
Fuzzy Control of Sparing in Disk Arrays

Guillermo Navarro
Hewlett Packard

11311 Chinden Blvd.
Boise, ID 83714, USA

guillermo.navarro@hp.com

Milos Manic
University of Idaho at Idaho Falls
1776 Science Center Dr., Ste. 306

Idaho Falls, ID 83402, USA
misko@uidaho.edu

Abstract

The redundancy regeneration (sparing or rebuild)
algorithms in disk arrays face the problem of
balancing between the data recovery activity within the
array and the user workload acting upon the array at
the same time [1]. If the algorithm favors the user
workload so the user requests can always preempt the
internal data recovery, then the data sparing can stall
in the presence of a sustained workload. But on the
contrary, if the data recovery is favored over the user
requests, the latency of the user requests can be so
high to reach unacceptable levels for the data
transactions.

Using computationally intelligent techniques, like
fuzzy logic, better algorithms to balance the level of
user requests and the internal data recovery can be
achieved. The disk array and data recovery process
are modeled using the queue systems with vacations
(QSV) [2]. A fuzzy algorithm to control the sparing is
presented in this paper. The results indicate that by
using fuzzy logic, a better balancing is achieved
between the need to have an acceptable response time
for the user requests and the data recovered as soon as
possible.

1. Introduction

One of the first sparing models was proposed in [3].
Since then, other analysis of the sparing process in disk
arrays have been published [1,3-7]. The process of
reconstruction of the data redundancy has been referred
to as rebuild [4] or sparing [5]. In papers [4,5], the
sparing process for a RAID5 disk array is modeled
using a queue system with vacations [2].

The goal of the optimal design and control of
queueing systems has been an area of research since
the 1950’s [8]. The goal of the optimal design and
control of queues is to determine the optimal system
parameters such as optimal service rate or number of
servers [8]. The use of computationally intelligent
techniques for the control of queue systems has been
researched before. Fuzzy logic has been used for the
control of queues [9,10] .

In this paper a queue system with vacations is used
to model the sparing process as in [4,5]. A fuzzy
controller is used for the measurement of the input
parameters and the control of the queues as it is
proposed in [9,10]. In this paper the authors make a
comparison between two approaches to control the
sparing process: 1) the traditional QSV model, or also
referred to as empty/no-empty control model, where
the sparing process only takes place when the queue is
empty, or, in other words, when there are no users
requests; and 2) a fuzzy-logic controller that uses three
parameters (response time of user requests, fraction
spared and time of sparing) to make the decision
whether to allow user requests to proceed or proceed
with the sparing.

The first contribution of this paper is to show how
the fuzzy control of queueing systems can be applied to
the sparing process. The second contribution is that the
results show that fuzzy logic is a technique that
improves the sparing process for high demands on the
disk array. The improvement shows by achieving a
faster sparing than the traditional empty/no-empty
control model, but without impacting the latency of
user request.

2. Disk Array Queueing Model

 For this paper, a RAID5 disk array will be used for
the analysis. The disk array consists of D disks. The D
disks are divided up in RAID5 disk groups of G disks.
The data on the disks is divided up in data blocks. In
each disk group, one data block disk stores the parity
of the data blocks of the other G-1 disks. Each data
block is referred to as Bi,j, where i=1,2,3,… ,Nb and
j=1,2,..,G. The number of Nb blocks per disk depends
on the capacity of the disk Cd.

The size of each data block Bi,j is Bs. For this paper,
a block size Bs=128KB will be used. References [1,4-
10] can be consulted for the different cases for reads
and writes during optimal (no disk failed) conditions
and during degraded (one disk failed) conditions.

