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Abstract

We use covers of the universal set to de-ne approximation operators on the power set of the given set. In Section 1, we
determine basic properties of the upper approximation operator and show how it can be used to give algebraic structural
properties of certain subsets. We de-ne a particular cover on the set of ideals of a commutative ring with identity in such a
way that both the concepts of the (fuzzy) prime spectrum of a ring and rough set theory can simultaneously be brought to
bear on the study of (fuzzy) ideals of a ring. c© 2001 Elsevier Science B.V. All rights reserved.
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0. Introduction

In 1982, Pawlak introduced the concept of a rough
set [18]. This concept is fundamental to the examina-
tion of granularity in knowledge. It is a concept which
has many applications in data analysis. The idea is
to approximate a subset of a universal set by a lower
approximation and an upper approximation in the fol-
lowing manner. A partition of the universe is given.
The lower approximation is the union of those mem-
bers of the partition contained in the given subset and
the upper approximation is the union of those
members of the partition which have a nonempty
intersection with the given subset. It is well known
that a partition induces an equivalence relation on
a set and vice versa. The properties of rough sets
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can thus be examined via either partitions or equiv-
alence relations. The members of the partition (or
equivalence classes) can be formally described by
unary set-theoretic operators [27], or by successor
functions for upper approximation spaces [7,8]. This
axiomatic approach allows not only for a wide range
of areas in mathematics to fall under this approach,
but also a wide range of areas to be used to describe
rough sets. Some examples are topology, (fuzzy)
abstract algebra, (fuzzy) directed graphs, (fuzzy) --
nite state machines, modal logic, interval structures
[7,14,15,17,19,27–29]. One may generalize the use
of partitions or equivalence relations to that of covers
or relations [17,20,22,24,25,29].
In this paper, we use covers of the universal set to

de-ne approximation operators on the power set of the
given set. In Section 1, we determine basic properties
of the upper approximation operator and show how
it can be used to give algebraic structural properties
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of certain subsets. Section 1 lays the ground work for
our main results which appear in Section 2. In Section
2, we de-ne a particular cover on the set of ideals of
a commutative ring with identity in such a way that
both the concepts of the (fuzzy) prime spectrum of
a ring [6], and rough set theory can simultaneously
be brought to bear on the study of (fuzzy) ideals of
a ring. The notion of the (fuzzy) prime spectrum of
a ring generalizes that of aDne varieties, where the
study of polynomial equations occurs. The notion of
a fuzzy subset is of course due to Zadeh [30], and a
fuzzy substructure of an algebraic structure is due to
Rosenfeld [21].

1. Upper and lower approximations de�ned by
covers

Let V be nonempty set and let P(V ) denote the
power set of V . Let s be a function of P(V ) into it-
self. We are interested in the following conditions on
s since they are the ones that hold for upper approxi-
mation operators de-ned via an equivalence relation:
(u1) ∀X ∈P(V ); X ⊆ s(X ).
(u2) ∀X; Y ∈P(V ); X ⊆Y ⇒ s(X )⊆ s(Y ).
(u3) ∀X; Y ∈P(V ); s(X ∪Y )= s(X )∪ s(Y ).
(u4) ∀X ∈P(V ); s(X )= s(s(X )).

De�nition 1.1. Let C⊆P(V )\{∅}. Then C is called
a cover of V if V ⊆ ⋃C∈C C. Suppose that C is
a cover of V . Then
(i) C is said to be semi-reduced or semi-irredundant

if ∀C;D∈C; C ⊆D⇒C =D;
(ii) C is said to be reduced or irredundant if ∀C ∈C,

there does not exist C′ ⊆C\{C} such that
C ⊆ ⋃D∈C′ D.

De�nition 1.2. Let C be a cover of V . De-ne
Hs :P(V )→P(V ) by ∀X ∈P(V ); Hs(X )= {y∈V | ∃C
∈C; y∈C and C ∩X �= ∅}. Then ∀X ∈P(V ); Hs(X )
is called an upper approximation of X with respect
to C. An upper approximation Hs is said to be transi-
tive if ∀x; y; z ∈V; x∈ Hs({y}) and y∈ Hs({z}) imply
x∈ Hs({z})

Proposition 1.3. Let C be a cover of V . Then the
following properties hold.
(1) ∀x∈V; x∈ Hs({x}) ( Hs is re8exive);

(2) ∀x; y∈V; x∈ Hs({y})⇒y∈ Hs({x})
( Hs is symmetric);

(3) ∀x∈V; ∀C ∈C; C ∩{x} �= ∅⇒C ⊆ Hs({x});
(4) (u1)–(u3) hold.

