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Abstract— Terrain exploration carries with it significant hazards.  
Robots attempting to map a piece of unknown terrain must be 
able to make decisions and react appropriately to dynamic and 
potentially hostile conditions.  However, because of constraints on 
size and cost, robots may have limited ability to store and process 
necessary information.  In addition, knowledge discovered by 
others may be difficult to share.  This paper proposes a system 
using a powerful master controller, operating from a safe 
environment, directing the movements of numerous robots 
exploring a piece of terrain.  The master controller processes the 
information from the robots, updates the decision process and 
distributes these updates back to the robots.  This process allows 
for a cooperative, effective search environment while also 
maintaining a small processing footprint.  It also allows the robot 
to employ adaptive, subsumptive behavioral modification as new 
information is made available.  A test simulation of a hazardous 
environment demonstrates that even robots with little intrinsic 
intelligence can learn complex behaviors in order to reach their 
goal. 
 

I. INTRODUCTION 
For brevity’s sake, this paper will consider robots, 

autonomous vehicles and software agents to have similar 
characteristics and be classified using the term “robot”. 

The process of robot learning proceeds as follows: 
1. A robot ventures into an unknown space. 
2. Within that space, the robot uses sensors to acquire 

information about the space. 
3. The robot takes that information and applies algorithms 

to determine the best course of action. 
4. Using actuators, the robot implements the action, then, 

using sensors, evaluates the result. 
5. The result is then assigned some utility value which the 

robot uses to determine whether the action taken was 
“good” or “bad”.  “Good” results reinforce a given 
action or behavior, while “bad” results do just the 
opposite [1], [2]. 

A typical autonomous robot must manage a large array of 
sensory information to determine its environment.  Each 
sensor provides some input about the world around the robot; 
that input being incorporated into a knowledge base.  From 
this knowledge base, appropriate rules about actions taken in 
response to input are generated.  These rules allow the robot, 
to interact with its surroundings in a way that hopefully 
achieves some goal. 

However, creating and maintaining these rules, as well as 
gathering new data for the knowledge base poses significant 
challenges [3], [4].  Processes such as advanced data mining 
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techniques for rule generation require significant computing 
resources in order to store, search and manage large datasets, 
which can be very computationally expensive.  Putting such 
resources at risk in a hostile environment can prove difficult 
and costly.  In addition, forcing each robot to carry such 
resources internally means duplicating, perhaps unnecessarily, 
expensive assets.  However, the robot needs to be able to 
process and act upon any new information from its 
environment.  Otherwise, the robot will have to rely on a static 
set of rules which may be inadequate if the robot’s 
circumstances change significantly.  Algorithms for climbing 
up stairs may do little good if the step or two is missing.  
Routines for dealing with a threat such as a water obstacle 
have little use when the water turns to ice.  Without being able 
to process and respond to new information, a robot loses its 
ability to adapt. 

There is also the issue that real-time computations using 
adaptive behavioral techniques such as neural networks also 
impose significant amounts of memory and processing power.  
Such constraints may serve to greatly limit either the 
operational effectiveness of a robot. 

Finally there is the matter of robot size.  Putting significant 
computing resources on a robot requires both power and a 
certain minimal size constraint, which may be too large to 
allow a robot to operate effectively. 

There are other practical matters as well.  Many robots have 
the potential to explore an area more quickly and more 
thoroughly than one [5], [6], [7].  In addition, losing an 
inexpensive robot to a hazard is much preferable to losing an 
expensive one; particularly if, in the case of an inexpensive 
robot, there are replacement robots nearby that can be directed 
to take its place. 

This paper is organized as follows: Section II will present a 
problem statement.  Section III describes the steps of this 
approach.  Section IV will look at software used to run the 
simulation and its results.  Section V will present conclusions 
and future work. 

 
II. PROBLEM STATEMENT 

Consider the example of a chemical spill.  Toxic waste 
accumulates in a storm drain.  Robots are sent in to assess the 
extent of the contamination by finding, obtaining, and 
returning with chemical samples. 

  While robots can be prepared for many things, it would be 
extremely difficult and very expensive to attempt to prepare 
them for everything.  In a storm drain there might be rodents, 
insects, debris and hazards associated with the shape of the 
cavity or how it was constructed.  Hence, the ability to adapt 
and make good decisions with new information is extremely 
important. 
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A number of solutions have been proposed to address this 
problem, including the use of cooperative clusters of 
autonomous robots [6] which switch between modes ranging 
from highly cooperative to loosely cooperative, depending 
upon the situation.  There are also human and robot 
cooperative teams which utilize key performance parameters 
combined with supervisory human intelligence to direct the 
behaviors of robot clusters [5]. 

