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Abstract—Power consumption is often a major advantage of
optics. When access to power is limited, such as for a satellite
in geosynchronous orbit, power is often not only important, but
critically important. Satellites rely on power for motion control,
controlling yaw, pitch, and roll. An optical Fuzzy controller would
overcome the problem of limited power. This paper explores the
possibility of optical implementation of fuzzy logic for low-power
optical fuzzy controllers. Recent advances in optical logic have
suggested ways to overcome the problems that have plagued
that field for over 40 years. In this paper the authors overviews
recent advances in the optical implementation of Boolean logic
and explores whether these or similar technologies might feasibly
be applied to optical implementation of fuzzy logic. Specifically,
the authors examines whether fuzzy logic might be productively
implemented in an interferometric network in which weighting
is accomplished by optical phase shifting of mutually coherent
beams of light. This paper produces a optical fuzzy OR and
lays the foundation for other fuzzy operators based on an
interferometric network.

I. INTRODUCTION

A satellite in geosynchronous orbit around the earth is

controlled through adjustments of its yaw, pitch, and roll

[1]. A controller for satellites has limited power onboard and

is subject to radiation, and noise. For electronic controllers

both these represent problems, but for optical controllers these

problems can be easily overcome. Photons are fundamentally

different from electrons and are not susceptible to noise, heat,

and radiation as electrons are.

Fuzzy logic can be most readily applied to systems like

those of the satellite where information is inherently fuzzy.

Some applications of fuzzy logic are pattern recognition of

brain structures [2], fuzzy-logic schedulers [3] voter turnout

[4], software agent bidding strategies [5], financial predic-

tion/control [6] and many others. There are also many exam-

ples of optical fuzzy logic systems [7] - [13]. All these fuzzy

logic systems tend to be spatial, nonlinear, and have problems

with calculability.

Rethinking the way optics is used in optical logic implemen-

tations has led to a new logical paradigm. Can this new logical

paradigm be applied to optical fuzzy logic? Can the lessons

learned in Optical logic be applied to Fuzzy Controllers? This

paper explores the techniques used in optical logic and applies

them to the field of Fuzzy Logic.

II. FUZZY LOGIC

Fuzzy logic, introduced in 1965 by Lotfi A. Zadeh [14],

takes Boolean logic with its discreet domain {0,1} into a fuzzy

domain [0,1]. The fuzzy domain best represents the real world

where nothing is black and white. For example, let’s take a

look at temperature. Hot may be considered anything over

95 degrees Fahrenheit, but what about 94 degrees is that not

hot also, what about 93 degrees? Where do we draw the line

between warm and hot? In Boolean we have a crisp set which

has hot as anything over 95 degrees and as such we have 94

degrees as warm. In fuzzy logic we can say that 94 degrees

belongs to hot with a certain degree and also belongs to warm

with a certain degree. Figure (1) shows this relationship, a

temperature of 88 belongs to warm with a membership degree

of 0.36 as indicated by the lower dotted line of figure 1 and

to normal with a membership degree of 0.46 as indicated by

the upper dotted line of figure 1.
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Fig. 1. Fuzzy Temperature

III. FUZZY LOGIC OPERATIONS

Boolean logic has as its main logical operators :

• Conjunction : AND (Table I)

• Disjunction : OR (Table II)

• Complement : NOT (Table III)



A B AND

0 0 0
0 1 0
1 0 0
1 1 1

TABLE I
CONJUNCTION (AND) TRUTH TABLE

A B OR

0 0 0
0 1 1
1 0 1
1 1 1

TABLE II
DISJUNCTION (OR) TRUTH TABLE

A NOT A

0 1
1 0
0 1
1 0

TABLE III
COMPLEMENT (NOT) TRUTH TABLE

The operators in fuzzy logic as suggested by Zadeh [15]

are:

• Conjunction : minimum (A, B)(Table IV)

• Disjunction : maximum (A, B)(Table V)

• Complement : 1 - A (Table VI)

