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Abstract— In factory automation, production line 
scheduling entails a number of competing issues.  Finding 
optimal configurations often requires use of local search 
techniques.  Local search looks for a goal state employing 
heuristics and random local “probes” in order to move 
from state to state.  All local search techniques, however, 
suffer from problems with local maxima, i.e. have the 
potential of getting “stuck” in a suboptimal state.  While 
careful introduction of randomizations is certainly a 
recognized technique, it can also lead the algorithm even 
more astray.  This paper describes a heuristic technique 
called Descending Deviation Optimizations (DDO) in 
which a gradually lowering-- randomization ceiling allows 
a local search technique to “bounce” randomly without 
going too far astray.  An example applying the DDO to a 
local search technique and achieving significant 
improvement is shown. 

I. INTRODUCTION

One of the very important aspects of factory automation is 
the efficient use of both time and space [6], [14].  Doing so 
requires the precise coordination of people, material and 
equipment in limited space boundaries in order to maximize 
throughput and minimize latency [11].  However, having one 
optimal set layout is generally impractical as priorities often 
change during the course of a production cycle or significant 
events [17].  For example, the breakdown or introduction of 
new equipment can significantly affect the production 
schedule. 

Unfortunately, combinations of variables and constraints 
can quickly result in the factorial growth of the possible 
permutations to search beyond the practical ability of modern 
computer systems to thoroughly assess.  An exhaustive search 
through a space of potential configurations becomes 
impractical.  Problems like that of the production scheduling 
problem mentioned above belong to a generic class of 
problems called Constraint Satisfaction Problems (CSPs).  
CSPs often encompass a potential set of states for which the 
entire state space is beyond a system’s ability to search 
comprehensively.  CSPs belong to a class of combinatorial 
problems called NP for “Non-Deterministic Polynomial” for 
which a given solution can be found by a polynomial-time 
algorithm [1], [2].  

Local Search Algorithms (LSAs) have proven very useful 
for finding solutions to CSPs [12].  LSA compensate for a lack 
of universal awareness by starting at some beginning state 
then exploring neighboring states, testing for goal states along 
the way [3].  This allows for a smaller requirement of 

resources as only neighboring states need to be stored or 
searched.  If there are multiple goal states in the overall state 
space, then there is a significant probability that an LSA will 
discover one quickly.  This makes LSAs a preferred method 
for solving CSPs such as the factory automation production 
scheduling problem [11].  However, there are many different 
LSA techniques and all have various issues particularly 
dealing with locally optimal but globally sub-optimal states 
called local maxima.  Descending Deviation Optimizations 
addresses some of these issues by allowing LSAs to move 
away from local maxima but in a controlled fashion so as to 
have a higher likelihood of finding global maxima. 

This paper is organized as follows: Section II presents a 
problem statement and a brief look at various local search 
techniques under consideration.  Section III presents the 
Descending Deviation Optimizations steps.  Section IV 
presents the application of Descending Deviation 
Optimizations to Simulated Annealing and Stochastic Hill 
Climbing to solve the scheduling problem along with other 
test results for many of the traditional techniques.  Section V 
presents conclusions and future work. 

II. BACKGROUND AND PROBLEM STATEMENT

Factory automation scheduling must often take into account 
a myriad of competing elements ranging from floor space to 
personnel and equipment costs, production times to shipping 
and delivery priorities.  Finding the best configuration means 
creating a schedule where conflicts and idle time are reduced 
to the greatest extent possible [13], [14], [15]. 

In a typical factory a number of different products are 
produced.  Each product consists of components.  Each 
component is made from raw materials or other components 
delivered to the factory or produced within it.  Raw materials 
must be shipped in and moved across the factory floor from a 
receiving point to a production station navigating a maze 
through which other raw materials, components and products 
must also pass. 

For testing purposes, consider a factory that produces 8 
products.  From raw material to shipped product there are 8 
stations to pass through: receiving (R), component assembly 
(CA), quality inspection (QI), final assembly (FA), inventory 
control (IC) and storage (S), testing (T) and loading and 
shipping (LS). 

The factory’s goal is to try to reduce the time material is in 
the plant to the smallest possible amount.  This means moving 
raw materials in and product out as quickly as possible.  But 
the situation can be very dynamic, with changing schedules 
and priorities and product lines.  In order to work as efficiently 
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as possible the factory must be able to create a layout that will 
allow materials to move such that there is a limited amount of 
time spent waiting to move to the next station. Constraints 
include minimum time spent at each station and minimum 
time to move between stations.  The goal state was one in 
which all products were at a given station with no product 
waiting on another. 

As there was no way to predict what the initial state would 
be, a random state generator was used to create 1000 random 
starting states to see how well the scheduling problem could 
be resolved to a goal state. 

A number of Local Search Algorithms (LSAs) were used to 
see which could most consistently move from a random 
starting state to a goal state without being trapped by local 
maxima. 