Proof. (1) Let x∈V . Since C is a cover of V; ∃C ∈C
such that x∈C. Hence C ∩{x} �= ∅. Thus x∈ Hs({x})
by the de-nition of Hs.
(2) Suppose x∈ Hs({y}). Then ∃C ∈C such that

x∈C and C ∩{y} �= ∅. Hence y∈C and C ∩{x} �= ∅.
Thus y∈ Hs({x}).
(3) Suppose C ∩{x} �= ∅. Then ∀y∈C; y∈ Hs({x})

since C ∩{x} �= ∅. Hence C ⊆ Hs({x}).
(4) Let x∈X . Then ∃C ∈C such that x∈C and

clearly C ∩X �= ∅. Hence x∈ Hs(X ). Thus (u1) holds.
For (u2), let z ∈ Hs(X ). Then ∃C ∈C such that z ∈C
and C ∩X �= ∅. Hence C ∩Y �= ∅ and so z ∈ Hs(Y ).
Consider (u3). Now z ∈ Hs(X ∪Y )⇔∃C ∈C such
that z ∈C and C ∩ (X ∪Y ) �= ∅⇔∃C ∈C such that
z ∈C and (C ∩X )∪ (C ∩Y ) �= ∅⇔ either z ∈ Hs(X )
or z ∈ Hs(Y )⇔ z ∈ Hs(X )∪ Hs(Y ).

We are also interested in the following two condi-
tions on a function s :P(V )→P(V ):
(u5) ∀X ∈P(V ) and x∈V; x∈ s(X ) implies ∃ a -nite

subset X ′ ⊆X such that x∈ s(X ′).
(u6) ∀{X� | �∈�}⊆P(V );

s(
⋃
�∈� X�)=

⋃
�∈� s(X�).

Condition (u5) plays an important role in determin-
ing structure results for algebraic structures [32].
When V is -nite, condition (u3) plays a major role,

but when V is in-nite we often need condition (u6).
The argument in Proposition 1.3 which shows that
condition (u3) holds for Hs is immediately adaptable to
show that condition (u6) holds for Hs.

Example 1.4. Let V =N∪{∞}, where N denotes
the positive integers. De-ne s :P(V )→P(V )
as follows: ∀X ∈P(V ), if X is in-nite, then
s(X )=X ∪{∞} and if X is -nite, then s(X )=X .
Clearly s satis-es conditions (u1) and (u2). We now
show that s satis-es (u3). Let X; Y ∈ P(V ).
Suppose that X and Y are -nite. Then X ∪Y is -nite

and so s(X ∪Y )=X ∪Y = s(X )∪ s(Y ).
Suppose that either X is in-nite or Y is in-nite. Then

X ∪Y is in-nite. Hence s(X ∪Y )=X ∪Y ∪{∞}=
s(X )∪ s(Y ). We now show that s satis-es condi-
tion (u4). Let X ∈P(V ). Suppose that X is -nite.
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Then s(X )=X and so s(s(X ))= s(X )=X = s(X ).
Suppose X is in-nite. Then s(X )=X ∪{∞} and so
s(s(X ))= s(X ∪{∞})=X ∪{∞}= s(X ). We now
show that s does not satisfy conditions (u5) and
(u6). Now∞∈ s(N), but@ a -nite subsetX ′ ⊆N such
that ∞∈ s(X ′) and so condition (u5) does not hold.
Now s(

⋃
n∈N{n}) = s(N) = V �= N =

⋃
n∈N{n}

=
⋃
n∈N s({n}). Hence condition (u6) does not hold.

Example 1.4 leads us to the following result.

Theorem 1.5. Suppose that s :P(V )→P(V ) is such
that (u2) holds. Then conditions (u3) and (u5) hold
if and only if condition (u6) holds.

Proof. Suppose that (u3) and (u5) hold. Let {X� |
�∈�} be any subset of P(V ). By (u2), s(⋃�∈� X�)
⊇ s(X�) ∀�∈� and so s(

⋃
�∈� X�)⊇

⋃
�∈� s(X�).

