
1-4244-1506-3/08/$25.00 ©2008 IEEE

Abstract— In factory automation, production line
scheduling entails a number of competing issues. Finding
optimal configurations often requires use of local search
techniques. Local search looks for a goal state employing
heuristics and random local “probes” in order to move
from state to state. All local search techniques, however,
suffer from problems with local maxima, i.e. have the
potential of getting “stuck” in a suboptimal state. While
careful introduction of randomizations is certainly a
recognized technique, it can also lead the algorithm even
more astray. This paper describes a heuristic technique
called Descending Deviation Optimizations (DDO) in
which a gradually lowering-- randomization ceiling allows
a local search technique to “bounce” randomly without
going too far astray. An example applying the DDO to a
local search technique and achieving significant
improvement is shown.

I. INTRODUCTION

One of the very important aspects of factory automation is
the efficient use of both time and space [6], [14]. Doing so
requires the precise coordination of people, material and
equipment in limited space boundaries in order to maximize
throughput and minimize latency [11]. However, having one
optimal set layout is generally impractical as priorities often
change during the course of a production cycle or significant
events [17]. For example, the breakdown or introduction of
new equipment can significantly affect the production
schedule.

Unfortunately, combinations of variables and constraints
can quickly result in the factorial growth of the possible
permutations to search beyond the practical ability of modern
computer systems to thoroughly assess. An exhaustive search
through a space of potential configurations becomes
impractical. Problems like that of the production scheduling
problem mentioned above belong to a generic class of
problems called Constraint Satisfaction Problems (CSPs).
CSPs often encompass a potential set of states for which the
entire state space is beyond a system’s ability to search
comprehensively. CSPs belong to a class of combinatorial
problems called NP for “Non-Deterministic Polynomial” for
which a given solution can be found by a polynomial-time
algorithm [1], [2].

Local Search Algorithms (LSAs) have proven very useful
for finding solutions to CSPs [12]. LSA compensate for a lack
of universal awareness by starting at some beginning state
then exploring neighboring states, testing for goal states along
the way [3]. This allows for a smaller requirement of

resources as only neighboring states need to be stored or
searched. If there are multiple goal states in the overall state
space, then there is a significant probability that an LSA will
discover one quickly. This makes LSAs a preferred method
for solving CSPs such as the factory automation production
scheduling problem [11]. However, there are many different
LSA techniques and all have various issues particularly
dealing with locally optimal but globally sub-optimal states
called local maxima. Descending Deviation Optimizations
addresses some of these issues by allowing LSAs to move
away from local maxima but in a controlled fashion so as to
have a higher likelihood of finding global maxima.

This paper is organized as follows: Section II presents a
problem statement and a brief look at various local search
techniques under consideration. Section III presents the
Descending Deviation Optimizations steps. Section IV
presents the application of Descending Deviation
Optimizations to Simulated Annealing and Stochastic Hill
Climbing to solve the scheduling problem along with other
test results for many of the traditional techniques. Section V
presents conclusions and future work.

II. BACKGROUND AND PROBLEM STATEMENT

Factory automation scheduling must often take into account
a myriad of competing elements ranging from floor space to
personnel and equipment costs, production times to shipping
and delivery priorities. Finding the best configuration means
creating a schedule where conflicts and idle time are reduced
to the greatest extent possible [13], [14], [15].

In a typical factory a number of different products are
produced. Each product consists of components. Each
component is made from raw materials or other components
delivered to the factory or produced within it. Raw materials
must be shipped in and moved across the factory floor from a
receiving point to a production station navigating a maze
through which other raw materials, components and products
must also pass.

For testing purposes, consider a factory that produces 8
products. From raw material to shipped product there are 8
stations to pass through: receiving (R), component assembly
(CA), quality inspection (QI), final assembly (FA), inventory
control (IC) and storage (S), testing (T) and loading and
shipping (LS).

The factory’s goal is to try to reduce the time material is in
the plant to the smallest possible amount. This means moving
raw materials in and product out as quickly as possible. But
the situation can be very dynamic, with changing schedules
and priorities and product lines. In order to work as efficiently

Descending Deviation Optimization Techniques
For Scheduling Problems

Kevin McCarty
University of Idaho at Idaho Falls

1776 Science Center Drive
Idaho Falls, ID 83415, USA

mcca6934@vandals.uidaho.edu

Milos Manic
University of Idaho at Idaho Falls

1776 Science Center Drive
Idaho Falls, ID 83415, USA

misko@ieee.org

257

as possible the factory must be able to create a layout that will
allow materials to move such that there is a limited amount of
time spent waiting to move to the next station. Constraints
include minimum time spent at each station and minimum
time to move between stations. The goal state was one in
which all products were at a given station with no product
waiting on another.

