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Abstract 

The redundancy regeneration (sparing or rebuild) 
algorithms in disk arrays face the problem of 
balancing between the data recovery activity within the 
array and the user workload acting upon the array at 
the same time [1].  If the algorithm favors the user 
workload so the user requests can always preempt the 
internal data recovery, then the data sparing can stall 
in the presence of a sustained workload.  But on the 
contrary, if the data recovery is favored over the user 
requests, the latency of the user requests can be so 
high to reach unacceptable levels for the data 
transactions. 

Using computationally intelligent techniques, like 
fuzzy logic, better algorithms to balance the level of 
user requests and the internal data recovery can be 
achieved.  The disk array and data recovery process 
are modeled using the queue systems with vacations 
(QSV) [2].  A fuzzy algorithm to control the sparing is 
presented in this paper.  The results indicate that by 
using fuzzy logic, a better balancing is achieved 
between the need to have an acceptable response time 
for the user requests and the data recovered as soon as 
possible. 

1. Introduction 

One of the first sparing models was proposed in [3]. 
Since then, other analysis of the sparing process in disk 
arrays have been published [1,3-7].  The process of 
reconstruction of the data redundancy has been referred 
to as rebuild [4] or sparing [5].  In papers [4,5], the 
sparing process for a RAID5 disk array is modeled 
using a queue system with vacations [2].   

The goal of the optimal design and control of 
queueing systems has been an area of research since 
the 1950’s [8].  The goal of the optimal design and 
control of queues is to determine the optimal system 
parameters such as optimal service rate or number of 
servers [8].  The use of computationally intelligent 
techniques for the control of queue systems has been 
researched before.  Fuzzy logic has been used for the 
control of queues [9,10] .   

In this paper a queue system with vacations is used 
to model the sparing process as in [4,5].  A fuzzy 
controller is used for the measurement of the input 
parameters and the control of the queues as it is 
proposed in [9,10].  In this paper the authors make a 
comparison between two approaches to control the 
sparing process: 1) the traditional QSV model, or also 
referred to as empty/no-empty control model, where 
the sparing process only takes place when the queue is 
empty, or, in other words, when there are no users 
requests; and 2) a fuzzy-logic controller that uses three 
parameters (response time of user requests, fraction 
spared and time of sparing) to make the decision 
whether to allow user requests to proceed or proceed 
with the sparing. 

The first contribution of this paper is to show how 
the fuzzy control of queueing systems can be applied to 
the sparing process.  The second contribution is that the 
results show that fuzzy logic is a technique that 
improves the sparing process for high demands on the 
disk array. The improvement shows by achieving a 
faster sparing than the traditional empty/no-empty 
control model, but without impacting the latency of 
user request. 

2. Disk Array Queueing Model 

  For this paper, a RAID5 disk array will be used for 
the analysis.  The disk array consists of D disks.  The D 
disks are divided up in RAID5 disk groups of G disks.  
The data on the disks is divided up in data blocks.  In 
each disk group, one data block disk stores the parity 
of the data blocks of the other G-1 disks.  Each data 
block is referred to as Bi,j, where i=1,2,3,… ,Nb and 
j=1,2,..,G. The number of Nb blocks per disk depends 
on the capacity of the disk Cd. 

The size of each data block Bi,j is Bs.  For this paper, 
a block size Bs=128KB will be used. References [1,4-
10] can be consulted for the different cases for reads 
and writes during optimal (no disk failed) conditions 
and during degraded (one disk failed) conditions. 

A queueing system in which the server may be 
turned off is said to be a queueing system with 
vacations [2].  The requests to the queueing system 
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arrive at a rate A. The server processes the requests at a 
S rate.  When the server is idle (queue is empty) it turns 
itself off and goes on vacation to do some process in 
the background.  After some time V, the server comes 
back and rechecks the queue. If not empty, the server 
turns itself on. Otherwise, it keeps itself off and 
proceeds to another vacation.  One of the advantages of 
the fuzzy logic is the ability to easily model and control 
systems in which precise, crisp, fully tractable 
mathematical models can be difficult to derive.  The 
problem of finding optimal policies for networks of 
queues is not trivial.  Some queue optimization 
problems are often intractable [11].  Fig. 1 shows the 
model used for the disk array controller and the disks.  
This model combines the QSV with the queueing 
network formed by the disk array controller and the 
disks. The user requests to the queueing system arrive 
at a rate A. The disk array controller processes requests 
with S service rate.  For modeling the disk array 
workload, all writes will be assumed to be Read-
Modify-Writes (RMW) [1,3-7].  The disks receive 
requests at a rate Ad  and process requests at a rate Sd. 