A B Min

0.2 0.3 0.2
0.2 0.8 0.2
0.7 0.3 0.3
0.7 0.8 0.7

TABLE IV
FUZZY CONJUNCTION (MIN) TRUTH TABLE

A B Max

0.2 0.3 0.3
0.2 0.8 0.8
0.7 0.3 0.7
0.7 0.8 0.8

TABLE V
FUZZY DISJUNCTION (MAX) TRUTH TABLE

Although Min and Max are the most frequently used logical

operators in fuzzy logic many more are used such as: sum,

bounded sum, winner takes all, weighted average for disjunc-

tion and product and bounded difference for intersection [16].

Any fuzzy operators must satisfy the following requirements

[16], for any a,b,d ∈ { x|x ∈ C,|x| ≤ 1}1:

• Boundary Conditions : u(a,0)= a;

A 1 - A

0.3 0.7
0.8 0.2
0.2 0.8

TABLE VI
FUZZY COMPLEMENT (1 - A) TRUTH TABLE

• Monotonicity : b ≤ d implies u(a,b) ≤ u(a, d);

• Commutativity : u(a,b) = u(b,a);

• Associativity : u(a, u(b, d)) = u(u(a,b), d).

IV. DIRECTED LOGIC: AN OVERVIEW

Any optical switch needs a controlling mechanism to switch

light from one path to another. A simple example would be a

Fredkin gate [17].

Fig. 2. Fredkin Element

The Fredkin gate (Figure 2) is similar to many other 2 X

2 switches in that the all three inputs, control, X, and Y, are

treated as logic inputs. This has been one of the problems that

optical logic has faced over the last 45 years. The control, in

optical switches, is often of a different type than that of the

remaining two logical inputs such as electrical or light with

a different polarization. An example of this problem can be

seen in several implementations of Fredkin [18] that have the

control in the electrical domain, while the remaining two logic

inputs are in the optical domain. In [19] all three inputs are

in the optical domain with the control input having a different

wavelength to the remaining two logic inputs. This has caused

problem with cascading logical terms, the output of the logical

operation would need to be converted to the same domain as

the control for the next logical operation. Directed logic still

uses the Fredkin gate, but in a restricted form where the control

and logic inputs are never interchanged. In order to still be able

to cascade logic functions directed logic [20] overcame this

problem by acknowledging that photons were fundamentally

different from electrons and by rethinking the way the logic

was done. Instead of cascading by chaining one logic operation

after another, nesting rather than chaining was proposed. This

nesting negated the problems of differing control and input

domains. It is analogous to infix notation rather than suffix

notation.



Directed logic circuits are networks of the restricted Fredkin

elements. Directed logic performs distributed parallel compu-

tation on a function and its negation, no single Fredkin element

performs a logical operation. The circuit as a whole performs

the logical function, this will be even more obvious when

cascading is introduced into directed logic. The term directed

logic actually refers to the nature of the architecture. Light

is ”directed” by the logical inputs switching the light to an

output such as OR or NOR. The operation of each element

is independent of the operation of the other elements in the

circuit. Computation of the logical function is performed only

by the circuit as a whole by directing the light to the correct

output. No single element within the circuit as a whole can

be identified as a sub-function. For a simple logical function

a circuit computes both the logical function and its inverse.

Thus, any circuit that computes AND (Figure 3) also computes

NAND.

A

B

A’

1

0

NAND

AND

0

0

Fig. 3. AND/NAND circuit

Directed logic is Boolean logic system where a ”False”,

Boolean 0, passes light directly through the switch with-

out switching. The pass is the identity operation, its output

is the same as its input. A ”True”, a Boolean 1 input,

switches light between paths. The switch negates its input.

The switch and the pass take only argument and are thus

monadic. A switching of input (1,0) is the same as a pass

of input (0,1), Switch(1, 0) = Pass(0, 1) = (0, 1). Simi-

larly, Switch(0, 1) = Pass(1, 0) = (1, 0), Switch(0, 0) =
Pass(0, 0) = (0, 0), and Switch(1, 1) = Pass(1, 1) = (1, 1).
If we interpret (1, 0) as “True” and (0, 1) as “False”, then

sequences of Switch and Pass can be used to calculate certain

Boolean functions on given arguments. We can compute

Boolean XOR and XNOR with a string of Switching and

Passing elements Figure 4.

