

Adaptive Behavioral Control of Collaborative Robots
in Hazardous Environments

Abstract— Terrain exploration carries with it significant hazards.
Robots attempting to map a piece of unknown terrain must be
able to make decisions and react appropriately to dynamic and
potentially hostile conditions. However, because of constraints on
size and cost, robots may have limited ability to store and process
necessary information. In addition, knowledge discovered by
others may be difficult to share. This paper proposes a system
using a powerful master controller, operating from a safe
environment, directing the movements of numerous robots
exploring a piece of terrain. The master controller processes the
information from the robots, updates the decision process and
distributes these updates back to the robots. This process allows
for a cooperative, effective search environment while also
maintaining a small processing footprint. It also allows the robot
to employ adaptive, subsumptive behavioral modification as new
information is made available. A test simulation of a hazardous
environment demonstrates that even robots with little intrinsic
intelligence can learn complex behaviors in order to reach their
goal.

I. INTRODUCTION
For brevity’s sake, this paper will consider robots,

autonomous vehicles and software agents to have similar
characteristics and be classified using the term “robot”.

The process of robot learning proceeds as follows:
1. A robot ventures into an unknown space.
2. Within that space, the robot uses sensors to acquire

information about the space.
3. The robot takes that information and applies algorithms

to determine the best course of action.
4. Using actuators, the robot implements the action, then,

using sensors, evaluates the result.
5. The result is then assigned some utility value which the

robot uses to determine whether the action taken was
“good” or “bad”. “Good” results reinforce a given
action or behavior, while “bad” results do just the
opposite [1], [2].

A typical autonomous robot must manage a large array of
sensory information to determine its environment. Each
sensor provides some input about the world around the robot;
that input being incorporated into a knowledge base. From
this knowledge base, appropriate rules about actions taken in
response to input are generated. These rules allow the robot,
to interact with its surroundings in a way that hopefully
achieves some goal.

However, creating and maintaining these rules, as well as
gathering new data for the knowledge base poses significant
challenges [3], [4]. Processes such as advanced data mining

1 The authors are with the Department of Computer Science,
University of Idaho at Idaho Falls, Idaho Falls, ID 83402.
Email: kmccarty@ieee.org, misko@ieee.org

techniques for rule generation require significant computing
resources in order to store, search and manage large datasets,
which can be very computationally expensive. Putting such
resources at risk in a hostile environment can prove difficult
and costly. In addition, forcing each robot to carry such
resources internally means duplicating, perhaps unnecessarily,
expensive assets. However, the robot needs to be able to
process and act upon any new information from its
environment. Otherwise, the robot will have to rely on a static
set of rules which may be inadequate if the robot’s
circumstances change significantly. Algorithms for climbing
up stairs may do little good if the step or two is missing.
Routines for dealing with a threat such as a water obstacle
have little use when the water turns to ice. Without being able
to process and respond to new information, a robot loses its
ability to adapt.

There is also the issue that real-time computations using
adaptive behavioral techniques such as neural networks also
impose significant amounts of memory and processing power.
Such constraints may serve to greatly limit either the
operational effectiveness of a robot.

Finally there is the matter of robot size. Putting significant
computing resources on a robot requires both power and a
certain minimal size constraint, which may be too large to
allow a robot to operate effectively.

There are other practical matters as well. Many robots have
the potential to explore an area more quickly and more
thoroughly than one [5], [6], [7]. In addition, losing an
inexpensive robot to a hazard is much preferable to losing an
expensive one; particularly if, in the case of an inexpensive
robot, there are replacement robots nearby that can be directed
to take its place.

This paper is organized as follows: Section II will present a
problem statement. Section III describes the steps of this
approach. Section IV will look at software used to run the
simulation and its results. Section V will present conclusions
and future work.

II. PROBLEM STATEMENT

Consider the example of a chemical spill. Toxic waste
accumulates in a storm drain. Robots are sent in to assess the
extent of the contamination by finding, obtaining, and
returning with chemical samples.

