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Abstract-– Sparing, the process of rebuilding data in case of 

disk failure, has been a target of research since early 1990‘s [1].  
The problem that these specific hardware/software control 
systems typically face in sparing is the tradeoff between serving 
requests – user’s versus internal [2].  If the algorithm favors 
user requests, in the presence of heavy workloads, the internal 
data recovery gets preempted resulting in risky delay of the 
data sparing.  On the other hand, favoring internal data 
recovery requests over the user requests can result in high 
response times per transaction that are unacceptable for the 
users of the RAID system.  Intelligent, neuro-fuzzy controllers 
(NFCs) offer a way to improve the control process and enhance 
the ability of a system to achieve faster system response, while 
serving the internal requests at the same time.  This paper 
presents the neuro-fuzzy enhancement of the traditional data 
recovery of a RAID system modeled with a Queue System with 
Vacations (QSV) [3].  Experimental results demonstrated better 
balancing between an acceptable response time for the user 
requests and the time for the data to be redundant again, 
resulting in both higher user satisfaction and better system 
reliability. 

I. INTRODUCTION 

The analysis and modeling of the RAID systems under 
failure has been of interest for researchers for almost two 
decades [1,2,4-9].  The control of queueing systems [11-14] 
is one area of research that is applicable to the problem of 
balancing between the response time for the customer and 
the time for the data to be made redundant in a RAID 
system.  

Computationally intelligent techniques, like neural nets 
and fuzzy logic have been applied to the control of queueing 
systems.  For example, fuzzy logic was used in the control of 
data flow in TCP communication networks to minimize 
congestions [15,16].  Fuzzy logic has been applied to the 
control of the sparing process [36].  Neural networks have 
been also applied to queueing systems.  For example, neural 
networks were used to tune computer system performance 
[17], for modeling of queueing systems [18,19], for 
congestion control in communication networks [20-24], and 
for control of self-similar communication systems [26,27].  

This paper presents an extension of the QSV where 
modeling of the sparing processes was based on a neuro-
fuzzy controller (NFC).  Such a NFC is used for both 
measuring of the input parameters and for the control of the 
queue.  Two approaches to control the sparing process are 
compared: 1) the empty/no-empty QSV model, where the 
sparing process only takes place when the queue is empty, 
this is, when there are no external (users) requests; and 2) a 
neuro-fuzzy controller that uses three parameters (response 
time of user requests, fraction spared and time of sparing) to 
make the decision whether to allow user requests to be 
carried out or continue with the sparing. 

This paper demonstrates a novel approach based on neuro-
fuzzy control of queueing systems to the sparing process.  
Testing results illustrate a lower impact on the response time 
of user requests while completing the sparing at the same 
time as the empty/no-empty QSV. 

The organization of this paper is as follows: Section 2 
describes the sparing model based on a RAID1 system.  
Section 3 describes the neuro-fuzzy control implemented for 
the sparing process.  Section 4 describes the simulation 
executed to test the performance of the neuro-fuzzy control. 
Section 5 presents conclusions.  

 

II. QUEUEING AND SPARING MODELS 

One of the first sparing models was proposed in 1990’s 
[1].  Since then, other analysis of the sparing process in 
RAID systems have been published [1,2,4-9].  In this paper, 
the new approach for sparing will be presented on the 
analysis of a RAID1 system.  The RAID1 system can be in 
one of three modes: 1) optimal, when all the disks are 
working; 2) degraded, when one disk fails; 3) failed, when 
one pair of disks with the same data fail so there is no way to 
recover the data.   

The RAID1 system consists of D disks, where D is an 
even number.  The mirroring of the disks is by pairs of the dth 
with dth+1 disk, where d=1,3,5,…,D-1.  The capacity of the 
disk is referred to as Cd.  The disks are divided up in Nb 
number of disk blocks of size Sb.  The number of Nb blocks 
per disk depends on the capacity of the disk Cd. 

           (1) 
 

The disk block is the atomic unit of storage for the RAID1 
system.  When newly arrived data has to be stored on a disk, 
a new disk block is allocated.  For this paper, a block size 
Sb=128KB will be used.  This is the default size for the HP 
StorageWorks 1000/1500 MSA [28].  Each disk block is 
referred to as Bi, where i=1,2,3,…,Nb.   

Fig. 1 shows the data layout of the RAID1 system in 
optimal mode.  Each block Bi has a corresponding mirror on 
the other disk indicated by B’i.  For example, disk 1 (disk dth) 
and 2 (disk dth+1) form a pair of data and its mirror.  The 
spare disk is in standby mode and no data blocks have been 
allocated on it. 

