
NFuSA – Neuro-Fuzzy Algorithm for Sparing in
RAID Systems

Guillermo Navarro Milos Manic

 Hewlett-Packard University of Idaho
guillermo.navarro@hp.com misko@ieee.org

Abstract-– Sparing, the process of rebuilding data in case of

disk failure, has been a target of research since early 1990‘s [1].
The problem that these specific hardware/software control
systems typically face in sparing is the tradeoff between serving
requests – user’s versus internal [2]. If the algorithm favors
user requests, in the presence of heavy workloads, the internal
data recovery gets preempted resulting in risky delay of the
data sparing. On the other hand, favoring internal data
recovery requests over the user requests can result in high
response times per transaction that are unacceptable for the
users of the RAID system. Intelligent, neuro-fuzzy controllers
(NFCs) offer a way to improve the control process and enhance
the ability of a system to achieve faster system response, while
serving the internal requests at the same time. This paper
presents the neuro-fuzzy enhancement of the traditional data
recovery of a RAID system modeled with a Queue System with
Vacations (QSV) [3]. Experimental results demonstrated better
balancing between an acceptable response time for the user
requests and the time for the data to be redundant again,
resulting in both higher user satisfaction and better system
reliability.

I. INTRODUCTION

The analysis and modeling of the RAID systems under
failure has been of interest for researchers for almost two
decades [1,2,4-9]. The control of queueing systems [11-14]
is one area of research that is applicable to the problem of
balancing between the response time for the customer and
the time for the data to be made redundant in a RAID
system.

Computationally intelligent techniques, like neural nets
and fuzzy logic have been applied to the control of queueing
systems. For example, fuzzy logic was used in the control of
data flow in TCP communication networks to minimize
congestions [15,16]. Fuzzy logic has been applied to the
control of the sparing process [36]. Neural networks have
been also applied to queueing systems. For example, neural
networks were used to tune computer system performance
[17], for modeling of queueing systems [18,19], for
congestion control in communication networks [20-24], and
for control of self-similar communication systems [26,27].

This paper presents an extension of the QSV where
modeling of the sparing processes was based on a neuro-
fuzzy controller (NFC). Such a NFC is used for both
measuring of the input parameters and for the control of the
queue. Two approaches to control the sparing process are
compared: 1) the empty/no-empty QSV model, where the
sparing process only takes place when the queue is empty,
this is, when there are no external (users) requests; and 2) a
neuro-fuzzy controller that uses three parameters (response
time of user requests, fraction spared and time of sparing) to
make the decision whether to allow user requests to be
carried out or continue with the sparing.

This paper demonstrates a novel approach based on neuro-
fuzzy control of queueing systems to the sparing process.
Testing results illustrate a lower impact on the response time
of user requests while completing the sparing at the same
time as the empty/no-empty QSV.

The organization of this paper is as follows: Section 2
describes the sparing model based on a RAID1 system.
Section 3 describes the neuro-fuzzy control implemented for
the sparing process. Section 4 describes the simulation
executed to test the performance of the neuro-fuzzy control.
Section 5 presents conclusions.

II. QUEUEING AND SPARING MODELS

One of the first sparing models was proposed in 1990’s
[1]. Since then, other analysis of the sparing process in
RAID systems have been published [1,2,4-9]. In this paper,
the new approach for sparing will be presented on the
analysis of a RAID1 system. The RAID1 system can be in
one of three modes: 1) optimal, when all the disks are
working; 2) degraded, when one disk fails; 3) failed, when
one pair of disks with the same data fail so there is no way to
recover the data.

The RAID1 system consists of D disks, where D is an
even number. The mirroring of the disks is by pairs of the dth
with dth+1 disk, where d=1,3,5,…,D-1. The capacity of the
disk is referred to as Cd. The disks are divided up in Nb
number of disk blocks of size Sb. The number of Nb blocks
per disk depends on the capacity of the disk Cd.

 (1)

The disk block is the atomic unit of storage for the RAID1
system. When newly arrived data has to be stored on a disk,
a new disk block is allocated. For this paper, a block size
Sb=128KB will be used. This is the default size for the HP
StorageWorks 1000/1500 MSA [28]. Each disk block is
referred to as Bi, where i=1,2,3,…,Nb.