There are also techniques to direct the actions of multiple 
robots working in concert [8], such as factory assembly line or 
multi-robot system, through the use of a central controller [9] 
or employing sophisticated genetic or other adaptive 
algorithms [10].  Behavioral subsumption architectures and 
evolutionary algorithms have also been used to implement 
adaptive, cooperative behavior among autonomous units [2], 
[11]. 

These techniques, however, have limitations in trying to 
implement cooperative, adaptive, autonomous behavior in 
dynamic environments for the following reasons: 

1. In the case of cooperative clusters and robots working 
in concert, the actions of each robot are specialized.  
The loss of any one robot may mean serious 
degradation the capabilities of the overall system. 

2. Adaptive architectures are localized; hence information 
from robots that might be beneficial to the overall 
function of the group may not be easily assimilated or 
shareable. 

3. Updating key performance parameters, behavioral 
modifications and other autonomous functions depends 
upon human interpretation of input data along with 
human initiated interaction and supervision.  Human 
intelligence is often unable to perform timely analysis 
and mistake-free interaction and hence is limited in its 
ability to make the necessary adjustments. 

4. In all the above configurations, a robot’s ability to 
incorporate and analyze large datasets and quickly 
propagate the results to the group may be limited by its 
intrinsic hardware. 

5. Real-time solutions may be beyond a given robot’s 
computational capacity. 

Advanced data mining techniques [12] have been shown to 
be very successful in determining predictive behavioral 
models as well as finding hidden patterns and associations in 
data.  Prior research [1], [7], demonstrates the effectiveness of 
multiple robots working together and sharing knowledge.  By 
combing the intrinsic power of data mining with the 
cooperative capabilities of clusters of exploring robots a very 
powerful system for data gathering, analysis and real-time 
behavioral adaptations is possible. 

This paper presents a practical implementation that, instead 
of relying on expensive, highly intelligent and capable robots, 
uses the cooperative efforts of a cluster of smaller, cheaper 
robots and a powerful central controller.  Throughout the 
example, the robots possess no real intelligence.  Instead, they 
sense their environment and collectively learn what to do 
about it through basic trial and error.  A central controller 
takes the information accumulated, analyzes it, creates new 
models of behavior and distributes them to the robots.  By 
letting the robots work cooperatively and exchange 

information via a central controller located safely away from 
the zone of exploration, there are a number of benefits: 

1. Robots can have a much smaller footprint and be 
produced much more cheaply.  This would allow 
exploration of areas deemed too hazardous or otherwise 
impractical for larger, more expensive robots. 

2. Robots could be “sacrificed” more readily to discover 
unknown hazards and obstacles. 

3. Information gained from “sacrificing” a robot could be 
transmitted to the controller and passed out in real-time 
to nearby robots along with instructions for dealing 
with the hazard. 

4. Exploration could be done over larger areas with less 
power usage and time than otherwise. 

5. Each robot benefits from the experiences of all the 
others and their movements can be coordinated as 
needed. 

6. Such a “trial and error” approach can serve to uncover 
previously unknown hazards and behaviors to counter 
them.  Human experimentation is also made easier as 
“mistakes” are less costly. 

Consider a hazardous environment consisting of a small 
drainpipe.  A chemical spill has occurred and some chemical 
has run down the drainpipe; but the extent of the 
contamination is not known.  Massive cleanup operations can 
be very dangerous if the type and extent of the contamination 
is not known.  It can also be very costly and should be 
undertaken only if absolutely necessary.  The contaminated 
pipe contains unknown hazards such as debris and live rodents 
and its design is uneven so there are small ledges or trenches. 

In order to determine whether the expense of a costly 
cleanup operation is necessary and where contaminants exists 
the robots must take samples inside the pipe and return them 
to a sampling station for analysis. 

A software simulation of the environment pits an array of 
robots against a number of hazards, rodents, debris and ledges, 
along with chemical samples as shown in Fig. 1. 
 

 
 

Fig. 1. Robots and hazards in a chemical spill 
 

Any of these hazards can disable or “kill” the robot.  The 
robot’s goal is to find, and collect a sample and return it to a 
sampling station.  In order for this to occur the robot must first 
explore the environment and then must keep alive long enough 
to reach its goal.  It does this through intelligent application of 



 

built-in rules in response to its surroundings.  Hazards must be 
identified and countered effectively; otherwise the robot 
becomes disabled and counted as a casualty. 