The basic XOR/XNOR operation is one of the simpler

operations in directed logic. In order to compute XOR’s with

n operators requires only n elements. The XOR gate computes

XOR simply through the relationship of the number of even

Boolean 1s to an XOR ”True,” if there are an even number

of Boolean 1s then the XOR will return ”True.” If there are

an odd number of 1’s then the XNOR will return ”True.”

For example, to calculate XOR(v1, v2, ..., vn) requires the

Fig. 4. Simple XOR/XNOR computed with a series of directed logic elements

string of elements E1, E2, ...En where Ei is Pass if vi = 0
and Switch if vi = 1. In Figure 4 the flow of light through

the elements is directed by the control input v1,v2,...vn, E1

receives the input (1, 0) and thereafter the output of each

element is the input to the next.

The simple XOR/XNOR shown here does not allow for

cascading with other logical operators. For that reason when

XOR’s need to be cascaded another structure is used, figure 5.

The full XOR/NOR is more complex and can be understood

easier by taking a look at the other logic circuits such as the

OR/NOR.

Fig. 5. Fully Cascadable XOR/XNOR

The OR/NOR circuit depicted in Figure 6 starts with the

input vector (1,0).

A

B

A’

1

0

NOR

OR

0

0

Fig. 6. OR/NOR circuit in directed logic

The information signal, A, is introduced into the two

elements, A and A′. The input B activates the operation of

element B at the same time as input A. The output vector of

the initial element is split into its component scalars which



are then composed with other scalars to form new vectors

that serve as the inputs to subsequent elements. Although it

is tempting to see the intermediate scalars as Boolean values,

this should be resisted. In some instances both outputs of an

element will be 0. (This happens in the B element of Figure

6 when A = 0.) If these were true Boolean values, this would

amount to a violation of the law of excluded middle.

It is worth spending a bit of time understanding what is

going on in Figure 6. The output vector of the first A element

is split into two paths, it may be helpful to think of the top

path as the negative path and the bottom path as the positive

path. One of these two paths will carry the scalar 1, the other

will carry the scalar 0. In this sense the position of the scalar

1 carries the information of the value of A. If A is positive

(the scalar takes the bottom path), then it is switched to the

OR output line without the need to check the value of B. If,

on the other hand, A is negative, then it becomes necessary

to check the value of B. A negative result from B yields the

scalar 1 at NOR, a positive result sends it down to the second

A element. Since the scalar 1 only passes through B when A

is negative, it will be passed through the second A element to

the OR output. The reader should take the time to convince

himself that the 1 will always arrive at either OR or NOR

while the other will have a scalar 0. The extra 0 input at B

merely ensures that every path has either a 1 or a 0 scalar. It

should be reiterated here that the (1, 0) input vector elements

are maintained throughout the whole network and are merely

redirected.

For convenience, the switches in directed logic are discussed

in terms of the switch being a Mach-Zehnder interferometer

(MZI), but the results obtained have also been achieved in

silicon. The change of path length that switched the output

from one of two possible output paths were made by adjusting

either polarization or phase modulation in one arm of an MZI.

V. OPTICS BACKGROUND

In recent work in the optics field the old problem of how

to do logic in optics has been solved [20], [21]. In the past

optical logic implementations tried to mimic electronic logic

with optics. This failed because photons don’t behave the same

way as electrons. The main components used in the new op-

tical logic architecture were the Mach-Zehnder interferometer

(MZI) (figure 7) in bulk optics and the waveguide in its silicon

counterpart as a 2 x 2 switch.