Fig. 1 shows the data layout of the RAID1 system in
optimal mode. Each block Bi has a corresponding mirror on
the other disk indicated by B’i. For example, disk 1 (disk dth)
and 2 (disk dth+1) form a pair of data and its mirror. The
spare disk is in standby mode and no data blocks have been
allocated on it.

A workload with arrival rate λ is applied to the RAID1
system controller by the users. Instead of specifying an
arrival rate λ to the disk controller, the throughput χ in IOs
per second (IO/s), can be specified by

 (2)

bdb SCN /=

λ
χ 1=

The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON)
Nov. 5-8, 2007, Taipei, Taiwan

1-4244-0783-4/07/$20.00 ©2007 IEEE 632

The throughput is distributed across the disks. A balanced
workload across the disks is used in this paper.

When a disk fails, the sparing process is started and the
copy of the data on the surviving disk to the spare disk is
performed on a block by block basis. Fig. 2 shows an
example of a failed disk; in this case, disk D-1 failed and the
spare disk now in process of replacing disk D-1. The sparing
process copies the disk blocks Bi from disk D to the spare
disk that is now the newly disk D-1.

The fraction of the Nb blocks copied is fsp. If Bc is the
number of disk blocks already copied to the spare disk, then
fraction of the Nb blocks is:

bcsp NBf /= (3)

When the RAID1 system is sparing, the combined

throughput of the disks change from that of the optimal state,
since now we have two different conditions: 1) the surviving
disk is now serving its share of user requests and reading its
disk blocks; 2) the spare disk is writing its disk blocks and
serving read requests for the data already copied. The other
D-2 disks are serving requests as they would normally do.

A queueing system in which the server may be
disconnected (turned off) or removed is said to be a
queueing system with vacations [3]. Fig. 3 illustrates the
concept of queueing systems with vacations (QSV).

The requests arrive at a rate λ to the queueing system. The
requests are processed at a rate µ. When the queue is empty,

the server is idle. Then the server can turn itself off and
execute some background process (go on vacation). After
some time the server returns from executing the background
process and rechecks the queue. If the queue is not empty,
then the server turns itself on and serves the requests that
arrived during the vacation of the server. But if the queue is
still empty, the server keeps itself off and goes on vacation
(execute the background process) again. This is referred to
in this paper as the empty/no-empty approach to control of
the QSV.

The complete model of the RAID1 system is based on the
central server model [29] with the addition of the QSV as
shown in Fig. 4. The user requests to the queueing system
arrive at a rate λ. The RAID controller (the server) processes
requests at a µ service rate. Finding optimal policies for
networks of queues is not a trivial problem. Some queue
optimization problems are probably intractable [30]. This is
one of the reasons why fuzzy logic can be used to control
queueing systems. Fuzzy logic offers the possibility of
easily modeling and controlling systems in which
mathematical models can be hard to derive. A simulation of
the queueing system in Fig. 4 was the approach used in this
paper to show the improvements made by the neuro-fuzzy
controller.

The model of the disks used in the simulation is based on
the ST373454FC Seagate disk [31]. The service time, Td, of
a disk request depends on three factors, 1) rotational latency,
trot; 2) seek time tseek ; and 3) and transfer time, txfer.

xferseekrotd tttT ++= (4)

The disk position time, dpt, is defined this way

 seekrot ttdpt += (5)
The disks will be modeled using the following equation

xferd tdptT += (6)

The disk service times are difficult to estimate since some

factors, like disk specifications, disk caching and scheduling
policy are hard to determine [32]. The data used for this
simulation came from measurements made on the
ST373454FC Seagate disk. For random workloads the disk
position time can be modeled by this equation in [32]:

 (7)

queuedisk
badpt

_1+
+=

Fig. 1. RAID1 disk array data layout.

Fig. 2. Sparing process to replace failed disk.

λ µ

λ = arrival rate µ = service rate
Fig. 3. Queueing System with Vacations (QSV).

Fig. 4. Queueing system of disk array controller and disks.

633

The values found for random reads were a=2 and b=5.8.

The values for random writes were a=2.5 and b=6.85. Fig 5
shows the graph for the measured and modeled disk position
times. The txfer for both 4KB and 128KB transfers were
0.06ms and 2.27ms, respectively.

