associated with each neuron is then fed back to the 
input. According to the use of modified linear activation 
function (see Fig. 4), the outputs defined by eq. (3) is 
directly proportional to the net. The HN will ‘run’ until a 
stable condition has reached (ΔE=0).  

A comparison of optimal values calculated by the HN 
and GA for each problem, are given in Tables I, II, III, and 
IV for eq. (12), (13), (14), and (15) respectivelly. 

 
TABLE I 

Optimal Results for eq. (12) 
Variables HN GA 

x1 -0.93150 0.010000 
x2  0.43840 0.373812 
x3 -1.35620 0.010000 

f(x1x2,x3,) -2.462 -0.4983 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. The HN training algorithm for the optimization. 

 
TABLE II 

Optimal Results for eq. (13) 
Variables HN GA 

R 2.823200 2.835000 
C 2.000000 2.000000 

f(R,C) 5.406 5.406 
 

TABLE III 
Optimal Results for eq. (14) 

Variables HN GA 
x1 0.4068 1 
x2 0.7175 0.597513 
x3 0.0143 2.21×10-8 

f(x1, x2, x3) 2.210 2.153 
 

TABLE IV 
Optimal Results for eq. (15) 

Variables HN GA 
x1 0.33900 0.7000 
x2 0.30000 0.3000 
x3 0.23510 0.2590 
x4 0.54180 2.5000 
x5 12.9000 12.900 

f(x1, x2, x3, x4, x5) 6.078 5.661 
 
Three-dimensional surface plots of each equation, 

together with the optimal results are illustrated in Fig. 5 for 
the both the GA and HN methods. In the figures shown, it is 
evident that the results calculated by the HN provide a 
comparatively optimal solution in contrast to application of 
the GA. In the research both GA and HN were initialized at 
the same initial location.  

and 

Initialize the HN input set (X) 

Compute Energy function, eq. (6) 

Compute the HN output matrix (Y) from 
)( BXXWY t −=  

Update Energy function, eq. (6), by 
replacing the matrix X by the matrix Y 

Is ΔE=0, eqs. (10) or (11) ? 

Outcome 

No 

Yes 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 5. The optimal surface plots for (a) eq. (12). (b) eq. (13), (c) eq. (14), and (d) eq. (15) computed by GA (left) and HN 

(right). 
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IV. CONCLUSIONS 
 
To support the anticipated application of compact heat 

exchangers for future advanced nuclear power plants, we  
presented the Hopfield Network (HN) method for 
optimization of Multi-Variable Quadratic Polynomial 
(MVQP) equation. This equation characterized design 
parameters and functional requirements of engineered 
components and have broadly been applied in science and 
technology. A modified linear activation fuction was 
proposed to facilitate modeling of the constraints of the 
system under design. 

The HN architecture was tested on four different 
reference quadratic functions, selected from available 
literature. The equations defined problems with two, three 
and five input variables. 

Further, a comparison was made between the HN and 
the GA. The optimal results revealed that the present 
approach appeared to perform better than the previous 
approach for all test functions. It is apparent that the HN-
based design optimization, is a method that is easier to 
implement, relatively faster, and one that does not require 
development of a complex algorithm for solving the MVQP 
optimization problem. Further, we found GA to be  
sensitive to the input initialization (different initial set of 
inputs give differnt optimal solutions), while this sensitivity 
was not encountered when using HN. While GA generally 
can find optima in a defined region (see Schreyers [10] for 
example) HN seems better suited to investigate a design 
parameter space. Obviously, this requires further work. 
Computing times for both GA and HN are on the order of 
minutes; each CFD simulation took many more hours. 

Finally, we note that the results presented here is part 
of a larger NGNP PCHE design optimization study and thus, 
still on-going . Further, we plan to extend HN-based 
optimization to higher order polynomial equations and to 
develop ta multilayer HN to serve as multi-objective 
optimizer. These results will be reported in the future. 
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NOMENCLATURE 

 
inet  weighted sum of inputs each neuron 

ijw  neural weights 

jb  bias weights of each neuron 

E Lyapunov Energy Function 
f Activation function 
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