 While robots can be prepared for many things, it would be
extremely difficult and very expensive to attempt to prepare
them for everything. In a storm drain there might be rodents,
insects, debris and hazards associated with the shape of the
cavity or how it was constructed. Hence, the ability to adapt
and make good decisions with new information is extremely
important.

Kevin McCarty, Member IEEE, Milos Manic, Sr. Member IEEE1

A number of solutions have been proposed to address this
problem, including the use of cooperative clusters of
autonomous robots [6] which switch between modes ranging
from highly cooperative to loosely cooperative, depending
upon the situation. There are also human and robot
cooperative teams which utilize key performance parameters
combined with supervisory human intelligence to direct the
behaviors of robot clusters [5].

There are also techniques to direct the actions of multiple
robots working in concert [8], such as factory assembly line or
multi-robot system, through the use of a central controller [9]
or employing sophisticated genetic or other adaptive
algorithms [10]. Behavioral subsumption architectures and
evolutionary algorithms have also been used to implement
adaptive, cooperative behavior among autonomous units [2],
[11].

These techniques, however, have limitations in trying to
implement cooperative, adaptive, autonomous behavior in
dynamic environments for the following reasons:

1. In the case of cooperative clusters and robots working
in concert, the actions of each robot are specialized.
The loss of any one robot may mean serious
degradation the capabilities of the overall system.

2. Adaptive architectures are localized; hence information
from robots that might be beneficial to the overall
function of the group may not be easily assimilated or
shareable.

3. Updating key performance parameters, behavioral
modifications and other autonomous functions depends
upon human interpretation of input data along with
human initiated interaction and supervision. Human
intelligence is often unable to perform timely analysis
and mistake-free interaction and hence is limited in its
ability to make the necessary adjustments.

4. In all the above configurations, a robot’s ability to
incorporate and analyze large datasets and quickly
propagate the results to the group may be limited by its
intrinsic hardware.

5. Real-time solutions may be beyond a given robot’s
computational capacity.

Advanced data mining techniques [12] have been shown to
be very successful in determining predictive behavioral
models as well as finding hidden patterns and associations in
data. Prior research [1], [7], demonstrates the effectiveness of
multiple robots working together and sharing knowledge. By
combing the intrinsic power of data mining with the
cooperative capabilities of clusters of exploring robots a very
powerful system for data gathering, analysis and real-time
behavioral adaptations is possible.

This paper presents a practical implementation that, instead
of relying on expensive, highly intelligent and capable robots,
uses the cooperative efforts of a cluster of smaller, cheaper
robots and a powerful central controller. Throughout the
example, the robots possess no real intelligence. Instead, they
sense their environment and collectively learn what to do
about it through basic trial and error. A central controller
takes the information accumulated, analyzes it, creates new
models of behavior and distributes them to the robots. By
letting the robots work cooperatively and exchange

information via a central controller located safely away from
the zone of exploration, there are a number of benefits:

1. Robots can have a much smaller footprint and be
produced much more cheaply. This would allow
exploration of areas deemed too hazardous or otherwise
impractical for larger, more expensive robots.

2. Robots could be “sacrificed” more readily to discover
unknown hazards and obstacles.

3. Information gained from “sacrificing” a robot could be
transmitted to the controller and passed out in real-time
to nearby robots along with instructions for dealing
with the hazard.

4. Exploration could be done over larger areas with less
power usage and time than otherwise.

5. Each robot benefits from the experiences of all the
others and their movements can be coordinated as
needed.

6. Such a “trial and error” approach can serve to uncover
previously unknown hazards and behaviors to counter
them. Human experimentation is also made easier as
“mistakes” are less costly.

Consider a hazardous environment consisting of a small
drainpipe. A chemical spill has occurred and some chemical
has run down the drainpipe; but the extent of the
contamination is not known. Massive cleanup operations can
be very dangerous if the type and extent of the contamination
is not known. It can also be very costly and should be
undertaken only if absolutely necessary. The contaminated
pipe contains unknown hazards such as debris and live rodents
and its design is uneven so there are small ledges or trenches.