As there was no way to predict what the initial state would
be, a random state generator was used to create 1000 random
starting states to see how well the scheduling problem could
be resolved to a goal state.

A number of Local Search Algorithms (LSAs) were used to
see which could most consistently move from a random
starting state to a goal state without being trapped by local
maxima.

Heuristics determine where in the local neighborhood LSAs
are to search as well as places to avoid. Many LSAs work to
explore nearby maxima through a process of moving to
successively more optimal states, hoping to encounter a global
solution along the way [1], [3], [5]. The problem is that many
problems are populated with localized maxima such that
flowing nearby gradients can “trap” a LSA by leading it to a
position which is not a global solution but in which all of its
neighboring positions lead to a less optimal state as shown in
Fig 1.

Fig. 1. Comparison of Local/Global Maxima

Some LSAs attempt to escape out of these local maxima
through some sort of random “bounce” [7]-[10] which moves
an algorithm to a less optimal state but potentially into a
location more capable of providing a solution, shown in Fig 2.

Fig. 2. Bounce out of a Local Maxima Trap

These random “bounces” are often not successful however,
leading an algorithm away, rather than towards, a solution,
expending time and computing resources in a fruitless search.
Descending Deviation Optimizations (DDOs) tries to improve
upon an LSAs ability to escape local maxima and find a goal
state by restricting it movements somewhat in order to prevent
it from moving to far away in any random direction from a
potential goal state. This process works well in the scheduling
problem presented in this paper because the state space
contains a number of goal states spread throughout.

 Local search algorithms tried were as follows:
1. Hill Climbing
2. Stochastic Hill Climbing
3. Random Restart Hill Climbing
4. Simulated Annealing
5. Genetic Mutation
6. Minimum Conflicts Search
7. Tabu Search

The results are listed in Table 1.
TABLE I. INITIAL RESULTS OF LSA TESTING

Algorithm Tries Success Failure % Success
Hill Climbing 1000 141 859 14.1
Stochastic Hill
climbing

1000 146 854 14.6

Random
Restart Hill
Climbing1

1000 866 134 86.6

Simulated
Annealing 2

1000 271 729 27.1

Genetic
Mutation3

1000 229 771 22.9

Min Conflicts4 1000 919 81 91.9
Tabu Search5 1000 680 320 68.0

1. Random Restart declares failure after 100 iterations
and no goal state

2. Simulated Annealing alpha set at .99, number
iterations max set to 1000, temp set to 1000

3. Genetic Mutation population of 30 boards, sample of
2

4. Min Conflicts max iterations set to 100
5. Tabu Search max iterations set to 100

All of the techniques had some success in finding goal
states, but the most successful required additional memory
resources (Minimum Conflicts Search, Tabu Search) or a
“lucky” combination of start states (Random Restart Hill
Climbing) in order to succeed. With limited resources, it
would be more advantageous to implement a different strategy
using one of the other techniques and the Descending
Deviations Optimization.

III. THE DESCENDING DEVIATION OPTIMIZATIONS
TECHNIQUE

Steps in the Descending Deviation Optimization (DDO)
Implementation are then as follows:

258

Step 1. DDO-LSA generates a potential random choice. If
the choice leads to a goal state then declare success.

Step 2. DDO-LSA choice is compared to the DDO
threshold. If the choice moves the algorithm beyond that
threshold, then choice is rejected and algorithm selects another
random choice and tests again until a choice if found or all
choices are tested.

Step 3. If choice is accepted, the optimal threshold reduced
by a predetermined amount and the algorithm moves to Step 1.

As an example of the DDO technique consider a common
local search technique: Simulated Annealing.

Simulated Annealing (SA), named after a process in
metallurgy whereby metals are successively heated and
cooled, implements a succession of random “bounces” that
slowly diminish over time [9], [10]. SA’s pseudo-random
selection method measures a random pick against a slowly
descending de-optimization threshold. The algorithm allows a
large range (nearly random) set of choices early on, getting
progressively more restrictive in favor of better choices with
each iteration. Since the range of options is greater in the
beginning, it will have a tendency to explore more maxima
and is correspondingly more likely to find one that is a global
solution. SA is able to explore a relatively wide range of
possibilities when compared to other algorithms and does a
comparatively good job of finding global maxima compared
with other local search techniques. However this can be
computationally expensive. In addition, the algorithm can
have a tendency to be lead hopelessly astray by a succession
of less than optimal choices as demonstrated in Fig 3.

