
 

Wireless Based Object Tracking Based on Neural Networks  
 

Kurt Derr Milos Manic 
Idaho National Laboratory Department of Computer Science 

2525 Freemont Avenue University of Idaho at Idaho Falls 
Idaho Falls, ID 83415, USA 1776 Science Center Dr., Ste.306 

derr5843@uidaho.edu Idaho Falls, ID 83402, USA 
Kurt.Derr@inl.gov misko@uidaho.edu 

 
Abstract— Location Based Services (LBS), context aware 

applications, and people and object tracking depend on the ability 
to locate mobile devices, also known as localization, in the wireless 
landscape. Localization enables a diverse set of applications that 
include, but are not limited to, vehicle guidance in an industrial 
environment, security monitoring, self-guided tours, personalized 
communications services, resource tracking, mobile commerce 
services, guiding emergency workers during fire emergencies, 
habitat monitoring, environmental surveillance, and receiving 
alerts.  

This paper presents a new neural network approach (LENSR) 
based on a competitive topological Counter Propagation Network 
(CPN) with k-nearest neighborhood vector mapping, for indoor 
location estimation based on received signal strength. The 
advantage of this approach is both speed and accuracy. The tested 
accuracy of the algorithm was 90.6% within 1 meter and 96.4% 
within 1.5 meters. Several approaches for location estimation 
using WLAN technology were reviewed for comparison of results. 

Keywords—RSS, localization, neural network, CPN, k-nearest 
neighbor, signature recognition, GPS. 

I.  INTRODUCTION 
Both indoor and outdoor location estimation is a significant 

problem posing serious technical challenges. Location 
estimation, also known as localization, concerns the 
positioning of mobile devices in some physical space. 
Although location estimation represents an active area of 
research, proposed solutions are generally cost prohibitive, 
inaccurate, or infeasible due to practical issues.  

GPS and wireless technologies are useful for determining 
location. Although GPS supports LBS, the number of mobile 
devices using GPS technology available in the marketplace 
today is limited. This is due to high cost, power requirements, 
and the inability to work in certain environments, such as 
indoors, underground, and in city canyons (an area of a city 
with narrow streets and high buildings) [1, 2]. 

This paper focuses on indoor location estimation from radio 
signal strength (RSS) values received by a mobile device with 
wireless (WiFi) capabilities as the device moves around an 
area of a building; e.g., a smart phone, personal digital 
assistant, equipment or packages with WiFi sensors, or a robot 
with WiFi capabilities. The ubiquity and low cost of 802.11 
technology makes localization based on wireless local area 
network (WLAN) technology a viable alternative to GPS,  

 
enhancing the value of the wireless network. 

The building has wireless access points (APs) acting as 
anchors deployed at various locations. First, a radio grid map 
is obtained offline. This way attenuation and reflection of 
signals in an urban environment is recorded as it is, resulting in 
both computational time savings and precision of recorded 
signals. The mobile device then estimates its position 
algorithmically using RSS values received from access points 
and the grid map. This is entirely a client-based system in that 
the mobile device does not send packets to a server in order to 
determine the location of the device. WiFi coverage of the 
complete area of interest is necessary for accurate location 
estimation. 

In this paper we present a new Counter Propagation neural 
Network (CPN) with k-Nearest Neighbor (k-NN) algorithm for 
location estimation using WiFi received signal strength. To the 
best of our knowledge this algorithmic approach has not been 
previously used for location estimation. The paper is organized 
as follows. Section 2 discusses related work, section 3 reviews 
the principles of mobile device location estimation, section 4 
describes the proposed CPN with k-NN algorithm, section 5 
presents test results computed in a MATLAB environment, and 
section 6 states our conclusions. 

II.  RELATED WORK 
Wireless localization schemes are generally categorized as 

deterministic or probabilistic [3]. The deterministic techniques 
are range or proximity based.  The range based approach uses 
the characteristics of the channel, such as Received Signal 
Strength (RSS), to find the distance from a mobile device to 
wireless access points. Alternatively RSS fingerprinting 
techniques may used to locate a mobile device in a building. 
Neural networks, specifically a generalized regression neural 
network, have been used as the pattern matching algorithm in 
geo-location systems [4]. 

The probabilistic technique [5,6,7,8,9] constructs a 
conditional probability distribution over some area of interest 
to determine the likelihood of a mobile device being at some 
position at a specific point in time. Probabilistic techniques are 
computationally more expensive than deterministic techniques 
but provide a higher degree of accuracy (90% within 2 meters 
[10]). 