In order to determine whether the expense of a costly
cleanup operation is necessary and where contaminants exists
the robots must take samples inside the pipe and return them
to a sampling station for analysis.

A software simulation of the environment pits an array of
robots against a number of hazards, rodents, debris and ledges,
along with chemical samples as shown in Fig. 1.

Fig. 1. Robots and hazards in a chemical spill

Any of these hazards can disable or “kill” the robot. The
robot’s goal is to find, and collect a sample and return it to a
sampling station. In order for this to occur the robot must first
explore the environment and then must keep alive long enough
to reach its goal. It does this through intelligent application of

built-in rules in response to its surroundings. Hazards must be
identified and countered effectively; otherwise the robot
becomes disabled and counted as a casualty.

Now consider a new type of collaborative effort using an
array of robots, each with an array of behaviors, but no idea
how best to employ them. The collective knowledge base is
initially empty and rules are applied randomly. Somehow the
robots must be able to learn what to do in the right situation in
order to reach the gold. But many may “die”, or become
disabled, in the attempt. However, by collectively pooling
their experiences and utilizing a central controller (CC) with
vast processing power and storage, the survivors will, over
time, become more intelligent and better able to adapt and
respond to the hazards they face. Even the robots that are
unsuccessful and “die” add to the knowledge base through
negative reinforcement. The knowledge is then used to
develop ever more complex and appropriate behaviors.

III. COOPERATIVE ALGORITHM

Pseudocode for the Hazardous Environment Simulation
algorithm is as follows:

HazardousWorldExplore

CentralController cc;
while Chemical Sample Amount is below sufficient
quantity and there are still Robots alive
 foreach Robot r in RobotArmy

GatherSensorData
 AnalyzeData to determine situation
 Make a decision
 Do an action
 Calculate utility based upon results
 if Robot is still alive
 Update Robot utility
 Central controller adjusts behaviors rules
 Propagate new rules to all Robots

End HazardousWorldExplore

The algorithm is implemented in the following steps:

Step 1: Robot explores environment and gathers data.
The robot starts by exploring its environment. From this

exploration it receives sensory data which is passed to the CC.
For a given collection of robots R, each with N sensors, let ri
be a given sensor input and Ri be the collection of all the
sensors for a given robot. An individual robot r creates an
interpretation rint by summing the collective input from its
sensors:

 1

where rint is the resulting interpretation. For example, in the
hazardous world simulation, the robot, using a combination of
light, camera and ultra-sonic sensors could determine the next
space is a pit or an obstacle such as a boulder.

Step 2: Robot makes a decision.

The interpretation is fed into a function fdec to determine the
appropriate course of action. fdec is the controller supplied
function that dictates robot behavior.

ract = fdec(rintpr) (2)

Step 3: Robot acts on the environment and records the

results.
Once a decision is made, the robot acts upon its

environment using one of the many responses at its disposal.
That action has consequences, which are recorded. Let rc be a
given consequence from a given action ract.

Step 4: Data communication from robot to central

controller.
Each robot then relays its data to the central controller (CC).

The data include the environment, or situation the robot faced,
renv, the action or actions it took, ract, and the consequences
resulting from the action or actions, rc. Some assumptions
may also be implicit, such as if the robot stops transmitting,
the CC will assume the robot has stopped functioning.

Step 5: Data gathering, transformation and analysis by

the CC.
The central controller gathers, processes, and transforms the

data for import into its knowledge base.