Now consider a new type of collaborative effort using an 
array of robots, each with an array of behaviors, but no idea 
how best to employ them.  The collective knowledge base is 
initially empty and rules are applied randomly.  Somehow the 
robots must be able to learn what to do in the right situation in 
order to reach the gold.  But many may “die”, or become 
disabled, in the attempt.  However, by collectively pooling 
their experiences and utilizing a central controller (CC) with 
vast processing power and storage, the survivors will, over 
time, become more intelligent and better able to adapt and 
respond to the hazards they face.  Even the robots that are 
unsuccessful and “die” add to the knowledge base through 
negative reinforcement.  The knowledge is then used to 
develop ever more complex and appropriate behaviors. 

 
III. COOPERATIVE ALGORITHM 

Pseudocode for the Hazardous Environment Simulation 
algorithm is as follows: 
 
HazardousWorldExplore 

CentralController cc; 
while Chemical Sample Amount is below sufficient                                               
quantity and there are still Robots alive  
    foreach Robot r in RobotArmy 

GatherSensorData 
  AnalyzeData to determine situation 
   Make a decision 
   Do an action   
   Calculate utility based upon results 
     if Robot is still alive 
         Update Robot utility 
     Central controller adjusts behaviors rules 
     Propagate new rules to all Robots   

End HazardousWorldExplore 
 

The algorithm is implemented in the following steps: 
 
Step 1: Robot explores environment and gathers data. 
The robot starts by exploring its environment.  From this 

exploration it receives sensory data which is passed to the CC.  
For a given collection of robots R, each with N sensors, let ri 
be a given sensor input and Ri be the collection of all the 
sensors for a given robot.  An individual robot r creates an 
interpretation rint by summing the collective input from its 
sensors: 

 

                                           1  

 
where rint is the resulting interpretation.  For example, in the 
hazardous world simulation, the robot, using a combination of 
light, camera and ultra-sonic sensors could determine the next 
space is a pit or an obstacle such as a boulder. 

 
Step 2: Robot makes a decision. 

The interpretation is fed into a function fdec to determine the 
appropriate course of action.  fdec is the controller supplied 
function that dictates robot behavior. 
 

ract = fdec(rintpr)     (2) 
 
Step 3: Robot acts on the environment and records the 

results. 
Once a decision is made, the robot acts upon its 

environment using one of the many responses at its disposal.  
That action has consequences, which are recorded.  Let rc be a 
given consequence from a given action ract. 

 
Step 4: Data communication from robot to central 

controller. 
Each robot then relays its data to the central controller (CC).  

The data include the environment, or situation the robot faced, 
renv, the action or actions it took, ract, and the consequences 
resulting from the action or actions, rc.  Some assumptions 
may also be implicit, such as if the robot stops transmitting, 
the CC will assume the robot has stopped functioning. 

 
Step 5: Data gathering, transformation and analysis by 

the CC. 
The central controller gathers, processes, and transforms the 

data for import into its knowledge base. 
 

, ,      (3) 
 
  Because the CC is far more powerful than the robots 

themselves, it has the capability to do sophisticated analysis of 
all the data.  Part of that analysis involves determining the 
appropriate utility for a given result.  The CC takes a look at a 
given 3-tuple of environment/situation, action and result, 
assigning a utility ui to measure the effectiveness of a given 
robot’s behavior. 

 
ui = fut(renv, ract, rc)    (4) 

 
As described in Section I, the learning process involves not 

just analyzing the data but also modifying the robot behavior 
in such a way as to encourage successful actions and 
discourage unsuccessful ones.  In the Hazardous Environment 
Simulation successful actions generate positive utility while 
unsuccessful actions generate negative utility.  The CC looks 
at the results of an action and must decide whether that action 
is appropriate based upon the results and adjust robot behavior 
accordingly.  A common technique for doing this is called Q-
Learning [13], [14].  Given a state space S and set of actions 
A, Q-Learning is designed to “teach” a robot the most 
appropriate behaviors through application of both positive and 
negative reinforcement. 

