
 

Abstract— Any autonomous vehicle must be able to successfully 
navigate a wide variety of situations and terrain conditions.  As a 
result, proposed solutions usually involve a sophisticated and 
expensive implementation of both hardware and software.  In 
many situations, however, truly autonomous operation may not 
be necessary or practical.  Instead, equipping and training a 
vehicle to automatically follow a human-controlled lead vehicle is 
a viable alternative.  While still autonomous, the vehicle relies 
upon its leader to handle the complex decisions with regards to 
course and speed.  This paper presents a simple and elegant 
configuration, called FLoST for Fuzzy Line of Sight Tracking, 
based on inexpensive line-of-sight devices controlled by a 
heuristic to determine direction and speed of a follower.  Unlike 
the alternative approach where the follower needs to undergo a 
complex training process, the follower using the approach 
presented in this paper primarily relies upon a human leader to 
provide direction, allowing for a much simpler and less expensive 
vehicle implementation while still being able to match or exceed 
the effectiveness of the autonomous design under similar 
conditions.  Finally, three boundary cases of lead vehicle 
maneuvers (circle, spiral and weave) are presented to show the 
efficacy of this approach. 

I. INTRODUCTION 

There are situations where it is necessary or desirable to be 
able to rely upon autonomous, machine-guided vehicles to 
perform certain tasks.  On the surface of Mars, for example, it 
is not practical to send a human driver while the crater of an 
active volcano may be deemed too hazardous.  In less extreme 
conditions, autonomous vehicles can be called upon to 
perform a variety of tasks.  Unfortunately both the difficulty 
and cost often prove to significant obstacles to implementation 
[1].  Innovative solutions have addressed this [2] but 
challenges in the form of urban terrain, road conditions, traffic 
“rules” and other obstacles continue to plague autonomous 
vehicles.   Situations do exist, however, where the 
environment is tightly controlled enough not to require a fully 
autonomous solution but rather one which combines human 
leadership with the ability of a vehicle to follow.   

For example, it may be necessary for an individual to 
require the help of a machine to transport material from point 
to point.  An example could be an airport, where a person has 
to move luggage across a busy terminal, or a factory, where 
inventory is moved from production to shipping through small 
corridors or a junkyard where tons of metal has to guided 
around piles of debris.  More extreme cases might involve the 
removal of hazardous waste or movement through a dangerous 
area where it would be preferable to use automated vehicles in 
lieu of human resources.  Whereas it might otherwise be 
prohibitively expensive or simply too dangerous to trust to a 

truly automated vehicle, a hybrid system, with a human leader 
and an array of mechanical followers could prove a practical 
alternative. 

 “Following” technology, as opposed to a purely 
autonomous one, doesn’t require sophisticated decisions with  
respect to direction, speed, hazards, or road conditions and as 
such requires less sophisticated sensory hardware and 
software.  Additional reliance upon the judgment of the human 
leader can also mitigate the impact of obstacles and other 
issues which can make the operation of a purely autonomous 
vehicle difficult and hazardous. 

Other solutions for automated following have been 
proposed, for example, by combining CCD cameras and 
neural networks for pattern recognition [3], motion sensors, 
GPS systems and standard communications [4] for platooning.  
This paper demonstrates that combining line-of-sight devices 
and a fuzzy algorithm for following is superior to the first 
solution in that it avoids much of difficulties associated with 
noise in the patterns and superior to the latter solution in that it 
employs a simpler array of devices and logic.  An autonomous 
follower, using FLoST to mimic its human leader, presents a 
much more cost-effective solution and a potentially more 
effective one. 

This paper presents a novel, fuzzy arithmetic based 
algorithmic approach to the problem of autonomous 
following. Using the analogy of a mother “Duck” and her 
“ducklings”, the algorithm guides a series of mobile, 
autonomous units to follow a lead vehicle (or “Duck”) and 
each other from a predetermined distance, mimicking both 
velocity and, to a greater or lesser degree depending upon 
conditions, direction traveled. 

The proposed alternative technique relies upon a series of 
rapid angular scans to achieve location and distance 
measurements to the lead target.  Technologies for line-of-
sight tracking have been in use in both the commercial and 
military sectors for many years in various devices [5], [6].  
These devices detect an object (such as a hostile aircraft) and 
relay information such as distance, direction and speed to 
other units.  Such devices, mounted upon and directing the 
movement of some sort of mobile platform, following a 
human or mechanical leader, can thereby creating some new 
utility. 