A queueing system in which the server may be
turned off is said to be a queueing system with
vacations [2]. The requests to the queueing system

1-4244-0826-1/07/$20.00 © 2007 IEEE 1441

arrive at a rate A. The server processes the requests at a
S rate. When the server is idle (queue is empty) it turns
itself off and goes on vacation to do some process in
the background. After some time V, the server comes
back and rechecks the queue. If not empty, the server
turns itself on. Otherwise, it keeps itself off and
proceeds to another vacation. One of the advantages of
the fuzzy logic is the ability to easily model and control
systems in which precise, crisp, fully tractable
mathematical models can be difficult to derive. The
problem of finding optimal policies for networks of
queues is not trivial. Some queue optimization
problems are often intractable [11]. Fig. 1 shows the
model used for the disk array controller and the disks.
This model combines the QSV with the queueing
network formed by the disk array controller and the
disks. The user requests to the queueing system arrive
at a rate A. The disk array controller processes requests
with S service rate. For modeling the disk array
workload, all writes will be assumed to be Read-
Modify-Writes (RMW) [1,3-7]. The disks receive
requests at a rate Ad and process requests at a rate Sd.

Figure 1. Queueing System of disk array
controller and disks using a QSV.

The disk array controller will be modeled with a
constant service rate of S = 12,500 requests per second.
The service rate Sd is the inverse of the service time of
the disk Td . The Td is the sum of the rotational latency,
seek time and transfer time [13]. The sum of the
rotational latency and the seek time is referred to as the
disk position time (dpt) [13]. The equation that relates
the dpt to the disk queue is in [13]:

 Eq.1

The parameters a and b are constants depending on

the specific disk modeled and the type of access (read
or write). The Td was modeled using data obtained
from the ST373454FC Seagate disk [12]. The
workload used for modeling and simulation was
random, for both 4KB (small transfers) and 128KB
(large transfers). Measurements of the response time
and IOs per second (IO/s) from this Seagate disk under
varying queue sizes (from 1 to 60), were used to
determine the dpt for each queue size. The values
found for random reads were a=2 and b=4.6. The
values for random writes were a=2.9 and b=4.1.

3. Fuzzy Control of the Sparing Process

The proposed solution to find the optimal policy
that balances the time needed to complete the sparing
and the latency of the user requests is based on an
approach of fuzzification of controller. It is important
to note that this solution will be more sophisticated
than the traditional QSV model, where the sparing
process only occurs when the queue is empty.

The proposed solution involves an extended set of
parameters. The input parameters will be fuzzified and
the decisions will be based on fuzzy values. In Fig. 2
we show a graphical model of the proposed solution.

Figure 2. Fuzzy Control of the QSV for
Sparing.

The three input parameters of the fuzzy controller
are: 1) The queue length of the controller; ql; 2) The
response time of the disk array controller rt; 3) The
time elapsed since a disk failed and the sparing process
started tsp.

The queue length of the controller ql is included to
allow the sparing process to execute even if there are
requests in the queue waiting to be served. The key
question is what the biggest size of the queue is before
it is decided to stop the sparing process and serve the
requests. If we assume an average response time of
RTavg = 10ms for the users and an average throughput
(arrival) of Aavg = 1,000 IO/s, then we can use Little’s
theorem [10], and estimate the average queue length at
ql = 10. Now we can set a maximum queue length,
qlmax to some value. For the modeling and simulation,
qlmax = 20, the normalized qln was then obtained by
dividing ql by qlmax.

The response time rt can be normalized if we
consider an upper limit to the response time which user
applications can withstand without causing long
response times for the users. One example is the
Microsoft Exchange Servers. Latencies above 50ms
are not acceptable [14],. For the simulation in this
paper, it was assumed that a delay of rtmax=50ms was
the maximum that can be tolerated by the users. The
normalized response time rtn, was then obtained by the
division of rt by rtmax.

The time elapsed for the sparing tsp is also being
normalized. The assumption made here is that there is
a maximum time acceptable for the user without the

queuedisk
badpt

_1+
+=

1442

redundancy of the data restored. The maximum time
allowed for a sparing to finish was assumed to be
tspmax=24 hours. With this assumption the normalized
time elapsed in the sparing process tspn is obtained by
dividing the elapsed sparing time tsp by tspmax.

With the three input parameters normalized to a
range between [0,1], the fuzzy triangular membership
functions can be defined. Three linguistic values were
assigned (ZRO, MID, and ONE), which stand for
“zero”, “middle value”, and “one”, respectively. This
is following the same technique shown in [10]. The
purpose of these three membership functions is to have
a measure of how close the input parameter is to the
numerical value zero (ZRO), 0.5 (MID), or 1 (ONE).