Application of a learning function Qi, over a state si, action 
ai with a utility ui generates a state table which can be 
incorporated with the existing state table sti  to generate new 
table sti+1 

 
 ,        (5) 

 



 

By applying advanced data mining techniques (ADMT), 
such as a neural network classifier, k-means clustering 
algorithm, or decision tree generation algorithm such as C4.5, 
the new state table in the knowledge base produces an updated 
set of rules B. 

 
ADMT(sti+1) => {B}    (6) 

 
Step 6: Behavior modification via new rule creation. 
Once the analysis is complete, the central controller must 

adapt the behavior of the robots accordingly. The new {B} is 
then transformed by the CC into a new behavioral function, 
fdec. 

 
Step 7: New behavioral function transmission by CC to 

robots. 
The robots receive the new behavioral function fdec, 

replacing the existing one and proceed back to step #1. 
 

IV. HAZARDOUS ENVIRONMENT SIMULATION TEST EXAMPLE 
The Hazardous Environment Simulation is a software 

simulation pitting software robots against rodents and other 
hazards.  The goal for the robots is to find and collect 
chemical samples and return them to base.  Along the way, 
they must confront and learn to overcome a variety of hazards 
both in order to get the samples as well as make it back to 
base. 

The robots are equipped with a number of primitive 
behaviors: 

1. Move forward from space to space. 
2. Use the electric prod 
3. Jump over a space. 
4. Go around a space. 
5. Collect a sample. 
6. Return back to base to drop off samples or recharge the 

prod. 
7. Avoidance behavior to stay clear of other robots or 

rodents 
In order to make the environment more challenging there 
are also some complex, subsumptive behaviors required: 
1. Robots prods only have 3 charges, so once they are out 

of charges, they won’t be able to use the prod until they 
return to base and get recharged.  Therefore, when 
number of charges reaches zero, the robot must employ 
a subsumptive decision matrix, override normal 
operations in order to return to base and recharge. 

2. Robots can carry as many samples as they want, but 
they must return the samples to base in order to get 
credit.  Again, subsumptive behavior applies as the 
robot must return the samples to the sample station. 

 
The environment of the Hazardous World Simulation 

consists of the following: 
1. The rodent.  In order to “kill” the rodent, the robot must 

zap it with its prod or avoid it altogether.  Otherwise, 
the robot gets eaten and dies. 

2. The pit.  Uneven construction means there are drop-offs 
to ensnare the robot.  In order to defeat the pit the robot 
must jump over it or go around it or try to avoid it.  If 

the robot moves forward or tries to “collect” it, the 
robot will fall down and die. 

3. The boulder.  In the environment, debris collects in 
mounds like a boulder.  In order to defeat the boulder 
the robot must go around it or avoid it or move it aside 
using the prod.  Attempting any other action means 
getting tangled up in the mess and being disabled. 

4. The chemical sample.  Any action other than a collect 
loses the sample. 

5. The empty space.  The robot must move forward onto 
the empty space. 

6. Other robots.  The robot must avoid them or it risks 
disabling them both. 

Adding one further challenge for the robots is that for each 
situation there are multiple behaviors that can address it.  It is 
important that the robot learn to maximize its utility by not 
only doing the right thing, but also doing the most appropriate 
thing.  Jumping over a pit is better than going around it, 
though both are valid.  Going around a boulder is better than 
avoiding it. 

Finally the robot must be careful and survive.  Chemical 
samples should be returned to base or they will be lost if the 
robot dies.  Because the robot only receives a limited number 
of charges with which to zap rodents, it must learn to return 
for more or risk being without any charges when a rodent 
comes along. 

 
Test Case 1- Individual situations 
Each of the Hazardous Environment World situations was 

tested individually to see how quickly the robots would learn 
the appropriate behavior.  The overall results are displayed in 
Fig. 2. 
 

 
 

Fig. 2. Overall results of individual simulation situations 
 

Measurements were taken of robot performance every 50 
iterations.  At first, the actions taken were essentially random, 
but as the utility was determined for each outcome and the 
knowledge base increased, the overall success rate for the 
robots increased significantly.  Fig. 2 shows a gradual 
improvement in overall robot actions as they acquired new 
knowledge and learned to apply that new knowledge 



 

successfully.  This is more clearly demonstrated by the graph 
in Fig. 3 which shows individual iteration success rates 
improve rapidly as new experience is gained.  Prior experience 
provides new, more effective and accurate basis for 
subsequent decision making.  In all instances, performance in 
the final iterations was significantly better than in the first, 
with success rates improving to near 100% in cases. 