Fig. 5. Disk Position Times measured.

III. NFUSA (NEURO-FUZZY SPARING ALGORITHM)

The neuro-fuzzy solution proposed to balance the time
needed to complete the sparing and the response time of the
user requests is composed of two neural nets with the
following features: 1) the input parameters to the neural net
controller are normalized so they are in the [0,1] range; 2)
the input parameters are fuzzified using three membership
functions, LOW, MED and HIG; 3) the fuzzification of the
input parameters is made by the first neural net; 4) the
second neural net implements the rule base and makes the
decision whether to keep sparing or hold the sparing
temporarily, based on the fuzzified parameters from the first
neural net. In Fig. 6 we show a graphical model of the
proposed solution.

The input parameters of the fuzzy controller are three: 1)
The fraction of sparing, fsp; 2) the response time of the RAID
controller rt; and 3) the time elapsed since a disk failed and
the sparing process started, tsp.

For this implementation of the neuro-fuzzy controller the
three parameters were normalized. The first parameter fsp
from (3), is in the range [0,1]. The other two parameters are
normalized by making two assumptions.

The first assumption is that the response time rt can be
normalized with respect to certain upper limits of the
response time that the user applications consider excessive.
One example is with the Microsoft Exchange Servers for
which there are some latencies that are considered the
maximum acceptable and above those latencies there can be
problems [33]. For this paper, it was assumed that a delay of
rtmax=50ms was the maximum that can be tolerated. That
was the value used in the simulation of the sparing. The
normalized response time rtn used by the fuzzy controller is
then:

 (8)

The second assumption made is that there is a maximum

time acceptable for the user without the redundancy of the
data restored. This is a reasonable assumption since the
purpose of a RAID system is to guarantee the redundancy of
the data so there is no data loss when a disk fails. The time
elapsed in the sparing process since a disk failed tsp is
normalized also. The maximum time allowed for a sparing
to finish was assumed to be tspmax=12 hours. With this
assumption the normalized time elapsed in the sparing
process tspn is:

 (9)

With the three input parameters normalized, now the

membership function can be defined. Three linguistic values
were assigned, LOW, MED, and HIG, which stand for
“low”, “medium” and “high” value. This is following the
same technique shown by Philips et. al. [16]. Fig. 7 shows
the triangular fuzzy membership functions for all three input
parameters.

The three normalized parameters (fsp, rtn, tspn) in the range
[0,1] are the input to the fuzzifier neural net. Fig. 8 shows
the structure of the neural net used. Notice the two sections.
The first neural net section, based on the value of the
normalized parameter, will output a number 0, 0.5 or 1 that
will correspond to one of the three possible fuzzy values
(LOW, MED, HIG). The second section implements the
controller part, which is based on the rule base.

The rule base can be implemented according to the
following linguistic criteria: 1) The response time of the
RAID controller rt, should be kept as low as possible. If the
response time rt, is LOW, the sparing can continue without

Disk Position Times of Random Accesses for the ST373454FC 73.4GB
15KRPM Disk

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 10 20 30 40 50 60

Disk Queue

Po
si

tio
n

Ti
m

e
(m

s)

Measured Disk Position Time Reads Modeled Disk Position Time Reads
Measured Disk Position Writes Modeled Disk Position Writes

a_reads = 2
b_reads = 5.8
RMS = 0.11

a_writes = 2.5
b_writes = 6.85
RMS = 0.16

maxrt
rrt t

n =

maxtsp
t

tsp sp
n =

Fig. 6. Neuro-Fuzzy controller of the QSV for sparing

Fig. 7. Membership functions for the normalized parameters.

634

any risk of affecting the user response time. 2) The sparing
process should be finished within the maximum allowed,
tspmax. The closer we are to HIG, the more priority should be
given to the sparing process. 3) The fraction of sparing data
spared fsp, should be as close to HIG as possible. If the
fraction of data already spared is close to zero, then the
sparing process is favored over the response time.

With these linguistic criteria, the rule base can be built.
The output of each rule is a binary value of KEEP (1), which
means continue the sparing process, or HOLD (0), which
means to hold off the sparing process. The complete rule
base is in Table 1. The output of the fuzzy controller is the
decision to turn on/off the RAID controller to serve user
requests (on) or regenerate the redundancy (off). The
deffuzification of the output is done by applying the rule and
the result is a zero (HOLD) or a one (KEEP).