Now the next step is the specification of the rules
for the rule base. The linguistic criteria can be
summarized as follows. Firstly, the response time of
the disk array controller rt, should be kept as low as
possible. If the response time rt, is low, we can
proceed with the sparing. Secondly, the sparing
process should be finished as soon as possible. The
closer we are to tspmax, the more priority should be
given to the sparing process. Thirdly, the lower the
queue length is, the more we can spare since just few
processes will be delayed.

The output of each rule is a binary value of YES,
which means continue the sparing process, or NO,
which means to hold off the sparing process. The
complete rule base is given in Table 1.

Rules 1-9 Rules 10-18 Rules 19-27
rtn qln tspn out rtn qln tspn out rtn qln tspn out
ZRO ZRO ZRO YES MID ZRO ZRO YES ONE ZRO ZRO YES

ZRO ZRO MID YES MID ZRO MID YES ONE ZRO MID YES

ZRO ZRO ONE YES MID ZRO ONE YES ONE ZRO ONE YES

ZRO MID ZRO YES MID MID ZRO YES ONE MID ZRO NO

ZRO MID MID YES MID MID MID YES ONE MID MID NO

ZRO MID ONE YES MID MID ONE YES ONE MID ONE YES

ZRO ONE ZRO YES MID ONE ZRO YES ONE ONE ZRO NO

ZRO ONE MID YES MID ONE MID YES ONE ONE MID NO

ZRO ONE ONE YES MID ONE ONE YES ONE ONE ONE YES

Table 1. Rule base.

4. Simulation and Results

CSIM19 [15] was used for the simulation. CSIM19
has the capability to model a system as a collection of
processes and servers with queues. The workload
applied was 75% reads (3:1 ratio, as typical for
Exchange Server environments [16]). A disk array
with 80 disks was simulated. The throughputs applied
for comparison were 1000, 5000, 9000, and 10,000
IO/s. The throughputs were maintained constant
during the entire duration of the simulation. The
intention was to measure the variations in response
time and the duration of the sparing process.

The graphs used for the comparison show on the
horizontal axis the total time taken for the sparing
process to complete. The closer to zero the sparing
process took, the better, since this indicates the
sparing process finished sooner. On the vertical axis
the graphs show the response time seen by the user
requests. The closer to zero the response time is, the
better, since this indicates the user requests were
processed faster and users saw better response from the

disk array.

Figure 3. Comparison of response time
during the sparing for 1,000 IO/s.

Fig. 3 shows the result for the 1,000 IO/s throughput
applied to the disk array. This result shows the fuzzy
controller performing at the same level as the the
traditional empty/no-empty controlled sparing. The
graph shows both sparing processes finishing in the
same time (around 3.5 hours after the disk failed). For
both cases, the response time was around 12ms. So, in
a low throughput, both the fuzzy controlled sparing and
the traditional empty performed the same.

Figure 4. Comparison of response time
during the sparing for 5,000 IO/s.

Fig. 4 shows the result for the 5,000 IO/s throughput
applied to the disk array. This result shows the fuzzy
controller performing the same as the traditional
empty/no-empty controlled sparing. In the low
throughput ranges, both schemes of control seem to

Response Time during the Sparing Process under 1,000 IO/s

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5 3 3.5

Time (hrs)

ms

Fuzzy Controlled Empty/No-Empty

Response Time during the Sparing Process under 5,000 IO/s

0

5

10

15

20

25

0 1 2 3 4 5 6

Time (hrs)

ms

Fuzzy Controlled Empty/No-Empty

1443

perform well. This can be explained by the fact that at
low throughputs, the empty/no-empty controlled
sparing has a lot of opportunities to execute in between
requests.

Figure 5. Comparison of response time
during the sparing for a 9,000 IO/s.

Fig. 5 shows the result for the 9,000 IO/s throughput
applied to the disk array. At high throughputs we can
see that the fuzzy controlled sparing process
outperforms the empty/no-empty slightly by finishing
the sparing shortly before. Both have the same
response time in the order of 40~50ms. The fuzzy
controlled sparing could finish before since it executed
the sparing even in the presence of some requests in the
queue. The traditional sparing preempted itself more
since the controller queue was busy most of the time.
This is the result that is encouraging since it shows that
the fuzzy controlled sparing can be tuned in future
experiments so it can improve its performance over the
traditional empty/no-empty controlled sparing.