 

 
Fig. 3. Success rates, iteration by iteration  

 
In some cases, however, success rates were achieved at a 

much slower pace.  This was due to a utility dilution from a 
number of “good” but not “best” outcomes generated.  In these 
cases, the robot was able to generate positive utility, but the 
utility was less than desirable.  The test algorithm used does 
not distinguish between the any given behavior, but rather 
encourages behavior to the degree utility is affected.  As a 
result, “good” behaviors are encouraged to a lesser degree, but 
encouraged nonetheless.  While still increasing utility, this 
dampens the desired successful score and ability to recognize 
the best course of action. 

 
Test Case 2 -  Random Encounters 
 
In the Hazardous Environment Simulation, the robots begin 

exploring the simulation looking for samples.  A randomizer 
generates various hazards which the robot must successfully 
overcome.  Fig. 4 shows how, over time, the central controller 
is able to “learn” the best actions to overcome any given 
obstacle, even those actions, such as going back to base to get 
missiles or drop off samples, which are combinations of 
primitive moves.  By the end of the 2000 iterations, the 
success rate has moved from under 50% to over 90%. 

 
 

 
 Fig. 4. Comparison of robot moves, Bad, Good, Best, during the simulation 

 
Over time, as demonstrated by the graph, the Robots 

became much more successful in surviving the various 
hazards they encountered.  Fig. 5 shows that, despite a number 
of alternative behaviors that lead to robot casualties, and a 
limited supply of charges, the robots were able to learn what 
to do in order to turn the tide against the rampaging rodents 
and even figure out how to pick up and return samples at the 
end.  One interesting result was the long time it took for the 
robots to learn to collect and return samples.  This behavior 
took much longer to learn than the use and recharging of the 
prod.  The reason was the algorithm’s applying significant 
negative reinforcement for rodent encounters, often resulting 
in robot casualties, while failing to do so for lost samples, 
which merely resulted in lost opportunity.  These results 
demonstrate how much more effective a combination of 
positive and negative reinforcement can be over an approach 
that relies upon positive or negative reinforcement alone. 
 

 
 
 Fig. 5. Comparison of casualties, Robot vs. Rodent and Samples Collected 
 

The results from the Hazardous Environment Simulation 
test examples demonstrate that cooperative learning can 
achieve very fast behavioral adaptations, even if the individual 
robots have no intrinsic behavioral intelligence to begin with.  
Throughout the entire simulation, the robots never possessed 



 

any preprogrammed rules for how to behave except those 
provided by the central controller.  Random attempts to find a 
solution resulted in a number of early losses, but the 
information gained by the central controller allowed the 
remaining robots to more than make up for those losses. 
Despite initial random behavior, the controller was able to 
quickly learn how to best play the game through positive and 
negative reinforcement and pass that information along to the 
robots so they could achieve their goal. 
 

IV. CONCLUSIONS AND FUTURE WORK 
The Hazardous Environment Simulation test example shows 

that use of a central controller to analyze inputs and create 
rules for behavior can allow even unintelligent robots to 
interact successfully and incrementally improve their 
performance across a variety of unknown situations if given 
enough time and resources to explore available options.  A 
central controller with an already existing knowledge base and 
adaptive algorithms will serve to increase the robots’ adaptive 
capabilities even further. 

The overall configuration allowed the robots to take 
advantage of central controller’s greater processing capability 
while the CC took advantage of the robots’ ability to explore 
collectively and across a wide area.  Despite having no initial 
knowledge base, the CC was able to gather and assess enough 
information to create a working and improving knowledge 
base very quickly and adapt robot behavior successfully.  For 
the robots, despite no intrinsic intelligence from beginning to 
end, they were able to “learn” from the central controller how 
to successfully overcome a series of hazards and defeat the 
rodents.  Initial losses were significant in the beginning but the 
robots eventually were able to obtain their respective goals 
and win the simulation. 

Much research exists [2], [7], [10], describing advanced 
techniques for implementing adaptive behavior in robots. 
Future work consists of employing one or more behavioral 
techniques such as particle swarm optimizations to better 
direct robot behavior autonomously without requiring massive 
computing power.  Advanced data mining techniques such as 
neural networks and evolutionary algorithms will also help the 
central controller to more quickly discover suitable adaptive 
behaviors for the robots.  Another approach using fuzzy type 2 
constructs, such as those described in CoFuH-DT [15], could 
prove useful in deriving contextual rules to drive robot 
behavior under more specific and overriding conditions. 
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