Rules 1-9 Rules 10-18 Rules 19-27
rtn fsp tspn OUT rtn fsp tspn OUT rtn fsp tspn OUT

LOW LOW LOW KEEP MED LOW LOW KEEP HIG LOW LOW HOLD

LOW LOW MED KEEP MED LOW MED KEEP HIG LOW MED HOLD

LOW LOW HIG KEEP MED LOW HIG KEEP HIG LOW HIG KEEP

LOW MED LOW KEEP MED MED LOW KEEP HIG MED LOW HOLD

LOW MED MED KEEP MED MED MED KEEP HIG MED MED HOLD

LOW MED HIG KEEP MED MED HIG KEEP HIG MED HIG KEEP

LOW HIG LOW KEEP MED HIG LOW HOLD HIG HIG LOW HOLD

LOW HIG MED KEEP MED HIG MED KEEP HIG HIG MED HOLD

LOW HIG HIG KEEP MED HIG HIG KEEP HIG HIG HIG KEEP

Table1. Rule base for the Neuro-Fuzzy controller for sparing.

IV. SIMULATION AND RESULTS

The neural network training was performed in Matlab.
The resulting weights and biases were translated into the
simulation. The simulation was done using the CSIM19
toolkit, which allows the discrete-event simulation models
[34]. The testing parameters were chosen to resemble a
typical Exchange Server environment [35]: 75% reads (3:1
ratio). A RAID1 system with 60 ST373454FC Seagate disks
was simulated. The RAID controller had a µ = 10,000 IO/s.

The throughputs applied for comparisons were 500, 1000,
2000, 3000 and 4000 IO/s. The throughputs were
maintained constant during the entire duration of the

simulation. The intention was to measure the variations in
response time and the duration of the sparing process.

The graphs used for the comparison show on the
horizontal axis the total time taken for the sparing process to
complete. On the vertical axis the graphs show the response
time (latency) seen by the user requests. Fig. 9 shows the
result for the 500 IO/s throughput applied to the RAID
system. For a light workload, both sparing approaches
produced the same results. Fig 10 shows the tridimensional
plot of the three normalized variables during the sparing. In
this case, since the neuro-fuzzy and the empty/no-empty
sparing had the same results, the trajectories overlap in
tridimensional graph of Fig. 10.

Fig. 11 shows the result for the 1000 IO/s throughput
applied to the RAID system. For this workload, the neuro
fuzzy sparing proved superior in terms of the response time
seen during the sparing. The neuro-fuzzy could maintain a
10ms response time during the sparing. The empty/no-
empty approach showed a bigger response time up to 20ms.
Both sparing approaches finished the sparing in the same
time. Fig 12 shows the tridimensional plot of the three
normalized variables during the sparing. In this case, the
neuro-fuzzy trajectory is a straight line since the response
time was constant all along the sparing.

Fig. 13 shows the response time for a 2000 IO/s
throughput. In this case the neuro-fuzzy sparing showed a
better response time during the sparing process than the
empty/no-empty approach even though the difference is not
that big as in the 1000 IO/s case. As the throughput is
increased, the difference between both approaches will be
less. More investigation is needed to determine if a change
in the fuzzifier neural net or the controller neural net can
make the improvement at higher throughputs more
indicative. Fig. 14 shows the trajectory of sparing for the
2000 IO/s throughput for both sparing approaches. Fig 15
and 16 show the comparison for 3000 IO/s. The results also
show a slight improvement. This slight improvement is also
shown in the 4000 IO/s case.

Fig. 8. Neural Net Layers of the Neuro-Fuzzy controller for sparing.

Comparison of Response Time for a Sparing under a 500 IO/s Workload

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4

Time in Hours

m
s

Empty/No-Empty Ctlr Neuro-Fuzzy Ctlr

Fig. 9. Comparison of latency for 500 IO/s throughput.