Heuristics determine where in the local neighborhood LSAs 
are to search as well as places to avoid.  Many LSAs work to 
explore nearby maxima through a process of moving to 
successively more optimal states, hoping to encounter a global 
solution along the way [1], [3], [5].  The problem is that many 
problems are populated with localized maxima such that 
flowing nearby gradients can “trap” a LSA by leading it to a 
position which is not a global solution but in which all of its 
neighboring positions lead to a less optimal state as shown in 
Fig 1. 

Fig. 1. Comparison of Local/Global Maxima

Some LSAs attempt to escape out of these local maxima 
through some sort of random “bounce” [7]-[10] which moves 
an algorithm to a less optimal state but potentially into a 
location more capable of providing a solution, shown in Fig 2. 

Fig. 2. Bounce out of a Local Maxima Trap

These random “bounces” are often not successful however, 
leading an algorithm away, rather than towards, a solution, 
expending time and computing resources in a fruitless search.  
Descending Deviation Optimizations (DDOs) tries to improve 
upon an LSAs ability to escape local maxima and find a goal 
state by restricting it movements somewhat in order to prevent 
it from moving to far away in any random direction from a 
potential goal state.  This process works well in the scheduling 
problem presented in this paper because the state space 
contains a number of goal states spread throughout. 

 Local search algorithms tried were as follows: 
1. Hill Climbing 
2. Stochastic Hill Climbing 
3. Random Restart Hill Climbing 
4. Simulated Annealing 
5. Genetic Mutation 
6. Minimum Conflicts Search 
7. Tabu Search 

The results are listed in Table 1. 
TABLE I. INITIAL RESULTS OF LSA TESTING

Algorithm Tries Success Failure % Success 
Hill Climbing 1000 141 859 14.1 
Stochastic Hill 
climbing 

1000 146 854 14.6 

Random 
Restart Hill 
Climbing1

1000 866 134 86.6 

Simulated 
Annealing 2

1000 271 729 27.1 

Genetic 
Mutation3

1000 229 771 22.9 

Min Conflicts4 1000 919 81 91.9 
Tabu Search5 1000 680 320 68.0 

1. Random Restart declares failure after 100 iterations 
and no goal state 

2. Simulated Annealing alpha set at .99, number 
iterations max set to 1000, temp set to 1000 

3. Genetic Mutation population of 30 boards, sample of 
2

4. Min Conflicts max iterations set to 100 
5. Tabu Search max iterations set to 100 

All of the techniques had some success in finding goal 
states, but the most successful required additional memory 
resources (Minimum Conflicts Search, Tabu Search) or a 
“lucky” combination of start states (Random Restart Hill 
Climbing) in order to succeed.  With limited resources, it 
would be more advantageous to implement a different strategy 
using one of the other techniques and the Descending 
Deviations Optimization.  

III. THE DESCENDING DEVIATION OPTIMIZATIONS 
TECHNIQUE

Steps in the Descending Deviation Optimization (DDO) 
Implementation are then as follows: 
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Step 1. DDO-LSA generates a potential random choice.  If 
the choice leads to a goal state then declare success. 

Step 2. DDO-LSA choice is compared to the DDO 
threshold.  If the choice moves the algorithm beyond that 
threshold, then choice is rejected and algorithm selects another 
random choice and tests again until a choice if found or all 
choices are tested. 

Step 3. If choice is accepted, the optimal threshold reduced 
by a predetermined amount and the algorithm moves to Step 1. 

As an example of the DDO technique consider a common 
local search technique: Simulated Annealing. 

Simulated Annealing (SA), named after a process in 
metallurgy whereby metals are successively heated and 
cooled, implements a succession of random “bounces” that 
slowly diminish over time [9], [10].  SA’s pseudo-random 
selection method measures a random pick against a slowly 
descending de-optimization threshold.  The algorithm allows a 
large range (nearly random) set of choices early on, getting 
progressively more restrictive in favor of better choices with 
each iteration.  Since the range of options is greater in the 
beginning, it will have a tendency to explore more maxima 
and is correspondingly more likely to find one that is a global 
solution.  SA is able to explore a relatively wide range of 
possibilities when compared to other algorithms and does a 
comparatively good job of finding global maxima compared 
with other local search techniques.  However this can be 
computationally expensive.  In addition, the algorithm can 
have a tendency to be lead hopelessly astray by a succession 
of less than optimal choices as demonstrated in Fig 3. 
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Fig. 3. Pattern in which SA fails to find a solution

The DDO approach to SA takes the original SA 
implementation and adds the following optimizations: 

1. An artificial, decreasing ceiling is imposed on the 
allowable number of conflicts.  The DDO threshold is 
a function of the square root of the temperature 
variable.  The square root function is chosen in order 
to provide a smooth, regular ceiling descent that 
eventually converges to the original SA threshold as 
they both approach zero.  The ceiling prevents the 
solution from going from a lower state to a much 
higher state late in the process via a series of small, 
negative changes demonstrated in Fig 4.  With each 
iteration the DDO threshold forces the SA to explore 

a smaller and smaller range of randomizations, 
hopefully to move it more quickly to the goal state. 