Some examples of a wireless localization systems and 
techniques follow. These systems and techniques typically 
have an offline training phase and an online location 
determination phase [11]. Some location estimation techniques 
build a radio map in the offline phase that represents the RSS 
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values to each reachable AP from every location in the area of 
interest. A location estimation algorithm run on a mobile 
device requires a copy of the radio map. The advantage of 
running the algorithm on the mobile device is the preservation 
of user privacy and improved scalability. 

RADAR [12, 13] uses RSS measurements obtained from 
multiple locations to triangulate a user’s position in an area. An 
experimental radio map is built offline by taking measurements 
in all possible grid locations of the area of interest. The system 
performs both location estimation and user tracking to within 2 
to 3 meters of the actual location.  

The Clustering and Decision Tree-based [14] method 
(CADET) selects the set S of wireless access points that give 
the best performance for each location of a wireless area in the 
offline phase. The grid space is then partitioned into clusters 
and a decision tree is built for each cluster. In the online mode 
the RSS values from selected access points are used to 
determine which cluster and coarse location is associated with 
the device. Next, the decision tree for the identified cluster is 
evaluated resulting in a specific grid location.  The best 
accuracy of CADET is 83.4% within 1.5 meters. 

The Joint Clustering (JC) [10] technique uses clustering of 
location maps and probability distributions. A cluster, which 
represents a set of locations that shares a common set of access 
points, is calculated offline, as well as the joint probability 
distributions of the signal strength of different access points. 
During the online location estimation phase RSS values are 
acquired from some set of APs , which are used to determine 
the cluster to search for the probable location. The radio map 
and Baye’s theorem are used to determine the most probable 
user location within a cluster. The accuracy of this system is 
90% to within 7 feet. 

Uncertainty in RSS signal measurements can be modeled as 
fuzzy sets. [15] divides the area of interest into zones. A radio 
map is developed offline and is used to train the fuzzy 
inference system. There are six fuzzy sets for RSS: Excellent, 
Very Good, Good, Low, Very Low, and None. The degree of 
membership of a mobile device to a specific area is used to 
determine the location estimate, providing an accuracy of near 
90%.  

A generalized regression neural network (GRNN) is used for 
a pattern matching algorithm in [4]. A measured RSS value for 
each AP and the corresponding grid location in the radio map 
are inputs to the neural network during the training phase. The 
GRNN has one hidden layer, and an output layer 
corresponding to two neurons representing the x and y 
locations in the radio map. During the online phase a set of 
RSS values are input to the GRNN and the output is the 
estimated user’s location in x and y grid map coordinates. The 
maximum error between estimated and true positions for the 
test data was 43.2 meters. The location accuracy for the test 
data is 45% to within 5 meters.  

III. MOBILE DEVICE LOCATION ESTIMATION 
The approach to mobile device location estimation presented 

in this paper is based on a comparison of RSS signal vectors 
recorded by a mobile device and RSS vectors from a radio grid 
map. The radio grid map can be created offline in two ways. 
One way is either to have a person manually collect and record 
RSS signal strength values for each grid location, or to do this 
task automatically with a robot. With this approach, both 
precision (actual signal is recorded) and computational time 
savings are achieved (no analytic determination of attenuation 
and reflection is needed). Another way is the creation of a 
theoretical propagation model representing the RSS signal 
levels that are calculated for every location of the radio map 
based on propagation equations. For the sake of simplicity, the 
latter approach is taken in this paper. The effectiveness of the 
presented algorithm is the same regardless of the way in which 
the radio grid is created. The advantage of a recorded map is 
that complex, analytic modeling [16] of signal attenuation and 
reflection in an indoor environment can be effectively avoided, 
resulting in more correct, actual radio map. The use of a 
theoretical model allows the algorithm to be deployed in a new 
environment without having to physically acquire signal 
strength readings for building a radio map.  Alternatively, the 
radio map may be constructed by 1) manually recording RSS 
readings from access points in each designated grid location in 
the area of interest, or 2) using an autonomous vehicle/robot to 
collect signal strength information. The CPN with k-NN AP 
approach to location estimation is valid regardless of how the 
radio map is built. Locations and WiFi transmitters and 
receivers power are all that is needed to build the radio map. 
The APs are expected to be homogeneous; i.e., same 
transmitter power. Cable and connector losses are   omitted to 
simplify the model. The theoretical model is based on the 
following equations for received signal strength Rx and path 
loss Lp [17]: 

Rx = Tx – Lp               (1) 
 where Rx is received signal strength value. Tx is AP power 

in dB, and Lp is path loss, and 
Lp = 33dB + N * log10(D) + 20 * log10(f)                          (2) 
 where f is a frequency in gigahertz. N is a path loss 

exponent, and D is a distance in meters. 
Based on equations (1) and (2), for factory environment path 

loss and access point power (N = 5.5, Tx = +20dBm), and AP 
frequency f = 2.4, received signal strength Rx is: 

Rx = 20 - 33 - 5.5 log10(D) - 20 * log10(2.4)                        (3) 
Equation (3) shows how the signal strength decreases 
exponentially with distance from a WiFi access point 
regardless of transmission power and antenna gain.   