Figure 1. Queueing System of disk array 
controller and disks using a QSV. 

The disk array controller will be modeled with a 
constant service rate of S = 12,500 requests per second.  
The service rate Sd is the inverse of the service time of 
the disk Td . The Td is the sum of the rotational latency, 
seek time and transfer time [13].  The sum of the 
rotational latency and the seek time is referred to as the 
disk position time (dpt) [13].  The equation that relates 
the dpt to the disk queue is in [13]: 

 
                      Eq.1  
 
The parameters a and b are constants depending on 

the specific disk modeled and the type of access (read 
or write).  The Td was modeled using data obtained 
from the ST373454FC Seagate disk [12]. The 
workload used for modeling and simulation was 
random, for both 4KB (small transfers) and 128KB 
(large transfers).  Measurements of the response time 
and IOs per second (IO/s) from this Seagate disk under 
varying queue sizes (from 1 to 60), were used to 
determine the dpt for each queue size.  The values 
found for random reads were a=2 and b=4.6.  The 
values for random writes were a=2.9 and b=4.1. 

3. Fuzzy Control of the Sparing Process 

The proposed solution to find the optimal policy 
that balances the time needed to complete the sparing 
and the latency of the user requests is based on an 
approach of fuzzification of controller.  It is important 
to note that this solution will be more sophisticated 
than the traditional QSV model, where the sparing 
process only occurs when the queue is empty.   

The proposed solution involves an extended set of 
parameters.  The input parameters will be fuzzified and 
the decisions will be based on fuzzy values.  In Fig. 2 
we show a graphical model of the proposed solution.  

Figure 2. Fuzzy Control of the QSV for 
Sparing. 

The three input parameters of the fuzzy controller 
are: 1) The queue length of the controller; ql;  2) The 
response time of the disk array controller rt; 3) The 
time elapsed since a disk failed and the sparing process 
started tsp.  

The queue length of the controller ql is included to 
allow the sparing process to execute even if there are 
requests in the queue waiting to be served. The key 
question is what the biggest size of the queue is before 
it is decided to stop the sparing process and serve the 
requests.  If we assume an average response time of 
RTavg = 10ms for the users and an average throughput 
(arrival) of Aavg = 1,000 IO/s, then we can use Little’s 
theorem [10], and estimate the average queue length at 
ql = 10.  Now we can set a maximum queue length, 
qlmax to some value. For the modeling and simulation, 
qlmax = 20, the normalized qln was then obtained by 
dividing  ql by qlmax.  

The response time rt can be normalized if we 
consider an upper limit to the response time which user 
applications can withstand without causing long 
response times for the users.  One example is the 
Microsoft Exchange Servers.  Latencies above 50ms 
are not acceptable [14],.  For the simulation in this 
paper, it was assumed that a delay of rtmax=50ms was 
the maximum that can be tolerated by the users.  The 
normalized response time rtn, was then obtained by the 
division of  rt by rtmax. 

The time elapsed for the sparing tsp is also being 
normalized.  The assumption made here is that there is 
a maximum time acceptable for the user without the 
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redundancy of the data restored.  The maximum time 
allowed for a sparing to finish was assumed to be 
tspmax=24 hours.  With this assumption the normalized 
time elapsed in the sparing process tspn is obtained by 
dividing the elapsed sparing time tsp by tspmax. 

With the three input parameters normalized to a 
range between [0,1], the fuzzy triangular membership 
functions can be defined.  Three linguistic values were 
assigned (ZRO, MID, and ONE), which stand for 
“zero”, “middle value”, and “one”, respectively.  This 
is following the same technique shown in [10].  The 
purpose of these three membership functions is to have 
a measure of how close the input parameter is to the 
numerical value zero (ZRO), 0.5 (MID), or 1 (ONE). 

Now the next step is the specification of the rules 
for the rule base.  The linguistic criteria can be 
summarized as follows.  Firstly, the response time of 
the disk array controller rt, should be kept as low as 
possible.  If the response time rt, is low, we can 
proceed with the sparing.  Secondly, the sparing 
process should be finished as soon as possible.  The 
closer we are to tspmax, the more priority should be 
given to the sparing process.  Thirdly, the lower the 
queue length is, the more we can spare since just few 
processes will be delayed.  

The output of each rule is a binary value of YES, 
which means continue the sparing process, or NO, 
which means to hold off the sparing process.   The 
complete rule base is given in Table 1. 