The output was controlled by adjusting one arm of

the MZI/waveguide to change the path length in the

MZI/waveguide. The light is split by the first beam-splitter

with part of the light source being reflected to the top mirror

and part passing through on to the lower mirror. The two

light paths then pass through the top beam-splitter and emerge

through the two output paths. The input light is given by

amplitude A and a phase of θ, providing an input of Aeiθ .

In directed logic (section IV), an optical Boolean logic

architecture, only one of the light sources is generally used

and the output path is controlled by a π phase change along

one of the arms. In the case of A’ light is input at both inputs.

Fig. 7. Basic Mach-Zehnder Interferometer (MZI)

The A’ MZI is used to reintegrate the A and B MZIs to produce

an OR output. The A’ is the opposite to the A MZI as shown

is figure 6. The output of the light passing through the first

beam-splitter of figure 8 to the arm marked as (a) is given by

formula (1).

Beiψ√
2

+
Aeiθ+(π2 )

√
2

(1)

Fig. 8. Mach-Zehnder Interferometer (MZI)

The output of the light passing through the first beam-

splitter of figure 8 to the arm marked as (b) is given by formula

(2).

Aeiθ√
2

+
Beiψ+(π2 )

√
2

(2)

The portion of light that is split at the beam-splitter at 90

degrees has an addition of π/2 to the phase.

The light at position (a) in figure 8 then continues through

the second beam-splitter where it is combined with light at

position (b) in figure 8. The result is given by formula (3) and

(4) at positions (c) and (d) of figure 8.

Aeiψ√
2√
2

+

Aeiψ+(π)
√

2√
2

+

Be
iθ+( π

2
)

√
2√
2

+

Be
iθ+( π

2
)

√
2√
2

(3)



Beiψ√
2√
2

+

Beiψ+(π)
√

2√
2

+

Ae
iθ+( π

2
)

√
2√
2

+

Ae
iθ+( π

2
)

√
2√
2

(4)

The two light beams with phase A at position (c) represented

by formula (3) destructively interfere and the result of the light

sources with amplitude B is given by (e), which is the same

as the input, but with a π phase change.

Beiψ+(π) (5)

The two light beams with phase B at position (d), repre-

sented by formula (4), destructively interfere. The result of the

light sources with amplitude A is given by formula 6, which

is again the same as the input, but with a π phase change.

Aeiψ+(π) (6)

As can be seen the overall result is an unchanged amplitude

and an additional π change of the phase. If only one input

beam was entered the result would be only one output at

position (d) of figure 8.

These results are obtained with a zero phase change at (e) of

figure 8. If a π phase change was introduced at (e) of figure

8 with only one input of formula (7) our results would be

different.

Aeiψ (7)

Formula (1) of figure 8 would result in formula (8) and

formula (2) would result in formula (9).

Aeiψ+(π2 )

√
2

(8)

Aeiψ√
2

(9)

After passing through the final beam-splitter we have for-

mula (10) at position (c) of figure 8 and formula (11) at

position (d) of figure 8.

Beiψ+(π)
√

2√
2

+

Beiψ+(π)
√

2√
2

(10)

Be
iψ+( π

2
)

√
2√
2

+

Be
iψ+( 3π

2
)

√
2√
2

(11)

The light at position (d) of figure 8 destructively interferes

to zero leaving all the light at position (c) of figure 8. This

allows directed logic to switch on 1 (π) and pass light through

the MZI on zero.

VI. FUZZY DIRECTED LOGIC

This paper concentrates on producing an optical fuzzy logic

OR/NOR. Directed logic circuits produce OR and NOR in

one circuit along with the AND and NAND in one circuit.

The OR/NOR directed logic circuit Figure 6 made from three

Mach-Zehnder interferometers is shown in figure 9.