Figure 6. Comparison of response time
during the sparing for 10,000 IO/s.

Fig. 6 shows the result for the 10,000 IO/s
throughput applied to the disk array. This result shows
also a little improvement over the traditional empty/no-
empty controlled sparing. It should be noted that the
fuzzy controlled sparing finishes a little before without
impacting the user response time. With this in mind,

we can say there is a benefit provided by the fuzzy
controller, even if it is in the high throughput ranges.

5. Conclusions

First and foremost, this paper shows that fuzzy logic
can be applied to improve the sparing process in disk
arrays. The fuzzy controller for control of the sparing
process proved to be better in the high throughput
ranges than the simple QSV approach that waits for the
queue to be empty. For the high throughput regions,
the fuzzy-controlled sparing process slightly
outperformed the traditional QSV sparing process by
finishing a little earlier. More importantly, it finished
earlier without impacting the user response time. This
proves that the fuzzy logic control for sparing can be
an alternative to meet QoS requirements for disk
arrays. More investigation can be done with high
throughputs (greater than 5,000) to ascertain if the
fuzzy controller can outperform the traditional QSV in
low throughputs or finish earlier in high throughputs.

References

[1] R.Y. Hou, J. Menon, Y.N. Patt, “Balancing I/O
response time and disk rebuild time in a RAID5 disk
array”, Hawaii Int’l Conf. on System Science, 1993.

[2] J. Medhi, “Stochastic Models in Queueing Theory”,
Academic Press, 2003.

[3] R.R. Muntz, John C.S. Lui, “Performance Analysis of
Disk Arrays Under Failure”, IEEE, 1990.

[4] J. Menon, A. Thomasian, “Performance Analysis of
RAID5 Disk Arrays with a Vacationing Server Model
for Rebuild Mode Operation”, IEEE, 1994.

[5] A. Thomasian, J. Menon, “RAID5 Performance with
Distributed Sparing”, IEEE, 1997.

[6] A. Thomasian, “Rebuild Options in RAID5 Disk
Arrays”, IEEE , 1995.

[7] H. Kari, H. Saikkonen, S. Kim, F. Lombardi, “Repair
Algorithms for Mirrored Disk Systems”, IEEE, 1995.

[8] L, Tadj, G. Choudhury, “Optimal Design and Control
of Queues”, TOP, Vol. 13, December 2005.

[9] Y. A. Phillips, R. Zhang, “Fuzzy Service Control of
Queuing Systems”, IEEE, 1999.

[10] Y. A. Phillips, R. Zhang, V. S. Kouikoglou, “Fuzzy
Control of Queuing Systems”, Springer-Verlag, 2005.

[11] C.H. Papadimitriou. J. H. Tsitsiklis, “The Complexity
of Optimal Queuing Network Control”, SCTC, 1994.

[12] www.seagate.com/staticfiles/support/disc/manuals/
enterprise/ cheetah/ 15K.4/ FC/ 100220449c.pdf

[13] E. Varki, A. Merchant, J. Xu, X. Qiu, “An integrated
performance model of disk arrays”, IEEE, 2003.

[14] technet.microsoft.com /en-us/ library/ 29f01985-7b44-
47cb-96f7-d7c92fd8e867.aspx

[15] H. Schwetman,”CSIM19: A powerful tool for building
system models”, 2001 Winter Simulation Conf.

[16] technet.microsoft.com /enus/ library/ bb124226.aspx

Response Time duri ng the Sparing Process under 9,000 IO/s

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16

Time (hrs)

ms

Fuzzy Controlled Empty/No-Empty

Response Time during the Sparing Process under 10,000 IO/s

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (hrs)

ms

Fuzzy Controlled Empty/No-Empty

1444

	Main
	Welcome Messages
	Committees
	Table of Contents
	Industry Day
	Keynote Talks
	Conference at a Glance
	Technical Program at a Glance
	Technical Program
	Author Index
	Reviewers
	CD-ROM Help
	Search
	Zoom In
	Zoom Out
	View Full Page
	Go to Previous Document