Let x∈ s(⋃�∈� X�). By (u5), ∃ -nite subset X ′ of⋃
�∈� X� such that x∈ s(X ′). Now X ′ ⊆X�1 ∪· · ·∪X�n

for some �1; : : : ; �n ∈�. Thus x∈ s(X�1 ∪ · · · ∪ X�n)
= s(X�1 )∪· · ·∪ s(X�n)⊆

⋃
�∈� s(X�), where the equa-

lity holds by (u3). Hence s(
⋃
�∈� X�)⊆

⋃
�∈� s(X�)

and we have that (u6) holds. Conversely, sup-
pose that (u6) holds. Let X ∈P(V ). Suppose that
y∈ s(X ). Then y∈ s(⋃x∈X {x})= ⋃x∈X s({x}). Thus
y∈ s({x}) for some x∈X . Hence (u5) holds. It is
immediate that (u3) holds.

Corollary 1.6. Let C be a cover of V . Suppose that
condition (u4) holds for Hs. Then ∀X ∈P(V ); ∃CX ⊆
C such that Hs(X )=

⋃
C∈CX

C.

Proof. Let x∈X . Then ∀C ∈C; C ∩ {x} �= ∅ implies
C ⊆ Hs({x}) by Proposition 1.3. Hence, Hs({x}) is the
union of those C ∈C such that C ⊆ Hs({x}). (Let
y∈ Hs({x}). Then y∈C ∈C implies C ⊆ Hs({y})
⊆ Hs( Hs({x}))= Hs({x}) by (u4).) By (u6), Hs(X )=⋃
x∈ X Hs({x}) from which the desired result holds.

Corollary 1.7. Let C be an irredundant cover of V .
Suppose that condition (u4) holds for Hs. Then
∀x∈V; ∀C ∈C; C ∩ {x} �= ∅ ⇔ C ⊆ Hs({x}).

Proof. Let x∈V andC ∈C. Suppose thatC ⊆ Hs({x}).
Then C ⊆ Hs({x})= ⋃{D∈C | x∈D} by Corollary

1:4. If C ∩ {x}= ∅, then C =∈{D∈C | x∈D} and we
contradict the irredundancy of C. Hence C ∩ {x} �= ∅.
The converse follows by de-nition of Hs.

Corollary 1.8 (Exchange property). LetC be a cover
of V and X ⊆V . Then ∀x; y∈V; x∈ Hs(X ∪ {y}) and
x =∈ Hs(X ) implies y∈ Hs(X ∪ {x}).

Proof. If x∈ Hs(X∪{y}) and x =∈ Hs(X ), then x∈ Hs({y})
by (u3). Hence y ∈ Hs({x})⊆ Hs(X ∪ {x}) by (2) of
Proposition 1.3 and (u2).

The exchange property also plays an important role
in determining structure results for algebraic struc-
tures [32].

Corollary 1.9. Let C be a cover of V . If condition
(u4) holds for Hs; then P= { Hs({x}) | x∈V} is a parti-
tion of V .

Proof. Since x∈ Hs({x}); V = ⋃x∈V Hs({x}) by (u6).
Suppose Hs({x})∩ Hs({y}) �= ∅. Let z ∈ Hs({x})∩ Hs({y}).
Then Hs({z}) ⊆ Hs( Hs({x})) ∩ Hs( Hs({y})) = Hs({x}) ∩
Hs({y}). By (2) of Proposition 1.3, x; y∈ Hs({z}) and
so Hs({x}); Hs({y})⊆ Hs({z}). Hence Hs({x})= Hs({z})=
Hs({y}). Thus P is a partition of V .

Example 1.10. Let V = {1; 2; 3} and C= {C1; C2},
where C1 = {1; 2} and C2 = {2; 3}. Let Hs(∅)= ∅;
Hs({1})= {1; 2}; Hs({3})= {2; 3}; Hs({2})=V , and
Hs(X )=V if X ∈P(V ) and |X |=2, where |X | denotes
the cardinality of X . Thus Hs({1})= {1; 2}⊂V = Hs
( Hs({1})). Hence property (u4) does not hold. Note
also that 1∈ Hs({2}); 2∈ Hs({3}), but 1 =∈ Hs({3}). Hence
Hs is not transitive. We note that C is irredundant.