A workload with arrival rate λ is applied to the RAID1 
system controller by the users.   Instead of specifying an 
arrival rate λ to the disk controller, the throughput χ in IOs 
per second (IO/s), can be specified by 

 
               (2) 
 

bdb SCN /=

λ
χ 1=
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The throughput is distributed across the disks.  A balanced 
workload across the disks is used in this paper. 

When a disk fails, the sparing process is started and the 
copy of the data on the surviving disk to the spare disk is 
performed on a block by block basis.  Fig. 2 shows an 
example of a failed disk; in this case, disk D-1 failed and the 
spare disk now in process of replacing disk D-1.  The sparing 
process copies the disk blocks Bi from disk D to the spare 
disk that is now the newly disk D-1. 

The fraction of the Nb blocks copied is fsp.  If Bc is the 
number of disk blocks already copied to the spare disk, then 
fraction of the Nb blocks is: 

 
bcsp NBf /=             (3) 

 
When the RAID1 system is sparing, the combined 

throughput of the disks change from that of the optimal state, 
since now we have two different conditions: 1) the surviving 
disk is now serving its share of user requests and reading its 
disk blocks; 2) the spare disk is writing its disk blocks and 
serving read requests for the data already copied.  The other 
D-2 disks are serving requests as they would normally do.   

A queueing system in which the server may be 
disconnected  (turned off) or removed is said to be a 
queueing system with vacations [3].  Fig. 3 illustrates the 
concept of queueing systems with vacations (QSV). 

The requests arrive at a rate λ to the queueing system.  The 
requests are processed at a rate µ.  When the queue is empty, 

the server is idle.  Then the server can turn itself off and 
execute some background process (go on vacation).  After 
some time the server returns from executing the background 
process and rechecks the queue.  If the queue is not empty, 
then the server turns itself on and serves the requests that 
arrived during the vacation of the server.  But if the queue is 
still empty, the server keeps itself off and goes on vacation 
(execute the background process) again.  This is referred to 
in this paper as the empty/no-empty approach to control of 
the QSV.  

The complete model of the RAID1 system is based on the 
central server model [29] with the addition of the QSV as 
shown in Fig. 4.  The user requests to the queueing system 
arrive at a rate λ.  The RAID controller (the server) processes 
requests at a µ service rate.  Finding optimal policies for 
networks of queues is not a trivial problem.  Some queue 
optimization problems are probably intractable [30].  This is 
one of the reasons why fuzzy logic can be used to control 
queueing systems.  Fuzzy logic offers the possibility of 
easily modeling and controlling systems in which 
mathematical models can be hard to derive.  A simulation of 
the queueing system in Fig. 4 was the approach used in this 
paper to show the improvements made by the neuro-fuzzy 
controller.  

The model of the disks used in the simulation is based on 
the ST373454FC Seagate disk [31].  The service time, Td, of 
a disk request depends on three factors, 1) rotational latency, 
trot; 2) seek time tseek ; and 3) and transfer time, txfer.   

 
xferseekrotd tttT ++=                (4) 

 
The disk position time, dpt, is defined this way 
 
 seekrot ttdpt +=            (5) 
The disks will be modeled using the following equation 
 

xferd tdptT +=            (6) 
 
The disk service times are difficult to estimate since some 

factors, like disk specifications, disk caching and scheduling 
policy are hard to determine [32].  The data used for this 
simulation came from measurements made on the 
ST373454FC Seagate disk.  For random workloads the disk 
position time can be modeled by this equation in [32]: 

   
               (7) 

queuedisk
badpt

_1+
+=

Fig. 1. RAID1 disk array data layout. 

Fig. 2. Sparing process to replace failed disk. 

λ µ 

λ = arrival rate µ = service rate 
Fig. 3. Queueing System with Vacations (QSV). 

Fig. 4. Queueing system of disk array controller and disks. 
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The values found for random reads were a=2 and b=5.8.  

The values for random writes were a=2.5 and b=6.85.  Fig 5 
shows the graph for the measured and modeled disk position 
times.  The txfer for both 4KB and 128KB transfers were 
0.06ms and 2.27ms, respectively. 

 

Fig. 5. Disk Position Times measured. 
 

III. NFUSA (NEURO-FUZZY SPARING ALGORITHM) 

The neuro-fuzzy solution proposed to balance the time 
needed to complete the sparing and the response time of the 
user requests is composed of two neural nets with the 
following features: 1) the input parameters to the neural net 
controller are normalized so they are in the [0,1] range; 2) 
the input parameters are fuzzified using three membership 
functions, LOW, MED and HIG;  3) the fuzzification of the 
input parameters is made by the first neural net; 4) the 
second neural net implements the rule base and makes the 
decision whether to keep sparing or hold the sparing 
temporarily, based on the fuzzified parameters from the first 
neural net.  In Fig. 6 we show a graphical model of the 
proposed solution. 