635

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Response Time (normalized)

Sparing Trajectory for a 500 IO/s Workload
Blue - Neuro-Fuzzy Sparing

Red - Empty/No Empty Sparing

Time of Sparing (normalized)

F
ra

ct
io

n
of

 D
at

a
S

pa
re

d
(f

sp
)

Fig. 10. Trajectory of the sparing process for 500 IO/s

Comparison of Response Time for a Sparing under a 1000 IO/s Workload

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4

Time in Hours

m
s

Empty/No-Empty Ctlr Neuro-Fuzzy Ctlr

Fig. 11. Comparison of latency for 1000 IO/s throughput.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Response Time (normalized)

Sparing Trajectory for a 1000 IO/s Workload
Blue - Neuro-Fuzzy Sparing

Red - Empty/No Empty Sparing

Time of Sparing (normalized)

Fr
a

ct
io

n
o

f
D

at
a

S
pa

re
d

(f
sp

)

Fig. 12. Trajectory of the sparing process for 1000 IO/s throughput.

Comparison of Response Time for a Sparing under a 2000 IO/s Workload

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time in Hours

m
s

Empty/No-Empty Ctlr Neuro-Fuzzy Ctlr

Fig. 13. Comparison of latency for 2000 IO/s throughput

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Response Time (normalized)

Sparing Trajectory for a 2000 IO/s Workload
Blue - Neuro-Fuzzy Sparing

Red - Empty/No Empty Sparing

Time of Sparing (normalized)

F
ra

ct
io

n
of

 D
at

a
S

pa
re

d
(f

sp
)

Fig. 14. Trajectory of the sparing process for 2000 IO/s throughput.

Comparison of Response Time for a Sparing under a 3000 IO/s Workload

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time in Hours

m
s

Empty/No-Empty Ctlr Neuro-Fuzzy Ctlr

Fig. 15. Comparison of latency for 3000 IO/s throughput

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Response Time (normalized)

Sparing Trajectory for a 3000 IO/s Workload
Blue - Neuro-Fuzzy Sparing

Red - Empty/No Empty Sparing

Time of Sparing (normalized)

F
ra

ct
io

n
of

 D
at

a
S

pa
re

d
(f

sp
)

Fig. 16. Trajectory of the sparing process for 3000 IO/s throughput.

636

V. CONCLUSIONS

The approach presented in this paper demonstrated two
distinct advantages. A traditional queueing system with
vacations for sparing of RAID systems can be successfully
extended via use of intelligent control based on neuro-fuzzy
controller. Moreover, in the low throughput ranges, this
intelligent controller proved to be superior to a simple yes/no
empty approach of waiting for the queue to become vacant.

In regions of high throughput, the neuro-fuzzy controlled
sparing approach demonstrated improvements in the
response time (not as dramatic as in the case of low
throughput range though). Overall, the neuro-fuzzy
controller presented in this paper improved the response time
for user requests. This proves that the neuro trained fuzzy
logic controller for sparing can be a successful approach to
meeting QoS requirements for RAID systems. Regions with
high throughputs are worth further investigating (the
presented approach may prove to be even more superior
here).

REFERENCES
1] R.R. Muntz, John C.S. Lui, “Performance Analysis of Disk Arrays Under

Failure”, IEEE, 1990.
[2] R.Y. Hou, J. Menon, Y.N. Patt, “Balancing I/O response time and disk

rebuild time in a RAID5 disk array”, HICSS, 1993.
[3] J. Medhi, “Stochastic Models in Queueing Theory”, Academic Press,

2003.

[4] J. Menon, A. Thomasian, “Performance Analysis of RAID5 Disk Arrays
with a Vacationing Server Model for Rebuild Mode Operation”, IEEE,
1994.

[5] A. Thomasian, J. Menon, “RAID5 Performance with Distributed
Sparing”, IEEE, 1997.

[6] J. Menon, D. Mattson, “Comparison of sparing alternatives for disk
array”, Int’l Symposium. on Computer Architecture, 1992.

[7] J. Menon, D. Mattson, “Distributed Sparing in Disk Arrays”, IEEE,
1992.