  This paper is organized as follows: Section II presents a 
simple scenario and a series of applications for the algorithm 
presented in this paper.  Section III presents the FLoST (Fuzzy 
Line of SighT) algorithm.  Section IV lists test scenarios along 
with a discussion of the FLoST algorithm performance.  
Section V will present conclusions and future work. 
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II. PROBLEM STATEMENT 
  For the purpose of demonstration, consider a lead vehicle 

(“Duck”) and N followers (“ducklings”).  Based on the FLoST 
algorithm presented in this paper, each “duckling” becomes 
the “Duck” to the subsequent "duckling”, hence any 
configuration of 1 “Duck” to N “ducklings” is possible. 

This technique has application in many areas where the 
movement of material is impractical for human agents.  
Consider the following scenario: an earthquake damages a 
chemical plant.  Highly explosive chemicals must be moved to 
another facility immediately but it is deemed unsafe for 
anyone to get too near them while in transit.  Applying FLoST 
in this scenario, the chemicals are loaded onto a series of 
FLoST-equipped vehicles following a lead vehicle with a 
human driver.  The lead vehicle, or “Duck”, is a heavily 
armored vehicle able to protect its human driver from the 
effects of a blast.  The followers, or “duckling” are FLoST 
transports. 
 

 
 

Fig. 1. 2-D surface, example with 1-Duck and 2 ducklings. 
 

Typically the “Duck” will proceed in a determined, but not 
constant direction, and will not have to back-track at any 
point.  The road surface may contain obstacles to move 
around, but otherwise allow the “ducklings” to maintain line-
of-sight to the “Duck”.  “Ducklings” themselves are “daisy-
chained” such that the “duckling” in front will serve as its 
follower’s respective “Duck”.  It is reasonable to assume that 
the “Duck” will not intentionally try to evade the “ducklings” 
so its movement will be fairly consistent, though it may be 
necessary, at times, for more drastic maneuvers. 

III. FLOST (FUZZY LINE-OF-SIGHT TRACKING) ALGORITHM 
The FLoST algorithm will be presented on a generic 

problem of N “ducklings” following a “Duck”, as illustrated 
by Fig 2: 
 

 
Fig. 2 Duck and ducklings at start 

 
The heuristic of FLoST algorithm allows each “duckling” to 

follow the “Duck” as it proceeds from point to point on its 
journey.  Each “duckling” accomplishes this by maintaining a 
knowledge base of “Duck” behavior.  At each point, the 
“duckling” records the relative distance ΔP and relative 
direction change Δα of the “Duck” in its knowledge base, 

allowing it to determine  its absolute position and direction as 
well as its desired velocity. 

The “duckling” then applied the FLoST heuristic to better 
predict future behavior of the “Duck’s” human driver as a 
function of its past behavior.  In this example, the “duckling” 
creates three speed “zones” called Slow (S), Normal (N) and 
Fast (F) which are overlapping measures of the maximum 
speed of the “Duck” and used to assign direction changes, Δα, 
along with an average direction change αAvg, shown in Fig. 3.  

 

 
 

Fig. 3. Direction changes and averages in Duck speed zones 
 

The “duckling” then assigns each Δα to its respective zone 
(or zones if it lies within an overlap): 
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where Vmax is the maximum velocity of the “Duck”.  By 
taking the mean over all Δα in a given zone, the duckling 
calculates the αAvg, which is then used to generate a turn rate 
coefficient for that zone.  In this example the coefficients are: 
 
TRx = ½αxAvg + ½αLast where x { }FNS ,,∈  (2) 
 
Where αAvg is the average α for a given zone; αLast is the last 
measurement taken for that zone; TRx is a component used in 
a fuzzified function to calculate the search. 

At the beginning of this scenario, the “Duck” starts at 
location P0, followed by two “ducklings”.  The “Duck” will 
then proceed over time Δt in a direction and speed indicated 
by the angle α0 to the point P1 as shown in Fig 4.  The first 
“duckling” will orient itself on and proceed to P0, then using 
the FLoST algorithm, begin its first scan for the “Duck”using 
as its first search angle, Θ, the vehicle Maximum Turn Rate 
(MTR) based upon the fuzzy equation developed by Wu, 
Zeng, Chaing and Lee [7] for a given vehicle. 

 

 
 

Fig. 4. Duck proceeds to first point 



 

 
 

As it moves from point to point, the “duckling” updates its 
knowledge base of “Duck” behavior with information derived 
from each new “Duck” point.  From the original speed zones, 
the duckling creates fuzzified versions of Slow (S), Normal 
(N), and Fast (F) that range from 0 to the maximum velocity 
of the Duck (Vmax) as shown in Fig. 5. 

 

Fig. 5. Fuzzified speed of Duck. 
 