, , (3)

 Because the CC is far more powerful than the robots

themselves, it has the capability to do sophisticated analysis of
all the data. Part of that analysis involves determining the
appropriate utility for a given result. The CC takes a look at a
given 3-tuple of environment/situation, action and result,
assigning a utility ui to measure the effectiveness of a given
robot’s behavior.

ui = fut(renv, ract, rc) (4)

As described in Section I, the learning process involves not

just analyzing the data but also modifying the robot behavior
in such a way as to encourage successful actions and
discourage unsuccessful ones. In the Hazardous Environment
Simulation successful actions generate positive utility while
unsuccessful actions generate negative utility. The CC looks
at the results of an action and must decide whether that action
is appropriate based upon the results and adjust robot behavior
accordingly. A common technique for doing this is called Q-
Learning [13], [14]. Given a state space S and set of actions
A, Q-Learning is designed to “teach” a robot the most
appropriate behaviors through application of both positive and
negative reinforcement.

Application of a learning function Qi, over a state si, action
ai with a utility ui generates a state table which can be
incorporated with the existing state table sti to generate new
table sti+1

 , (5)

By applying advanced data mining techniques (ADMT),
such as a neural network classifier, k-means clustering
algorithm, or decision tree generation algorithm such as C4.5,
the new state table in the knowledge base produces an updated
set of rules B.

ADMT(sti+1) => {B} (6)

Step 6: Behavior modification via new rule creation.
Once the analysis is complete, the central controller must

adapt the behavior of the robots accordingly. The new {B} is
then transformed by the CC into a new behavioral function,
fdec.

Step 7: New behavioral function transmission by CC to

robots.
The robots receive the new behavioral function fdec,

replacing the existing one and proceed back to step #1.

IV. HAZARDOUS ENVIRONMENT SIMULATION TEST EXAMPLE
The Hazardous Environment Simulation is a software

simulation pitting software robots against rodents and other
hazards. The goal for the robots is to find and collect
chemical samples and return them to base. Along the way,
they must confront and learn to overcome a variety of hazards
both in order to get the samples as well as make it back to
base.

The robots are equipped with a number of primitive
behaviors:

1. Move forward from space to space.
2. Use the electric prod
3. Jump over a space.
4. Go around a space.
5. Collect a sample.
6. Return back to base to drop off samples or recharge the

prod.
7. Avoidance behavior to stay clear of other robots or

rodents
In order to make the environment more challenging there
are also some complex, subsumptive behaviors required:
1. Robots prods only have 3 charges, so once they are out

of charges, they won’t be able to use the prod until they
return to base and get recharged. Therefore, when
number of charges reaches zero, the robot must employ
a subsumptive decision matrix, override normal
operations in order to return to base and recharge.

2. Robots can carry as many samples as they want, but
they must return the samples to base in order to get
credit. Again, subsumptive behavior applies as the
robot must return the samples to the sample station.

The environment of the Hazardous World Simulation

consists of the following:
1. The rodent. In order to “kill” the rodent, the robot must

zap it with its prod or avoid it altogether. Otherwise,
the robot gets eaten and dies.

2. The pit. Uneven construction means there are drop-offs
to ensnare the robot. In order to defeat the pit the robot
must jump over it or go around it or try to avoid it. If

the robot moves forward or tries to “collect” it, the
robot will fall down and die.

3. The boulder. In the environment, debris collects in
mounds like a boulder. In order to defeat the boulder
the robot must go around it or avoid it or move it aside
using the prod. Attempting any other action means
getting tangled up in the mess and being disabled.

4. The chemical sample. Any action other than a collect
loses the sample.

5. The empty space. The robot must move forward onto
the empty space.

6. Other robots. The robot must avoid them or it risks
disabling them both.

Adding one further challenge for the robots is that for each
situation there are multiple behaviors that can address it. It is
important that the robot learn to maximize its utility by not
only doing the right thing, but also doing the most appropriate
thing. Jumping over a pit is better than going around it,
though both are valid. Going around a boulder is better than
avoiding it.

Finally the robot must be careful and survive. Chemical
samples should be returned to base or they will be lost if the
robot dies. Because the robot only receives a limited number
of charges with which to zap rodents, it must learn to return
for more or risk being without any charges when a rodent
comes along.