Fig. 9. Fuzzy OR/NOR circuit

Input A has a phase change of δ, B has a phase change

of ǫ and A’ has a phase change of ω. The A’ is a reverse

of A so ω = -δ. In directed logic a zero phase change on

one of the arms of an MZI is considered an input of Boolean

one and a π phase change is considered an input of Boolean

zero. Since Boolean logic is a subset of fuzzy logic where

inputs and outputs are restricted to {1,0} a fuzzy directed logic

implementation must also provide the same outputs for inputs

of {1,0}. The fuzzy values used in this implementation are

as multiples of π. For example, a phase change of π
2 is an

input of 0.5 and a phase change of π
4 is an input of 0.25. As

shown in section 4 whenever light is reflected at 90 degrees

a π
2 phase is added this type of directed logic switch. When

the light is passed directly through the beam-splitter no phase

change is added. When one arm of the MZI has an additional

phase change of δ, ω, or ǫ then these values are added to the

phase. The resultant formula of the calculations for the OR

output are given by formula 12. The calculation is simplified

by setting ”A” equal to 1 and θ to zero. The amplitude of the

output is then the sum of the cosine of each exponent of 12.

Aeiθ+
π
2 +ǫ + Aeiθ+

3π
2 +ǫ+ω + Aeiθ+

π
2 +δ+ǫ + Aeiθ+

3π
2 +δ

8

+
Aeiθ+

3π
2 +ǫ+ω+δ + Aeiθ+

5π
2 +ω + Aeiθ+

3π
2 + Aeiθ+

5π
2 +ω+δ

8

+
Aeiθ+

3π
2 +ω + Aeiθ+

3π
2 +ω+δ + Aeiθ+

3π
2 + Aeiθ+

π
2 +δ

4
(12)



The actual calculation is simplified by the fact that any term

without a δ, ω, or ǫ is a constant and because of the relationship

between δ and ω, i.e. ω = -δ. The formula for the NOR output

is given formula 13.

Aeiπ + Aeiπ+δ + Aeiπ+ǫ + Aeiπ+δ+ǫ

4
(13)

There is one other output for the OR

NOR directed logic circuit, the junk out, in Boolean directed

logic this output is always zero. This, however, may not be

the case in fuzzy directed logic. The formula for this output

is given by formula 14.

Aei
π
2 +ǫ + Aei

5π
2 +ω + Aei

π
2 +δ+ǫ + Aei

3π
2 + Aei

3π
2 +δ

8

+
Aei

3π
2 +ǫ+ω + Aei

3π
2 +δ+ǫ+ω + Aei

5π
2 +δ+ω

8

+
Aei

3π
2 + Aei

π
2 +δ + Aei

3π
2 +ω + Aei

π
2 +ω+δ

4
(14)

VII. ANALYSIS

The formula from 12 provides a means for calculating and

verifying the fuzzy OR outputs. The resultant fuzzy values, for

various inputs, can be seen in table VII and the surface plot for

these values can be seen in figure 10. Table VII shows that for

the Boolean inputs 0, 1 the fuzzy OR outputs are consistent

with Boolean logic. Since Boolean logic is a subset of fuzzy

logic it is important that Boolean logic holds in any fuzzy

operator. In addition the fuzzy OR operator must satisfy all

the requirements for a fuzzy operator; boundary conditions,

monotonicity, commutativity, and associativity.

Fuzzy A Fuzzy B Output

1 1 1
1 0 1
0 1 1
0 0 0

0.50 0.50 0.75
0.75 0.11 0.86

0 0.25 0.15
0.90 0.30 0.98
0.11 0.40 0.37
0.25 0.50 0.57
0.30 0.60 0.73
0.40 0.75 0.90
0.60 0 0.65

TABLE VII
FUZZY OR OUTPUTS

A. Boundary Conditions

Boundary conditions : u(a,0)= a

The boundary conditions state that if one input is zero

then the output is equal to the non zero input. Table VIII

shows the output values for {.25, 0},{.5, 0}, and {.75, 0}.

As can be seen the fuzzy OR gate does not agree with the
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Fig. 10. Fuzzy OR graph

given boundary condition. Here, the fuzzy OR over estimates

high input values and underestimates low input values. For

the half way point the boundary conditions are met in full.

There is, in the literature, other examples of weaker boundary

conditions [22].