The duckling applies the FLoST algorithm using the 
following steps: 

 
Step 1. Scan for and locate “Duck”.  Apply FLoST to 

determine the search angle Θ, calculated as follows: 
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where Θ has a minimum value of 1 degree.  In the absence of 
any points for any TRx, use the vehicle Maximum Turn Rate 
(MTR). 

The search angle is drawn using the +/- Θ offset from the 
current angle αi  Search continues until either the “Duck” is 
located or it is determined the “Duck” is lost as illustrated for 
points  by Fig 6. 
 

 
 

Fig. 6 Scan for Duck at P1 
 

Step 2. Use information about relative Duck’s position to 
determine next point: P1, new direction α1. 

The “duckling’s” rangefinder provides a relative distance 
from the “duckling”, ΔP, and the traversal mechanism 
provides the relative direction Δα.  The new location P1 and 
the new vector α1 are defined as: 

 
Pi+1 = Pi + ΔPi     (4) 
αi+1 = α0 + Δα     (5) 
 
Step 3. Calculate the velocity of “Duck” to P1 as: 
 

Vi = |Pi – Pi-1| / ∆ti,  ∆ti = ti – ti-1  (6) 
 

Step 4. Update the knowledge base as described by eqs. (1) 
& (2). 

 
Step 5.  Adjust course and speed and proceed to “Duck’s” 

new known location. 
 
As opposed to just applying the Maximum Turn Rate, MTR, 
the FLoST TRx will usually generate a smaller search area 
than MTR.  In this way, the “duckling” (d) can concentrate its 
search in the area the “Duck” (D) appears to be headed as 
illustrated in Fig 7. 
 

 
 

Fig. 7. Choosing a search area. 
 
The major hardware components of the “duckling” consist 

primarily of an array of Line-of-Sight (LoS) sensors mounted 
on elements that can traverse the search area.  A sample 
configuration is  illustrated in Fig 8.  These LoS mechanisms 
feed speed, direction and distance information to the 
navigation system which adjusts the “duckling”’s movement 
accordingly. 

 
 

Fig. 8 Duckling searching with sensor array 
 

Using the FLoST algorithm, the “duckling” follows its 
“Duck” from point to point, adjusting course and speed and 
updating its knowledge base of prior actions as shown in Fig. 
6.  The algorithm attempts to minimize the search area 
whenever possible, adjusting its search angles to account for 
variations in “Duck” movement at each iteration.  Minimizing 
search angles allows for a more rapid scan rate which both 
reduces the search area and enables the “duckling” to make 
course and speed corrections on a more frequent basis - 
reducing the chance for future misdirection. 

 



 

 
 

Fig. 9. Two ducklings using FLoST to follow Duck 
 

This is possible when the actions of the “Duck” are 
generally consistent and relieves the “duckling” of having to 
take into account considerations regarding terrain, speed, 
safety, obstacles and other factors that would be very difficult 
and expensive to implement in an automated system.  
However, such factors are much more easily “inferred” by 
training the duckling to follow the behavior of the “Duck” 
precisely.  Possible differences in human behavior at various 
speeds (and times) are addressed using the speed zone TRs 
with fuzzification so transitions are loosely defined. 

IV. TEST EXAMPLES 
Among the examples are both trivial cases and non-trivial 
cases.  Trivial cases arise in the following three instances: 1) 
when velocity is zero; 2) when the change of direction is zero; 
3) and when the sample time is zero.  In each case, the search 
angle collapses.  As trivial, these examples will not be 
discussed. 

Non-trivial cases arise when the “Duck” moves in one 
direction for a period of time, establishing a knowledge base 
of very small direction changes, then executes a maximum 
turn in one direction or the other.  For the “ducklings” this 
behavior is unexpected and will require additional iterations in 
order to learn and adapt to this new pattern.  The performance 
of FLoST will be discussed in the following three boundary 
cases, representing three scenarios of sudden or  unusual 
trajectory of “Duck” movements. These cases are: 1) the 
“Duck” is going in tight circle; 2) the “Duck” going in spiral; 
3) the “Duck” weaving back and forth. 

The first boundary case is where the “Duck” moves in a 
tight circle using the maximum turn rate (MTR) as shown in 
Fig 10.   

 

 
 

 Fig. 10. Duck moves in tight circle 
 

As the duckling has “learned” only small movements to this 
point, it will have to learn very different, previous behavior in 
order to generate a reasonable search rate coefficient TR. 