The input parameters of the fuzzy controller are three: 1) 
The fraction of sparing, fsp; 2) the response time of the RAID   
controller rt; and 3) the time elapsed since a disk failed and 
the sparing process started, tsp.  

For this implementation of the neuro-fuzzy controller the 
three parameters were normalized. The first parameter fsp 
from (3), is in the range [0,1].  The other two parameters are 
normalized by making two assumptions.   

The first assumption is that the response time rt can be 
normalized with respect to certain upper limits of the 
response time that the user applications consider excessive.  
One example is with the Microsoft Exchange Servers for 
which  there are some latencies that are considered the 
maximum acceptable and above those latencies there can be 
problems [33].  For this paper, it was assumed that a delay of 
rtmax=50ms was the maximum that can be tolerated.  That 
was the value used in the simulation of the sparing.  The 
normalized response time rtn used by the fuzzy controller is 
then: 

 

              (8) 
 
The second assumption made is that there is a maximum 

time acceptable for the user without the redundancy of the 
data restored.  This is a reasonable assumption since the 
purpose of a RAID system is to guarantee the redundancy of 
the data so there is no data loss when a disk fails.  The time 
elapsed in the sparing process since a disk failed tsp is 
normalized also.  The maximum time allowed for a sparing 
to finish was assumed to be tspmax=12 hours.  With this 
assumption the normalized time elapsed in the sparing 
process tspn is: 

  
          (9) 

 
With the three input parameters normalized, now the 

membership function can be defined.  Three linguistic values 
were assigned, LOW, MED, and HIG, which stand for 
“low”, “medium” and “high” value.  This is following the 
same technique shown by Philips et. al. [16].  Fig. 7 shows 
the triangular fuzzy membership functions for all three input 
parameters.   

The three normalized parameters (fsp, rtn, tspn) in the range 
[0,1] are the input to the fuzzifier neural net.  Fig. 8 shows 
the structure of the neural net used.  Notice the two sections. 
The first neural net section, based on the value of the 
normalized parameter, will output a number 0, 0.5 or 1 that 
will correspond to one of the three possible fuzzy values 
(LOW, MED, HIG).  The second section implements the 
controller part, which is based on the rule base. 

The rule base can be implemented according to the 
following linguistic criteria: 1) The response time of the 
RAID controller rt, should be kept as low as possible.  If the 
response time rt, is LOW, the sparing can continue without 

Disk Position Times of Random Accesses for the ST373454FC 73.4GB 
15KRPM Disk
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Fig. 7. Membership functions for the normalized parameters.

634



any risk of affecting the user response time.  2) The sparing 
process should be finished within the maximum allowed, 
tspmax.  The closer we are to HIG, the more priority should be 
given to the sparing process. 3) The fraction of sparing data 
spared fsp, should be as close to HIG as possible.  If the 
fraction of data already spared is close to zero, then the 
sparing process is favored over the response time. 

With these linguistic criteria, the rule base can be built.  
The output of each rule is a binary value of KEEP (1), which 
means continue the sparing process, or HOLD (0), which 
means to hold off the sparing process.  The complete rule 
base is in Table 1.  The output of the fuzzy controller is the 
decision to turn on/off the RAID controller to serve user 
requests (on) or regenerate the redundancy (off).  The 
deffuzification of the output is done by applying the rule and 
the result is a zero (HOLD) or a one (KEEP). 

Rules 1-9 Rules 10-18 Rules 19-27
rtn      fsp     tspn OUT rtn     fsp    tspn OUT rtn     fsp    tspn OUT 

LOW   LOW   LOW KEEP MED   LOW   LOW KEEP HIG   LOW   LOW HOLD 

LOW   LOW    MED KEEP MED   LOW    MED KEEP HIG   LOW    MED HOLD 

LOW    LOW    HIG KEEP MED    LOW    HIG KEEP HIG    LOW    HIG KEEP 

LOW   MED   LOW KEEP MED   MED   LOW KEEP HIG   MED   LOW HOLD 

LOW   MED   MED KEEP MED   MED    MED KEEP HIG   MED    MED HOLD 

LOW   MED   HIG KEEP MED    MED    HIG KEEP HIG    MED    HIG KEEP 

LOW   HIG    LOW KEEP MED   HIG   LOW HOLD HIG   HIG   LOW HOLD 

LOW    HIG    MED KEEP MED   HIG    MED KEEP HIG   HIG    MED HOLD 

LOW    HIG    HIG KEEP MED    HIG    HIG KEEP HIG    HIG    HIG KEEP 

Table1. Rule base for the Neuro-Fuzzy controller for sparing. 
 