Fuzzy A Fuzzy B Output

0.25 0 0.15
0.5 0 0.5
0.75 0 0.85

TABLE VIII
BOUNDARY CONDITIONS FUZZY OR

B. Monotonicity

monotonicity : b ≤ d implies u(a,b) ≤ u(a, d)

Monotonicity state that if b ≤ d than the disjunction of any

third value a, with b should also be less than the disjunction

of a with d. As table IX shows with a = .5, b = .25, and d =

.5 b ≤ d and the output u(a,b) = .57 is less than u(a,d) = .75.

A D B Output

0.5 0.5 0.75
0.5 0.25 0.57

TABLE IX
MONOTONICITY U(A,B), U(A,D) FUZZY OR

C. Commutativity

Commutativity : u(a,b) = u(b,a)

Commutativity states that the results from {a,b} should be

the same as {b,a}. Table X shows the outputs for a = .25 b

= .5 and a = .5 and b = .25. The outputs in both case are the

same. Table 9 also shows this with the Boolean values {1, 0}
and {0, 1}



A B Output

0.25 0.5 .57
0.5 0.25 .57

TABLE X
COMMUTATIVITY U(A,B), U(A,D) FUZZY OR

D. Associativity

Associativity : u(a, u(b, d)) = u(u(a,b), d)

Associativity states that A or (B or C) = (A or B) or C. To

show associativity in this case would require the investigation

of cascading. Directed uses a novel system of cascading that

requires its own explanation. Because of this cascading is

out of the scope of this paper and will be left for further

investigation.

The fuzzy OR operator satisfies all the requirements for a

fuzzy operator; boundary conditions, monotonicity, commu-

tativity, and associativity. These show that a fuzzy OR can

indeed be produced from the Boolean optical directed logic

circuit.

The graph for the NOR output is shown in figure 11, in this

case the Fuzzy NOR does appear to be the opposite to fuzzy

OR. There does appear to be an issue with fuzzy NOR as table

XI shows. Here the output for {1,1} is shown to be 0, which

is correct, but the output for {.5 .5} also is shown to be zero.

These two sets of inputs should not be the same and would

indicate a problem with fuzzy NOR. In Boolean directed logic

the junk out is ignored since it is unused. In fuzzy logic the

problem with fuzzy NOR would seem to indicate that this

junk out should not be ignored and reintegrated with the NOR.

Because no overall amplitude for the circuit can be lost the

NOR given by 1 - OR must be reflected in the junk out and

the NOR combined.
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Fig. 11. Fuzzy NOR graph

VIII. CONCLUSION

Directed logic is a low-power Boolean system of logic that

has extended Boolean logic from the electronic domain to

Fuzzy A Fuzzy B Output

1 1 0
1 0 0
0 1 0
0 0 1

0.50 0.50 0
0.75 0.11 0.08

0 0.25 0.85
0.90 0.30 0.04
0.11 0.40 0.55
0.25 0.50 0.25
0.30 0.60 0.08
0.40 0.75 0.94
0.60 0 0.34

TABLE XI
FUZZY NOR OUTPUTS

the optical domain. Although directed logic had its beginning

in the optical domain it can just as easy to implement in

electronics. This paper begins to extend optical directed logic

to include fuzzy logic. Initially, the research was aimed at

producing an fuzzy optical OR/NOR. The results, so far,

have indeed shown that optical Fuzzy logic using the directed

logic paradigm is indeed achievable. The research carried out

so far was unable to show fuzzy NOR. Directed logic has

three outputs per OR/NOR circuit. In Boolean logic only

two of these outputs are used, one provides the OR output

another provides the NOR output. The third output is a

junk out and is unused in Boolean logic. Further research

should be undertaken to study the nature of the junk output.

Reintegrating the junk out with the NOR output may produce

a fuzzy NOR gate. The directed logic AND/NAND gate and

other logic gates should also be investigated for application

to fuzzy logic. Once all the optical fuzzy logic gates are in

place a low-power optical fuzzy controller for satellite motion

control becomes practicable.
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