Whereas a traditional search uses the full MTR to establish 
the search angle, the coefficients used by the “duckling” create 
a tight angle initially, growing larger with each sampling.  
However, while the standard search will always capture the 
“Duck” in its primary scan, the “duckling” will require many 
samples in order to generate a large enough search angle.  A 
way to compare the two methods is to examine how efficient 
each is in its primary scan.  This can be accomplished by 
comparing the scan Θ for each: 
 

 
 

Fig. 11. Comparison of FLoST vs Maximum Turn Rate Search 
 

For an TR = 20° the FLoST algorithm will begin at a 
significant disadvantage as it tries to unlearn previous 
behavior with the first measurement being off by a factor of 
20.  Very quickly, however, the FLoST adjusts the angle of 
search based upon the last recorded change in direction 
enabling it to rapidly approximate the increased difference 
between the directions of “duck” and “duckling” (Fig. 11).  
Problems of major directional change are not limited to 
FLoST; extreme maneuvers cause difficulty in other fuzzy 
tracking algorithms as well [11], [14]. 

The second boundary case is when the “Duck” moves in a 
widening spiral. 
 

 
 

Fig. 12. Ducklings follow Duck in spiral. 
The spiral motion starts as extreme as the circle but gradually 
reduces the turn rate.  In the following example, the spiral 
starts out with an initial turn of 20° and loses a degree every 
two samples.  It does not take long for the FLoST algorithm to 



 

catch up in this case as indicated by a graph comparing the 
search areas: 
 

 
 

Fig. 13. Comparison of FLoST vs Maximum Turn Rate Search in a spiral 
 
  As with the tight circle, the “duckling” starts off at a 
significant disadvantage, however, the FLoST search angle 
quickly “catches up”, surpassing the efficiency of a brute-
force MTR calculation after a series of iterations allows it to 
expand and adapt, then narrow its search to accommodate the 
slowly degrading turn of the spiral. 

A third boundary case is the weave.  Like the circle, the 
weave utilizes maximum turn rate MTR, but in alternating 
directions. 

 

 
 

Fig. 14. Ducklings follow Duck in weave pattern 
 
The weave attempts to perform the same extreme maneuver 

as the circle, although inertia in one direction will hinder its 
ability to exploit the full MTR in the other direction. 

With an initial turn of 20° and subsequent weaves of 19°, 
FLoST quickly adapts to create a useful Θ as indicated by the 
graph in Fig. 15. 

 

 
 

Fig. 15. Comparison of FLoST vs Maximum Turn Rate Search in a weave 

Despite some initial trouble at boundary extremes, FLoST 
does very well under more less extreme, more “normal” 
operating conditions.   

It is reasonable to assume a human operator will not 
deliberately attempt to evade a “duckling” or drive in an 
extreme circle, weave or spiral for any significant length of 
time.  “Normal” operation then consists of relatively gentle 
turns at higher speeds or extreme turns at low speeds followed 
by sequences of relatively straight paths, with the FLoST 
“duckling” expanding or narrowing its search angle to 
accommodate, relative to the fuzzy zones (slow, normal, and 
fast) determined during operation.  Using the fuzzy zones 
further optimizes the “normal” case since larger degree turns 
are more safely accomplished at slower speeds, reflected in 
the autonomous “duckling’s” knowledge base.   The 
“duckling” then knows that the slower speed has a greater 
incidence of wide turns and will adjust its search parameters 
accordingly. 

In the original scenario of the chemicals that need to be 
move to a safe location, workers could load the dangerous 
chemicals and be well away from harm while the “Duck” calls 
the “ducklings” to marshall.  The “Duck” driver can navigate a 
complex path at a safe speed knowing the automated 
“ducklings” will mimic the course and speed very precisely.  
Once to an area where they can be unloaded, the “ducklings” 
are dispersed automatically to safe areas and processed as 
needed. 

V. CONCLUSION 
 Notions of an unmanned successful tracking system usually 

involve a complex array of devices and software and the 
assumption that no human direction is available.  However, as 
this paper demonstrates, a simpler combination of human 
intelligence and machine algorithm could prove a worthwhile 
alternative, even, for all intents and purposes (via remote 
control), completely duplicating an autonomous process.  The 
performance of FLoST, the algorithm presented in this paper, 
is discussed for three boundary cases (“Duck” moving in 
circle, moving in spiral and weaving back and forth) in which 
the FLoST algorithm quickly and successfully adjusted the 
search parameters to compensate. 

Further work needs to be done to improve FLoST prediction 
and accuracy by incorporating a neural network based 
approach.  Extending the FLoST to allow “ducklings” to 
properly couple and decouple from a train, sort themselves out 
and avoid conflicts with other “ducklings” would greatly 
improve the applicability and overall usefulness of FLoST.  
Finally there need to be processes to allow the “Duck” and 
“duckling” to respond and reestablish contact in the event line-
of-sight tracking fails. 
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