The theoretic model is developed by using equation (3) for 
calculating the received signal strength for each access point in 
every location of the radio map. Some test values are 
calculated by adding noise to the theoretical model.  The 
theoretical map of RSS values for a 20 meter square area (n x 
m cells) with 4 WiFi access points is shown in Figure 1 for 
each individual access point. 



 

 
Figure 1. RSS Landscape per Access Point 

 

IV. COUNTER PROPAGATION NETWORK (CPN) WITH 
K-NEAREST NEIGHBOR 

A feed-forward CPN network generally consists of two 
layers. This modular neural network [18, 19] uses other neural 
networks as building block components and provides 
capabilities that a single monolithic neural network is not 
capable of providing [20].  

The presented approach (LENSR) is based on a symbiotic 
algorithm of a CPN and k-nearest neighbor approach with 
multiple winning neurons in the first layer (see Figure 2). CPN 
networks were introduced by Hecht-Nielsen in late 1980s as 
two layer, vector-to-vector hetero-associative memory 
networks [21, 22, 23]. This network was selected for a number 
of advantages.  CPNs are very fast and easy to use: training is 
performed by design, hence training is much faster than a 
typical 2-layer network; there is no feedback or delay during 
recall mode.   

In addition to being simple to use and control, these networks 
can recognize patterns that have not been seen by the network 
before. In the case of no perfect matching, the network will 
find the closest match possible and provide the output 
accordingly.  In the case of multiple closest matches, the 
network will provide a composite output, proportional to the 
degree of similarity between unseen and previously stored 
patterns. Input vector recognition is done simultaneously 
against all previously learned vector patterns. The 
advantageous speed of these networks is a consequence of the 
parallelism, inherent to topologic organized CPNs. 

The area of interest is divided into a grid of n x m cells as 
shown in Figure 1.  Each access point, plotted as a hump in the 
diagram, produces an RF signal detectable by other WiFi 
devices within radio range. Each RSS signature is a k-
dimensional vector with signals measured from each of k 
access points. These Signal Space Vectors (SSV) are 
augmented with the recorded spatial coordinates for each 
specific cell (x,y): 
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Figure 2. Counter Propagation Network 

Such SSV are used as training points in the presented 
algorithm. In an indoor/outdoor environment these signals may 
be measured and collected over an area of interest manually or 
by an autonomous vehicle.  
    The Kohonen layer in Figure 2 has one neuron for each 
location in the n x m grid. There are four inputs to each neuron 
as represented by the RSS values from each access point. For 
each access point in the area of interest the number of inputs to 
each neuron increases by 1.  The outputs of the Kohonen layer 
are weighted coordinate locations. By design, the connections 
between the Kohonen neurons and Grossberg summing circuits 
are the weights, wi, based on the proportional normalized 
distance vectors. The Grossberg layer, which is two summing 
circuits, performs the summing of the outputs from the 
Kohonen layer and produces both an x and y coordinate value 
as outputs.    
    The presented LENSR algorithm goes as follows. 

Step 1: Collect measured SSVs for each location in the grid 
map. Retain SSVs in a table T1. 

Step 2: As a mobile device moves through the area of interest 
the device records RSS values at its current location. This 
represents a test RSS vector in signal space. The test vector is 
used to determine location based on the training data (radio 
map). 

Step 3: Compare test vector to each measured vector in table 
T1. This is done in one step due to the inherent parallelism of 
the used CPN network. Step 3.1: If test vector equals any 
measured vector, then return location (x,y). 

Step 3.2: Else calculate distance between RSS measured 
signal vectors and test vector and retain in table T2. Retain 
all measured vector locations in table T3 for distances 
satisfying the minimum distance threshold.  

Step 4: Calculate the inverse normalized proportion of 
distances in table T2 as noted above, producing weights wi.  