2. Some versions of SA pick a value and may or may 
not use it depending upon whether or not it exceeds 
some “fitness” value.  In this case, all the local 
potential moves are tested.  Any move which would 
cause a no-op to occur is thrown out of the sample of 
choices so that each iteration produces only those 
values that meet the fitness criteria. 

3. During the screening process, if a tile is found that 
reaches the goal state, use that tile automatically so 
the process ends in success. 
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Fig. 4. Simulated Annealing with Descending Deviations

IV. TEST EXAMPLES

In order see how effective DDOs are, the best and worst 
LSAs were chosen for implementation; Simulated Annealing 
(SA) as the best performing and Stochastic Hill Climbing 
(SHC) as the worst.  Traditional Hill Climbing does not utilize 
a random component so was excluded. 

Stochastic Hill Climbing (SHC) is a variant of the 
traditional Hill Climbing in which not the steepest ascent is 
picked but any ascent is eligible, dictated by a probability 
assigned to each option [3].  The probability is dependent to 
some degree upon the steepness of the ascent. 

DDO-SHC works exactly like the traditional SHC until it 
gets “stuck”, at which point it “bounces” the solution to a 
nearby, less optimal state and again applies the original 
strategy.  The “bounces” are gradually lessened in height or 
until they disappear at which time if a global solution is not 
reached, the strategy fails. 

The DDO-SHC and DDO-SA were added to the suite of 
LSAs and tested against the scheduling problem.  The results 
of the modified LSAS are listed in Table II. 

TABLE II. RESULTS OFMODIFIED LOCAL SEARCH ALGORITHM TESTING

Algorithm Tries Success Failure % Success
DDO
Stochastic
Hill Climbing1

1000 253 747 25.3

DD Simulated
Annealing2

1000 993 7 99.3
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1.  DD-Hill rescued 121 failures, threshold set at 5 
2. Simulated Annealing/DD-Simulated Annealing alpha 

set at .99, number iterations max set to 1000, temp set 
to 1000 

In both cases DDO modifications to the original LSAs 
resulted in significant improvements in the LSAs ability to 
avoid local maxima and find a global solution.  The DDO-
SHC success rate nearly doubled (14.6% to 25.3%) while the 
DDO-SA achieved an almost fourfold (27.1% to 99.3%) rate 
increase to the point it was nearly perfect and better than any 
of the traditional LSAs tried. 

There were 2 additional benefits as well for the DDO-SA 
algorithm.  Despite the additional overhead imposed by the 
DDO, the increased success rate resulted in fewer iterations 
overall for the given 1000-test cycle.  In addition, the 
algorithm also displayed a lesser tendency to “wander around” 
or be lead astray by a series of bad choices.  This resulted in 
both more successes and 20% fewer iterations overall than 
traditional SA to reach the goal state.  This lead to a net time 
reduction of over 35% to complete 1000 iterations, also 
resulting in a large net decrease in computational resources 
required. 

V. CONCLUSION AND FUTURE WORK

The results demonstrate the significant advantages of 
Descending Deviation Optimizations to Local Search 
Algorithms in production line scheduling problems of factory 
automation.  Compared with the traditional approaches, DDO-
Optimized versions were many times more successful overall 
in finding a solution.  In the case of DDO-SA, the descending 
ceiling prevented many fruitless searches due to a lengthy 
series of bad choices resulting in a 99% decrease in the 
number of unsuccessful attempts compared to traditional SA.  
This resulted in a significant net time reduction and large net 
decrease in computational resources required.  DDO-SA also 
outperformed all other local search algorithms tested, 
including those heavily dependent upon memory resources. 

Of particular note, the “lucky” LSA, Random Restart Hill 
Climbing, given enough restart chances, would be more 
successful at reaching the goal state than SA-DDO.  However, 
the number of restarts, and corresponding resources and time 
needed, will be significant as even 100 restarts still resulted in 
a failure rate nearly 20 times greater than SA-DDO. 

Future work is to apply the DDO method to the other 
LSAs to see which sorts of improvements are possible 
elsewhere.  It appears possible that any of the traditional LSA 
techniques, such as Genetic Mutation, which utilize some 
randomization can be improved.  Other algorithms for 
producing a descending ceiling need to be tested for 
effectiveness.  Also to be tested is how DDO-SA will work in 
place of SA for other classes of NP-problems such as neural 
network optimizations, adversarial game play, intelligent 
control and chip layout and whether results are comparable to 
those achieved in the factory scheduling problem. 
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