Rules 1-9 Rules 10-18 Rules 19-27 
rtn  qln   tspn  out rtn  qln   tspn  out rtn  qln   tspn  out 
ZRO ZRO ZRO   YES MID ZRO ZRO   YES ONE ZRO ZRO   YES 

ZRO ZRO MID   YES MID ZRO MID   YES ONE ZRO MID   YES 

ZRO ZRO ONE   YES MID ZRO ONE   YES ONE ZRO ONE   YES 

ZRO MID ZRO   YES MID MID ZRO   YES ONE MID ZRO   NO 

ZRO MID MID   YES MID MID MID   YES ONE MID MID   NO 

ZRO MID ONE   YES MID MID ONE   YES ONE MID ONE   YES 

ZRO ONE ZRO   YES MID ONE ZRO   YES ONE ONE ZRO   NO 

ZRO ONE MID   YES MID ONE MID   YES ONE ONE MID   NO 

ZRO ONE ONE   YES MID ONE ONE   YES ONE ONE ONE   YES 

Table 1. Rule base. 

4. Simulation and Results 

CSIM19 [15] was used for the simulation.  CSIM19 
has the capability to model a system as a collection of 
processes and servers with queues.  The workload 
applied was 75% reads (3:1 ratio, as typical for 
Exchange Server environments [16]).  A disk array 
with 80 disks was simulated.  The throughputs applied 
for comparison were 1000, 5000, 9000, and 10,000 
IO/s.  The throughputs were maintained constant 
during the entire duration of the simulation.  The 
intention was to measure the variations in response 
time and the duration of the sparing process. 

The graphs used for the comparison show on the 
horizontal axis the total time taken for the sparing 
process to complete.  The closer to zero the sparing 
process took,   the better, since this indicates the 
sparing process finished sooner.  On the vertical axis 
the graphs show the response time seen by the user 
requests.   The closer to zero the response time is, the 
better, since this indicates the user requests were 
processed faster and users saw better response from the 

disk array. 

Figure 3. Comparison of response time 
during the sparing for 1,000 IO/s. 

Fig. 3 shows the result for the 1,000 IO/s throughput 
applied to the disk array. This result shows the fuzzy 
controller performing at the same level as the the 
traditional empty/no-empty controlled sparing.  The 
graph shows both sparing processes finishing in the 
same time (around 3.5 hours after the disk failed).  For 
both cases, the response time was around 12ms. So, in 
a low throughput, both the fuzzy controlled sparing and 
the traditional empty performed the same. 

Figure 4. Comparison of response time 
during the sparing for 5,000 IO/s. 

Fig. 4 shows the result for the 5,000 IO/s throughput 
applied to the disk array. This result shows the fuzzy 
controller performing the same as the traditional 
empty/no-empty controlled sparing.  In the low 
throughput ranges, both schemes of control seem to 
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perform well.  This can be explained by the fact that at 
low throughputs, the empty/no-empty controlled 
sparing has a lot of opportunities to execute in between 
requests. 

Figure 5. Comparison of response time 
during the sparing for a 9,000 IO/s. 

Fig. 5 shows the result for the 9,000 IO/s throughput 
applied to the disk array. At high throughputs we can 
see that the fuzzy controlled sparing process 
outperforms the empty/no-empty slightly by finishing 
the sparing shortly before.  Both have the same 
response time in the order of 40~50ms.  The fuzzy 
controlled sparing could finish before since it executed 
the sparing even in the presence of some requests in the 
queue. The traditional sparing preempted itself more 
since the controller queue was busy most of the time.  
This is the result that is encouraging since it shows that 
the fuzzy controlled sparing can be tuned in future 
experiments so it can improve its performance over the 
traditional empty/no-empty controlled sparing. 

Figure 6. Comparison of response time 
during the sparing for 10,000 IO/s. 

Fig. 6 shows the result for the 10,000 IO/s 
throughput applied to the disk array. This result shows 
also a little improvement over the traditional empty/no-
empty controlled sparing.  It should be noted that the 
fuzzy controlled sparing finishes a little before without 
impacting the user response time.  With this in mind, 

we can say there is a benefit provided by the fuzzy 
controller, even if it is in the high throughput ranges.   

5. Conclusions 

First and foremost, this paper shows that fuzzy logic 
can be applied to improve the sparing process in disk 
arrays.  The fuzzy controller for control of the sparing 
process proved to be better in the high throughput 
ranges than the simple QSV approach that waits for the 
queue to be empty.  For the high throughput regions, 
the fuzzy-controlled sparing process slightly 
outperformed the traditional QSV sparing process by 
finishing a little earlier.  More importantly, it finished 
earlier without impacting the user response time.  This 
proves that the fuzzy logic control for sparing can be 
an alternative to meet QoS requirements for disk 
arrays.  More investigation can be done with high 
throughputs (greater than 5,000) to ascertain if the 
fuzzy controller can outperform the traditional QSV in 
low throughputs or finish earlier in high throughputs. 
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