Step 5: Use weights, wi, and the measured x and y locations 
from Table T3 to calculate the output of the CPN, O(x,y) as in 
equation 8. O(x,y) is the cumulative location representing the test 
vector location, (x,y). Error is calculated as follows: 

22 )()( yyxx apapError −+−=  

where p is a predicted location and a is the actual location. 



 

The LENSR algorithm presented in this paper can recognize 
an unseen RSS signature by matching it against the table of 
RSS vectors measured previously. If an exact match is found, 
the corresponding location or (x,y) pair is returned.  If the exact 
match is not found, a number of similar patterns (patterns 
within certain distance threshold) are returned. The minimum 
distance threshold is defined as a cell size (the test examples 
section presents results with various threshold size and various 
distance metrics). Further, the inverse normalized proportion of 
distances is used to produce a cumulative location of unseen 
pattern in following manner: 

1. Calculate distance between radio map RSS signal 
vectors and test vector. This is computing a distance 
in the signal space to other samples based on a 
distance metric. 

If distance is within a previously defined threshold, record 
distance and vector coordinates. The result of this 
comparison against all RSS vectors from a radio map is: 

),...,,( 21 ikiii dddd =  
2. Calculate weights, wi,  (proportional normalized 

distances) of these nearest neighborhood vectors as: 
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where di is a distance to ith neighborhood vector,  and k is the 
number of nearest neighbors. Distance metrics may be the 
Euclidean, Manhattan, or other. The Euclidean distance 
between (x1,y1) and (x2,y2) is defined as: 

2
21

2
21 )()( yyxxd −+−=                                                  (6) 

while the Manhattan distance is  defined as: 
d=| x1-x2| + | y1-y2|.                                                               (7) 
The sum of all weights, wi, equals 1. This approach to 
calculating of weights ensures that the neighbors that are closer 
in signal space get weighted more heavily than those far away. 

3. Calculate test vector location as the output of the 
CPN, O(x,y). 
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 where pi = (xi,yi) is the location of neighborhood vector. 

V. TEST RESULTS 
Several tests were performed to access the accuracy of the 

model. Test 1 used a small number of test points so the effect 
of RF signal attenuation on nearest neighbors could be 
visualized. Tests 2 and 3 used test points at x mid-grid 
locations (1.5, 2.5,...., 20.5) along each y point (1 to 20). Test 4 
used 8 access points to calculate the theoretic map. Test 5 used 
the Manhattan distance metric. Tables 1 and 2 summarize the 
test results. 

Test 1:  
Input: 5 unique test SSVs different from measured SSVs, 
Output: 4 calculated positions with their neighborhood plots  
Discussion: The calculated neighborhoods and predicted test 
positions are shown in Figure 3 with access points marked with 
an X. An estimated location is not available for one of the test 
vectors because no neighbors were within the threshold.  The 
symmetry of the neighbors around one side of the calculated 
location is due to the similarity of RSS vectors within the 
distance threshold. Neighbors do not appear on the other side 
of the calculated location because the measured RSS values 
increase as the access point is approached. This effectively 
increases the distance to the access point, falling outside the 
threshold boundary and resulting in no neighbors for this area. 

 
Figure 3. Neighborhoods and Estimated Positions for Five Test Points 

Test 2:  
Input: 400 unique test SSVs different from measured SSVs, 
Output: Calculated positions for each test SSV  
Discussion: Several thresholds for k-NN were tested with the 
smallest threshold yielding the best results in terms of 
cumulative error. Error increases, as expected, as the distance 
between RSS test and measured SSVs increases.  

Locations at the periphery of the grid map have significantly 
higher error (see Figure 4) due to distance from the closest 
access point. The tested accuracy of the algorithm was 90.6% 
within 1 meter and 96.4% within 1.5 meters at a threshold of 6. 

 
Figure 4. Error Landscape of Complete Radio Map with Threshold of 6 

Some spatially close neighbors to the RSS test vectors 
provide the optimal data for estimating the position of the 
mobile device. As the distance to the neighbors increases the 