Test Case 1- Individual situations
Each of the Hazardous Environment World situations was

tested individually to see how quickly the robots would learn
the appropriate behavior. The overall results are displayed in
Fig. 2.

Fig. 2. Overall results of individual simulation situations

Measurements were taken of robot performance every 50
iterations. At first, the actions taken were essentially random,
but as the utility was determined for each outcome and the
knowledge base increased, the overall success rate for the
robots increased significantly. Fig. 2 shows a gradual
improvement in overall robot actions as they acquired new
knowledge and learned to apply that new knowledge

successfully. This is more clearly demonstrated by the graph
in Fig. 3 which shows individual iteration success rates
improve rapidly as new experience is gained. Prior experience
provides new, more effective and accurate basis for
subsequent decision making. In all instances, performance in
the final iterations was significantly better than in the first,
with success rates improving to near 100% in cases.

Fig. 3. Success rates, iteration by iteration

In some cases, however, success rates were achieved at a

much slower pace. This was due to a utility dilution from a
number of “good” but not “best” outcomes generated. In these
cases, the robot was able to generate positive utility, but the
utility was less than desirable. The test algorithm used does
not distinguish between the any given behavior, but rather
encourages behavior to the degree utility is affected. As a
result, “good” behaviors are encouraged to a lesser degree, but
encouraged nonetheless. While still increasing utility, this
dampens the desired successful score and ability to recognize
the best course of action.

Test Case 2 - Random Encounters

In the Hazardous Environment Simulation, the robots begin

exploring the simulation looking for samples. A randomizer
generates various hazards which the robot must successfully
overcome. Fig. 4 shows how, over time, the central controller
is able to “learn” the best actions to overcome any given
obstacle, even those actions, such as going back to base to get
missiles or drop off samples, which are combinations of
primitive moves. By the end of the 2000 iterations, the
success rate has moved from under 50% to over 90%.

 Fig. 4. Comparison of robot moves, Bad, Good, Best, during the simulation

Over time, as demonstrated by the graph, the Robots

became much more successful in surviving the various
hazards they encountered. Fig. 5 shows that, despite a number
of alternative behaviors that lead to robot casualties, and a
limited supply of charges, the robots were able to learn what
to do in order to turn the tide against the rampaging rodents
and even figure out how to pick up and return samples at the
end. One interesting result was the long time it took for the
robots to learn to collect and return samples. This behavior
took much longer to learn than the use and recharging of the
prod. The reason was the algorithm’s applying significant
negative reinforcement for rodent encounters, often resulting
in robot casualties, while failing to do so for lost samples,
which merely resulted in lost opportunity. These results
demonstrate how much more effective a combination of
positive and negative reinforcement can be over an approach
that relies upon positive or negative reinforcement alone.

 Fig. 5. Comparison of casualties, Robot vs. Rodent and Samples Collected

The results from the Hazardous Environment Simulation
test examples demonstrate that cooperative learning can
achieve very fast behavioral adaptations, even if the individual
robots have no intrinsic behavioral intelligence to begin with.
Throughout the entire simulation, the robots never possessed

any preprogrammed rules for how to behave except those
provided by the central controller. Random attempts to find a
solution resulted in a number of early losses, but the
information gained by the central controller allowed the
remaining robots to more than make up for those losses.
Despite initial random behavior, the controller was able to
quickly learn how to best play the game through positive and
negative reinforcement and pass that information along to the
robots so they could achieve their goal.

IV. CONCLUSIONS AND FUTURE WORK
The Hazardous Environment Simulation test example shows

that use of a central controller to analyze inputs and create
rules for behavior can allow even unintelligent robots to
interact successfully and incrementally improve their
performance across a variety of unknown situations if given
enough time and resources to explore available options. A
central controller with an already existing knowledge base and
adaptive algorithms will serve to increase the robots’ adaptive
capabilities even further.