IV. SIMULATION AND RESULTS 

The neural network training was performed in Matlab.  
The resulting weights and biases were translated into the 
simulation.  The simulation was done using the CSIM19 
toolkit, which allows the discrete-event simulation models 
[34].  The testing parameters were chosen to resemble a 
typical Exchange Server environment [35]: 75% reads (3:1 
ratio).  A RAID1 system with 60 ST373454FC Seagate disks 
was simulated.  The RAID controller had a µ = 10,000 IO/s. 

The throughputs applied for comparisons were 500, 1000, 
2000, 3000 and 4000 IO/s.  The throughputs were 
maintained constant during the entire duration of the 

simulation.  The intention was to measure the variations in 
response time and the duration of the sparing process. 

The graphs used for the comparison show on the 
horizontal axis the total time taken for the sparing process to 
complete.  On the vertical axis the graphs show the response 
time (latency) seen by the user requests.   Fig. 9 shows the 
result for the 500 IO/s throughput applied to the RAID 
system.  For a light workload, both sparing approaches 
produced the same results.  Fig 10 shows the tridimensional 
plot of the three normalized variables during the sparing.   In 
this case, since the neuro-fuzzy and the empty/no-empty 
sparing had the same results, the trajectories overlap in 
tridimensional graph of Fig. 10. 

Fig. 11 shows the result for the 1000 IO/s throughput 
applied to the RAID system.  For this workload, the neuro 
fuzzy sparing proved superior in terms of the response time 
seen during the sparing.  The neuro-fuzzy could maintain a 
10ms response time during the sparing.  The empty/no-
empty approach showed a bigger response time up to 20ms.  
Both sparing approaches finished the sparing in the same 
time.  Fig 12 shows the tridimensional plot of the three 
normalized variables during the sparing.   In this case, the 
neuro-fuzzy trajectory is a straight line since the response 
time was constant all along the sparing.  

Fig. 13 shows the response time for a 2000 IO/s 
throughput. In this case the neuro-fuzzy sparing showed a 
better response time during the sparing process than the 
empty/no-empty approach even though the difference is not 
that big as in the 1000 IO/s case.   As the throughput is 
increased, the difference between both approaches will be 
less.  More investigation is needed to determine if a change 
in the fuzzifier neural net or the controller neural net can 
make the improvement at higher throughputs more 
indicative.  Fig. 14 shows the trajectory of sparing for the 
2000 IO/s throughput for both sparing approaches.  Fig 15 
and 16 show the comparison for 3000 IO/s.  The results also 
show a slight improvement.  This slight improvement is also 
shown in the 4000 IO/s case. 

 
 
 
 
 
 
 

Fig. 8. Neural Net Layers of the Neuro-Fuzzy controller for sparing. 
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Fig. 10. Trajectory of the sparing process for 500 IO/s 

Comparison of Response Time for a Sparing under a 1000 IO/s Workload
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Fig. 11. Comparison of latency for 1000 IO/s throughput.
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Fig. 12. Trajectory of the sparing process for 1000 IO/s throughput.

Comparison of Response Time for a Sparing under a 2000 IO/s Workload
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Fig. 14. Trajectory of the sparing process for 2000 IO/s throughput. 

Comparison of Response Time for a Sparing under a 3000 IO/s Workload
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Fig. 16. Trajectory of the sparing process for 3000 IO/s throughput.
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V. CONCLUSIONS 

The approach presented in this paper demonstrated two 
distinct advantages. A traditional queueing system with 
vacations for sparing of RAID systems can be successfully 
extended via use of intelligent control based on neuro-fuzzy 
controller.  Moreover, in the low throughput ranges, this 
intelligent controller proved to be superior to a simple yes/no 
empty approach of waiting for the queue to become vacant. 

In regions of high throughput, the neuro-fuzzy controlled 
sparing approach demonstrated improvements in the 
response time (not as dramatic as in the case of low 
throughput range though).  Overall, the neuro-fuzzy 
controller presented in this paper improved the response time 
for user requests.  This proves that the neuro trained fuzzy 
logic controller for sparing can be a successful approach to 
meeting QoS requirements for RAID systems.  Regions with 
high throughputs are worth further investigating (the 
presented approach may prove to be even more superior 
here). 
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Fig. 18. Trajectory of the sparing process for 4000 IO/s throughput.
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