 

error also increases due to the inclusion of points further away, 
which are inaccurate. Some signal strength components of the 
RSS vector will increase while others will decrease as a mobile 
device moves across the landscape. Therefore even some test 
points close to the access points, which measured RSS values 
are based on, will have a higher error rate than others. Figures 
5 and 6 plot the predicted test locations where the error was 
less than or equal to 1, and the thresholds were 6 and 15, 
respectively. As the threshold is increased, more RSS vectors 
will fall within the threshold and be used to calculate the 
predicted location of the mobile device.  This effectively 
increases the error in the calculation since some of those 
vectors are close in signal space but not in spatial distance. 
Test 3:  
Input: Same test locations as test 2 minus the test points on the 
periphery of the grid map. 
Output: Calculated positions for each test SSV  
Discussion: The error landscape using a distance threshold of 6 
and 15 are shown in Figure 7 and 8, respectively. Signal 
strength from an access point decreases exponentially with 
distance.  Therefore points closer to an access point will 
provide a more accurate relationship between distance and 
signal strength.  The number of measured RSS vectors used to 
calculate the location of the mobile device increases with 
threshold, which increases the error. The error rate between 
access points (dark blue peaks) in Figure 8 is relatively 
constant indicating that measured RSS vectors in this region 
have similar values. The tested accuracy of the algorithm was 
94.5% within 1 meter and 100% within 1.5 meters at a 
threshold of 6. 
Test 4:  
The density of the access points for the radio map was 
increased from 4 per 20 square meters to 8 and tests 2 and 3 
were rerun. The best tested accuracy of the algorithm was 
96.9% within 1 meter and 100% within 1.5 meters at a 
threshold of 6. 

 
Figure 5. Test Points with Threshold = 6, (X = Access Point) 

Test 5: Test 2, 3, and 4 were rerun using the Manhattan 
distance metric. 

 
Figure 6. Test Points with Threshold = 15 

 
Figure 7. Error Landscape with Threshold of 6 

 
Figure 8. Error Landscape with Threshold of 15 

Table 1 summarizes the accuracy of the LENSR approach 
for location estimation using the Euclidean distance metric, a 
nearest neighbor value, or threshold T, of 6 and 15, and both 4 
and 8 access points. The accuracy of the algorithm is 
calculated for predicted test point locations with less than or 
equal 0.5, 1.0 and 1.5 meters error. A threshold, T, of 6 
produces the best accuracy for 0.5 and 1.0 meters. The 
accuracy of the CPN algorithm, using the Euclidean distance 
metric, decreases with increasing threshold. The accuracy of 
the CPN algorithm increases with additional access points.  

The results of the same test using the Manhattan distance 
metric is shown in Table 2. The Manhattan distance metric will 
produce a larger distance value for grid locations that are 
located spatially diagonally from one another. The greater the 
distance is between neighborhood grids the greater the error.   

The CPN approach compares favorably to RADAR, 
CADET, Fuzzy Location, Joint Clustering Technique, and RSS 
Fingerprinting with Neural Network. 

 
 
 



 

# Test Points 
for T<=6 

# Access 
Points 

Error <= 
0.5 meter 

Error <= 1.0 
meter 

Error <= 
1.5 meter 

392 4 41% 90.6% 96.4% 

217 4 46% 94.5% 100% 

366 8 43.7% 95.6% 100% 

191 8 45.6% 96.9% 100% 

# Test Points 
for T<=15 

    

392 4 19.1% 54.6% 85.5% 

217 4 24.9% 65.9% 93.6% 

384 8 27.9% 78.9% 94% 

191 8 34.5% 88% 99.5% 
Table 1. LENSR Accuracy: Threshold = 6/15, Euclidean Distance Metric 

 

# Test Points 
for T<=6 

# Access 
Points 

Error <= 
0.5 meter 

Error <= 1.0 
meter 

Error <= 
1.5 meter 

387 4 5.2% 34.4% 51.4% 

212 4 9% 36.3% 52.4% 

201 8 27.4% 87% 97.5% 

79 8 25.3% 78.5% 96.2% 

# Test Points 
for T<=15 

    

395 4 4.6% 16.7% 32.2% 

220 4 10% 25.9% 44.1% 

386 8 20.7% 82.6% 96.1% 

211 8 19% 84.4% 97.6% 
Table 2. LENSR Accuracy: Threshold = 6/15, Manhattan Distance Metric 

VI. Conclusions 
The CPN is a viable architecture for calculating location 

based on RSS values. The advantages of the CPN for location 
estimation are multifold. The first is the inherent parallelism of 
RSS signature matching due to the intrinsic parallelism of the 
CPN architecture. Another advantage is that the actual signal 
distribution is recorded as it is. Complex signal deflection and 
attenuation calculations are avoided and hence the precision of 
algorithm is increased. The third advantage is the 
computational inexpensiveness of LENSR, an elegant CPN 
based pattern matching and linearization of obtained 
neighboring locations. 

The LENSR algorithm has a higher accuracy for location 
estimation than other neural network, nearest neighbor, and 
clustering approaches reviewed in this paper. Accuracy 
increases, as expected, as the density of access points is 
increased for the radio map area of coverage. 
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