0

2

4

6

8

10

12

Typical Failed SA Pattern

Fig. 3. Pattern in which SA fails to find a solution

The DDO approach to SA takes the original SA
implementation and adds the following optimizations:

1. An artificial, decreasing ceiling is imposed on the
allowable number of conflicts. The DDO threshold is
a function of the square root of the temperature
variable. The square root function is chosen in order
to provide a smooth, regular ceiling descent that
eventually converges to the original SA threshold as
they both approach zero. The ceiling prevents the
solution from going from a lower state to a much
higher state late in the process via a series of small,
negative changes demonstrated in Fig 4. With each
iteration the DDO threshold forces the SA to explore

a smaller and smaller range of randomizations,
hopefully to move it more quickly to the goal state.

2. Some versions of SA pick a value and may or may
not use it depending upon whether or not it exceeds
some “fitness” value. In this case, all the local
potential moves are tested. Any move which would
cause a no-op to occur is thrown out of the sample of
choices so that each iteration produces only those
values that meet the fitness criteria.

3. During the screening process, if a tile is found that
reaches the goal state, use that tile automatically so
the process ends in success.

0

2

4

6

8

10

12

14

16 SA Pattern with Descending Deviations DDThreashold

Fig. 4. Simulated Annealing with Descending Deviations

IV. TEST EXAMPLES

In order see how effective DDOs are, the best and worst
LSAs were chosen for implementation; Simulated Annealing
(SA) as the best performing and Stochastic Hill Climbing
(SHC) as the worst. Traditional Hill Climbing does not utilize
a random component so was excluded.

Stochastic Hill Climbing (SHC) is a variant of the
traditional Hill Climbing in which not the steepest ascent is
picked but any ascent is eligible, dictated by a probability
assigned to each option [3]. The probability is dependent to
some degree upon the steepness of the ascent.

DDO-SHC works exactly like the traditional SHC until it
gets “stuck”, at which point it “bounces” the solution to a
nearby, less optimal state and again applies the original
strategy. The “bounces” are gradually lessened in height or
until they disappear at which time if a global solution is not
reached, the strategy fails.

The DDO-SHC and DDO-SA were added to the suite of
LSAs and tested against the scheduling problem. The results
of the modified LSAS are listed in Table II.

TABLE II. RESULTS OFMODIFIED LOCAL SEARCH ALGORITHM TESTING

Algorithm Tries Success Failure % Success
DDO
Stochastic
Hill Climbing1

1000 253 747 25.3

DD Simulated
Annealing2

1000 993 7 99.3

259

1. DD-Hill rescued 121 failures, threshold set at 5
2. Simulated Annealing/DD-Simulated Annealing alpha

set at .99, number iterations max set to 1000, temp set
to 1000

In both cases DDO modifications to the original LSAs
resulted in significant improvements in the LSAs ability to
avoid local maxima and find a global solution. The DDO-
SHC success rate nearly doubled (14.6% to 25.3%) while the
DDO-SA achieved an almost fourfold (27.1% to 99.3%) rate
increase to the point it was nearly perfect and better than any
of the traditional LSAs tried.

There were 2 additional benefits as well for the DDO-SA
algorithm. Despite the additional overhead imposed by the
DDO, the increased success rate resulted in fewer iterations
overall for the given 1000-test cycle. In addition, the
algorithm also displayed a lesser tendency to “wander around”
or be lead astray by a series of bad choices. This resulted in
both more successes and 20% fewer iterations overall than
traditional SA to reach the goal state. This lead to a net time
reduction of over 35% to complete 1000 iterations, also
resulting in a large net decrease in computational resources
required.

V. CONCLUSION AND FUTURE WORK

The results demonstrate the significant advantages of
Descending Deviation Optimizations to Local Search
Algorithms in production line scheduling problems of factory
automation. Compared with the traditional approaches, DDO-
Optimized versions were many times more successful overall
in finding a solution. In the case of DDO-SA, the descending
ceiling prevented many fruitless searches due to a lengthy
series of bad choices resulting in a 99% decrease in the
number of unsuccessful attempts compared to traditional SA.
This resulted in a significant net time reduction and large net
decrease in computational resources required. DDO-SA also
outperformed all other local search algorithms tested,
including those heavily dependent upon memory resources.

