BRAIN PERFUSION STUDY
(Tc-99m-ECD, Tc-99m-HMPAO)

Overview

• The Brain Perfusion Study produces SPECT tomograms depicting the distribution of blood flow and perfusion to the various structures of the brain (1).

Indications

• Diagnosis of Alzheimer’s disease (2,3).
• Localization of seizure foci (4-6).
• Evaluation of carotid blood flow prior to surgical occlusion (7).
• Diagnosis of brain death (8,9).
• Evaluation of brain injury (10).

Examination Time

• 1 hour.

Patient Preparation

• The imaging room should be quiet and dimly lit (11,12).
• Instruct the patient not to read or speak.
• Place an intravenous line in advance so the patient does not experience pain from the needle puncture at the time of radiopharmaceutical injection.

Equipment & Energy Windows

• Camera: Rotating gamma camera. Two or three-headed gamma camera imaging system is preferred (13).
• Collimator (14): Low energy, high resolution, parallel hole collimator.
• Energy window: 20% window centered at 140 keV.
• Computer with SPECT software.
Radiopharmaceutical, Dose, & Technique of Administration

- Radiopharmaceutical (15,16): Tc-99m-ethyl cysteinate dimer (Tc-99m-ECD).
 Tc-99m-hexamethylpropyleneamineoxime (Tc-99m-HMPAO).
- Dose: 20 mCi (740 MBq).
- Technique of administration: Through an existing intravenous line.

Patient Position & Imaging Field

- Patient position:
 1. Supine with the head in a head holder secured with a velcro strap.
 2. Flex the head so that the cerebellum is included in the field of view.
- Imaging field: Entire brain including the cerebellum.

Acquisition Protocol

- Time from injection to beginning image acquisition (13):
 > Tc-99m-ECD: 45 minutes.
 > Tc-99m-HMPAO: 90 minutes.
- Have the patient void prior to image acquisition to maximize patient comfort (13).
- Image acquisition parameters:
 1. Degrees of rotation: 360°.
 2. Number of images: 64.
 3. Time per image: Approximately 20 seconds.

Protocol Summary Diagram

Data Processing
• Correct the planar images for camera non-uniformity with a high count, e.g. 30 million count, Co-57 flood field image.

• Reconstruct transverse, sagittal, and coronal images (17).

• Correct for attenuation using transmission maps if available (18).

• Construct a 3 dimensional surface display of the brain for dynamic viewing (19).

Optional Maneuvers

• Fast acquisition: Fast acquisition methods may be used in patients who are unable to hold still for prolonged periods of time (20).

• Seizures may be produced pharmacologically with pentylenetetrazol for ictal imaging (21).

• Acetazolamide may be used to increase the sensitivity of brain perfusion imaging for cerebrovascular ischemia (22,23):
 1. Contraindications (23):
 a) allergy to sulfonamides (Acetazolamide is a non-bacteriostatic sulfonamide.).
 b) active transient ischemic attacks (This is not an absolute contraindication.).
 2. Side effects - occur in about 50% of patients & last for about 15 minutes (23):
 a) numbness around mouth or fingers.
 b) lightheadedness or blurred vision.
 c) flushed feeling around face and neck.
 3. Inject 1 gm of acetazolamide intravenously over 1-2 minutes.
 4. Wait 25 minutes and then inject the radiopharmaceutical.
 5. Wait 20 minutes and acquire images in the usual manner.
 6. A baseline brain perfusion study without acetazolamide is performed one or more days later.
 7. Adenosine or dipyridamole may be used instead of acetazolamide (24,25).

• Diagnosis of brain death (8,9):
 1. Position the gamma camera for an ANT dynamic study of the head.
 2. Inject radiopharmaceutical in a bolus fashion and acquire 2 second serial analog and/or digital images for at least 30 seconds.
 3. Approximately 15 minutes after injection, acquire planar images in the ANT and right or left LAT projections.
 4. SPECT imaging may be performed if necessary and feasible.
• Quantification: Activity in the tomograms may be quantitated on a regional basis (26,27).

• Interictal images may be subtracted from ictal images in the same patient (28).

• Superimposition of perfusion and anatomic images: Images may be superimposed on corresponding magnetic resonance images with computer assistance (29,30).

Principle Radiation Emission Data - Tc-99m (31)

• Physical half-life = 6.01 hours.

<table>
<thead>
<tr>
<th>Radiation</th>
<th>Mean % per disintegration</th>
<th>Mean energy (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma-2</td>
<td>89.07</td>
<td>140.5</td>
</tr>
</tbody>
</table>

Dosimetry - Tc-99m-ECD (32)

<table>
<thead>
<tr>
<th>Organ</th>
<th>rads/20 mCi</th>
<th>mGy/740 MBq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder wall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 hour void</td>
<td>2.2</td>
<td>22.0</td>
</tr>
<tr>
<td>4.8 hour void</td>
<td>5.4</td>
<td>54.0</td>
</tr>
<tr>
<td>Gallbladder wall</td>
<td>1.8</td>
<td>18.0</td>
</tr>
<tr>
<td>Large intestine</td>
<td>1.2</td>
<td>12.0</td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.7</td>
<td>7.0</td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.5</td>
<td>5.4</td>
</tr>
<tr>
<td>Brain</td>
<td>0.4</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Dosimetry - Tc-99m-HM-PAO (33)

<table>
<thead>
<tr>
<th>Organ</th>
<th>rads/20 mCi</th>
<th>mGy/740 MBq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lachrymal glands</td>
<td>5.2</td>
<td>52.0</td>
</tr>
<tr>
<td>Gallbladder wall</td>
<td>3.8</td>
<td>38.0</td>
</tr>
<tr>
<td>Kidneys</td>
<td>2.6</td>
<td>26.0</td>
</tr>
<tr>
<td>Thyroid</td>
<td>2.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Large intestine</td>
<td>1.6</td>
<td>16.0</td>
</tr>
<tr>
<td>Liver</td>
<td>1.1</td>
<td>11.0</td>
</tr>
<tr>
<td>Small Intestine</td>
<td>0.9</td>
<td>9.0</td>
</tr>
<tr>
<td>Bladder wall</td>
<td>0.9</td>
<td>9.0</td>
</tr>
<tr>
<td>Brain</td>
<td>0.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Total body</td>
<td>0.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Testes</td>
<td>0.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

References

Normal Findings