[8] A. Thomasian, “Rebuild Options in RAID5 Disk Arrays”, IEEE ,1995.
[9] H. H. Kari, H. Saikkonen, S. Kim, F. Lombardi, “Repair Algorithms for

Mirrored Disk Systems”, IEEE, 1995.
[10] L, Tadj, G. Choudhury, “Optimal Design and Control of Queues”,

TOP, Vol. 13, December 2005.
[11] Heyman D.P., “Optimal operating policies for M/G/1 queueing

systems”, Operations Research, 1968.
[12] Zhang Z.G., Vickson R., Love E., “Optimal service polices in an

M/G/1 queueing system with multiple vacation types”
[13] Altman E., Nain P., “Optimal control of the M/G/1 queue with repeated

vacations of the server”, IEEE, 1993.
[14] J. Ke; “The Optimal Control in Batch Arrival Queue with Server

Vacations, Startup and Breakdowns”, Yugoslav Journal of Operations
Research, 2004.

[15] Y. A. Phillips, R. Zhang, “Fuzzy Service Control of Queuing Systems”,
IEEE, 1999.

[16] Y. A. Phillips, R. Zhang, V. S. Kouikoglou, “Fuzzy Control of Queuing
Systems”, Springer-Verlag, 2005.

[17] J.P. Bigus, “Applying Neural Networks to Computer System
Performance Tuning”,IEEE, 1994.

[18] D. Radev, S. Radeva, “Vector Quantization for Simulation Modelng of
Queueing Systems”, IEEE, 2003.

[19] K. Zatwarnicki, “Proposal of a neuron-fuzzy model of a WWW server”,
IEEE, 2005.

[20] H. C. Cho, S. Fadali, H. Lee, “Neural Network Control for TCP
Network Congestion”, IEEE, 2005.

[21] S. Le, C. Hou, “A Neural-Fuzzy System for Congestion Control in
ATM Networks”,IEEE,2000.

[22] L. Wang, S. Du, J. Lin, “An AQM Scheme Using Neural Network
Based Predictive Control”, IEEE, 2004.

[23] K. Rahnami, P. Arabshahi, A. Gray, “Neural Network Based Model
Reference Controller for AQM of TCP Flows”, IEEE, 2004

[24] Y. Yu, C. Cao, G. Yu, C. Li, “Design of Neural Model Predictive
Controller for AQM Management”, IEEE, 2005.

[26] H. Yousefi’zadeh, E. A. Jonckheere, “Dynamic Neural-Based Buffer
Management for Queueing Systems with Self-Similar Characteristics”,
IEEE, 2005.

[27] H. Yousefi’zadeh, E. A. Jonckheere, J. A. Silvester, “Utilizing Neural
Networks to Reduce Packet Loss in Self-Similar Teletraffic Patterns”,
IEEE, 2003.

[28] Hewlett-Packard, “HP StorageWorks 1000/1500 Modular Smart Array
Command Line Interface”, 3rd Edition (May 2006)

http://h20000.www2.hp.com/bc/docs/support/SupportManual/c0068
3579/c00683579.pdf

[29] Buzen, J.P., “Analysys of system bottlenecks using a queueing
network model”, ACM, 1971.

[30] C.H. Papadimitriou. J. H. Tsitsiklis, “The Complexity of Optimal
Queuing Network Control”, SCTC, 1994.

[31]http://www.seagate.com/staticfiles/support/disc/manuals/enterpr
ise/cheetah/15K.4/FC/100220449c.pdf

[32] E. Varki, A. Merchant, J. Xu, X. Qiu, “An Integrated Performance
Model of Disk Arrays”, IEEE, 2003.

[33]http://technet.microsoft.com/en-us/library/29f01985-7b44-47cb-
96f7-d7c92fd8e867.aspx

[34] CSIM19, Mesquite Software, www.mesquite.com
[35] http://technet.microsoft.com/en-us/library/bb124226.aspx
[36] G. Navarro, M. Manic, “Fuzzy Control of Sparing in Disk Arrays”,

ETFA Conference, 2007.

Fig. 18. Trajectory of the sparing process for 4000 IO/s throughput.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Response Time (normalized)

Sparing Trajectory for a 4000 IO/s Workload
Blue - Neuro-Fuzzy Sparing

Red - Empty/No Empty Sparing

Time of Sparing (normalized)

F
ra

ct
io

n
of

 D
at

a
S

pa
re

d
(f

sp
)

Comparison of Response Time for a Sparing under a 4000 IO/s Workload

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6

Time in Hours

m
s

Empty/No-Empty Ctlr Neuro-Fuzzy Ctlr

Fig. 17. Comparison of latency for 4000 IO/s throughput

637