Of particular note, the “lucky” LSA, Random Restart Hill
Climbing, given enough restart chances, would be more
successful at reaching the goal state than SA-DDO. However,
the number of restarts, and corresponding resources and time
needed, will be significant as even 100 restarts still resulted in
a failure rate nearly 20 times greater than SA-DDO.

Future work is to apply the DDO method to the other
LSAs to see which sorts of improvements are possible
elsewhere. It appears possible that any of the traditional LSA
techniques, such as Genetic Mutation, which utilize some
randomization can be improved. Other algorithms for
producing a descending ceiling need to be tested for
effectiveness. Also to be tested is how DDO-SA will work in
place of SA for other classes of NP-problems such as neural
network optimizations, adversarial game play, intelligent
control and chip layout and whether results are comparable to
those achieved in the factory scheduling problem.

REFERENCES

[1] I. Martinjak, M. Golub; Comparison of Heuristic Algorithms for
the N-Queen Problem; 29th International Conference on
Information Technology Interfaces, June 2007

[2] M. Sipser; Introduction to the Theory of Computation, 2nd Ed;
Thompson Course Technology 2006, pp 264-269

[3] S. Russell, P. Norvig; Artificial Intelligence – A Modern
Approach, 2nd Ed.; Prentice Hall 2003, pp 95-114

[4] M. Gao, J. Tian; Path Planning for Mobile Robot Based on
Improved Simulated Annealing Artificial Neural Network; 3rd

International Conference on Natural Computation, 2007
[5] A.H. Mantawy, Y.L Abdel-Magid; Integrating genetic

algorithms, tabu search, and simulated annealing for the unit
commitment problem; IEEE Transactions on Power Systems,
1999

[6] S. Zheng, W. Shu, L. Gao; Task Scheduling using Parallel
Genetic Simulated Annealing Algorithm; IEEE International
Conference on Service Operations and Logistics, and
Informatics, 2006

[7] K. Kurbel, B. Schneider, K. Singh; Solving optimization
problems by parallel recombinative simulated annealing on a
parallel computer-an application to standard cell placement in
VLSI design; IEEE Transactions on Systems, Man, and
Cybernetics, Part B, 1998

[8] V. Pasias, D.A. Karras; R.C. Papademetriou; Traffic
engineering in multi-service networks comparing genetic and
simulated annealing optimization techniques; IEEE International
Joint Conference on Neural Networks, July 2004

[9] G. Kliewer, S. Tschoke; A general parallel simulated annealing
library and its application in airline industry; International
Parallel and Distributed Processing Symposium, 2000

[10] P.R.S Mendonca, L.P Caloba; New simulated annealing
algorithms; IEEE International Symposium on Circuits and
Systems, 1997

[11] B. Liu, L. Wang, Y.H. Jin; An Effective PSO-Based Memetic
Algorithm for Flow Shop Scheduling; IEEE Transactions on
Systems, Man, and Cybernetics, February 2007

[12] F.G. Guimaraes, F. Campelo, H. Igarashi, D.A. Lowther, J.A.
Ramirez; Optimization of Cost Functions Using Evolutionary
Algorithms With Local Learning and Local Search; IEEE
Transactions on Magnetics, 2007

[13] S. Li, Y. Li, Y. Liu; Effects of Process planning Upon
Production Scheduling under concurrent Environment; The 6th

World Congress on Intelligent Control and Automation, 2006
[14] R.B. Chase, F.R. Jacobs, N.J. Aquilano; Operations

Management for Competitive Advantage, 11th Ed; McGraw-Hill,
2006, pp 22-50

[15] H. Ishibuchi, T. Murata; Local search procedures in a multi-
objective genetic local search algorithm for scheduling
problems; International Conference on Systems, Man, and
Cybernetics, 1999

[16] H. Ishibuchi, T. Yoshida, T. Murata; Balance between genetic
search and local search in memetic algorithms for
multiobjective permutation flowshop scheduling; IEEE
Transactions on Evolutionary Computation, 2003

[17] M.E. Garcia, S. Valero, E. Argente, A. Giret, V. Julian; A FAST
Method to Achieve Flexible Production Programming System;
IEEE Transactions on Systems, Man, and Cybernetics, 2008

260

	Main
	Welcome Messages
	Committees
	Keynotes
	Program at a Glance
	Industry Day
	Technical Program
	Reviewers
	Author Index
	Local Information