The overall configuration allowed the robots to take
advantage of central controller’s greater processing capability
while the CC took advantage of the robots’ ability to explore
collectively and across a wide area. Despite having no initial
knowledge base, the CC was able to gather and assess enough
information to create a working and improving knowledge
base very quickly and adapt robot behavior successfully. For
the robots, despite no intrinsic intelligence from beginning to
end, they were able to “learn” from the central controller how
to successfully overcome a series of hazards and defeat the
rodents. Initial losses were significant in the beginning but the
robots eventually were able to obtain their respective goals
and win the simulation.

Much research exists [2], [7], [10], describing advanced
techniques for implementing adaptive behavior in robots.
Future work consists of employing one or more behavioral
techniques such as particle swarm optimizations to better
direct robot behavior autonomously without requiring massive
computing power. Advanced data mining techniques such as
neural networks and evolutionary algorithms will also help the
central controller to more quickly discover suitable adaptive
behaviors for the robots. Another approach using fuzzy type 2
constructs, such as those described in CoFuH-DT [15], could
prove useful in deriving contextual rules to drive robot
behavior under more specific and overriding conditions.

REFERENCES
[1] T. Umetani, Y Mae, K. Inoue, T. Arai, Adaptive Relocation of

Environment-Attached Storage Devices for Effective Knowledge-Sharing
among Multiple Robots, IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, July 2001.

[2] H. Liu, H. Iba, Multi-Agent Learning by Evolutionary Subsumption,
IEEE International Conference on Evolutionary Computation, Dec.
2003.

[3] M. Dai, Y. Huang, Data Mining Used in Rule Design for Active
Database Systems; 4th International Conference on Fuzzy Systems and
Knowledge Discovery, June 2007.

[4] National Institute of Standards and Technology. "Tests Check Out
Rescue Robots' Life-saving Vision." ScienceDaily 12 June 2008. 7
December 2008 <http://www.sciencedaily.com
/releases/2008/06/080612100442.htm>.

[5] J. W. Crandall, M. L. Cumming, Identify Predictive Metrics for
Supervisory Control of Multiple Robots, IEEE Transactions on Robotics,
Oct. 2007.

[6] T. Fujita, H. Kimura, Tight Cooperative Working System by Multiple
Robots, IEEE International Conference on Intelligent Robots and
Systems, Oct. 1998.

[7] N. Kubota, M. Mihara, Multi-Objective Behavior Coordination of
Multiple Robots Interacting with a Dynamic Environment, IEEE
International Conference on Fuzzy Systems, March 2003.

[8] S. Akella, S. Hutchinson, Coordinating the Motions of Multiple Robots
with Specified Trajectories, IEEE International Conference on Robotics
and Automation, May 2002.

[9] C.K. Tsai, Multiple Robot Coordination and Planning, IEEE
International Conference on Robotics and Automation, April 1991.

[10] X. Ma, Q. Zhang, Y. Li, Genetic Algorithm Based Multi-Robot
Cooperative Exploration, IEEE International Conference on Control and
Automation, June 2007.

[11] A. Rodrigues Neto, G. de Campos, J. de Souza, M. Roisenberg, V.
Marques, Autonomous Agents and Subsumption as Models for
Simulations of Population Dynamics, IEEE International Conference on
Machine Learning and Cybernetics, July 2008.

[12] J. Han, M. Kamber; Data Mining Concepts and Techniques, 2nd Ed,
Morgan Kaufmann Publishers, 2006.

[13] S. Chen, H. Wu, X. Han, L. Xiao, Multi-Step Truncated Q Learning
Algorithm, IEEE International Conference on Machine Learning and
Cybernetics, August 2005

[14] Y. Yang; Y. Tian, H. Mei, Cooperative Q Learning Based on
Blackboard Architecture, International Conference on Computational
Intelligence and Security Workshops, Dec. 2007

[15] K. McCarty, M. Manic; Contextual Fuzzy Type-2 Hierarchies for
Decision Trees (CoFuH-DT) – An Accelerated Data Mining Technique;
IEEE International Conference on Human System Interaction, May
2008.