Example 1.11. Let V = {1; 2} and C= {{1}; V}.
Let Hs(∅)= ∅ and Hs(X )=V if X ∈P(V ) and |X |¿1.
It follows easily that Hs(X )= Hs( Hs(X )) ∀X ∈P(V ).
Also Hs is trivially transitive. However C is a cover of
V , but not a partition of V . In fact, C is not semi-
irredundant.

Theorem 1.12. Let C be a cover of V . Then the
following assertions are equivalent.
(1) C is irredundant and ∀X ∈P(V ); Hs(X )=

Hs( Hs(X )); i.e.; (u4) holds.
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(2) C is a partition of V .
(3) C is irredundant and Hs is transitive.

Proof. (3)⇒ (2): Let C;D∈C be distinct and sup-
pose C ∩D �= ∅. Let x∈C ∩D. SinceC is irredundant,
C\D �= ∅ �=D\C: ∀y∈C\D and ∀z ∈D\C; y∈ Hs({x})
since C ∩{x} �= ∅ and x∈ Hs({z}) since D∩{z} �= ∅.
By the transitivity of Hs; y∈ Hs({z}). Hence there exists
Cy; z ∈C such that y; z ∈Cy; z. Thus (C\D)∪ (D\C)⊆⋃ {Cy; z|y∈C\D, z ∈D\C} and C �=Cy; z �=D for
each pair y∈C\D; z ∈D\C. HenceC ⊆ (⋃ {Cy; z|y∈
C\D; z ∈D\C})∪D which contradicts the irredun-
dancy of C. Thus C ∩D= ∅ and so C is a partition
of V .
(2)⇒ (1): Let X ∈P(V ). Then Hs(X )=

⋃
C ∈CX

C,
where CX = {C ∈C |C ⊆ Hs(X )} by Corollary 1.6.
Thus

Hs( Hs(X )) = Hs

( ⋃
C∈CX

C

)
=
⋃
C∈CX

Hs(C)

=
⋃
C∈CX

C = Hs(X );

where it remains to be shown that Hs(C)=C ∀C ∈C.
Let y∈ Hs(C), where C ∈C. Then there exists D∈C
such that y∈D and D∩C �= ∅. Since C is a parti-
tion of V; D=C and so y∈C. Hence Hs(C)⊆C: That
C ⊆ Hs(C) follows from Proposition 1:5.
(1)⇒ (3): Suppose that x∈ Hs({y}) and y∈ Hs({z}).

Then x∈ Hs({y})⊆ Hs( Hs({z}))= Hs({z}). Hence Hs is tran-
sitive.

In the next example, we show that (u4) can hold
without C being a partition of V .

Example 1.13. Let V = {1; 2; 3} and C= {{1; 2};
{2; 3}; {1; 3}}. Let Hs(∅)= ∅ and Hs(X )=V ∀X ∈
P(V ); X �= ∅. Hence Hs satis-es (u4); Hs is transi-
tive, and C is a semi-irredundant cover which is not
a partition of V . C is not irredundant. (Note that
{2; 3}⊆V = Hs({1}) and {2; 3}∩ {1}= ∅:)

Proposition 1.14. Let C be a cover of V . Then C is
semi-irredundant and ∀C ∈C; Hs(C)=C if and only
if C is a partition of V .

Proof. Suppose that C is semi-irredundant and
∀C ∈C; Hs(C)=C: Let C;D∈C be such that

C ∩D �= ∅. Then C = Hs(C)⊇C ∪D by the de-ni-
tion of Hs and so D⊆C. Since C is semi-irredundant
D=C. Thus C is a partition of V . The converse is
immediate.

Let s be a function of P(V ) into itself. We are
now interested in the following conditions on s since
they are the ones that hold for a lower approximation
operator de-ned via an equivalence relation:
(l1) ∀X ∈P(V ); X ⊇ s(X ):
(l2) ∀X; Y ∈P(V ); X ⊆Y ⇒ s(X )⊆ s(Y ).
(l3) ∀X; Y ∈P(V ); s(X ∩Y )= s(X )∩ s(Y ).
(l4) ∀X ∈P(X ); s(X )= s(s(X )).

De�nition 1.15. Let C be a cover of V . De-ne s :
P(V )→P(V ) by ∀X ∈P(V ); s(X )= {y∈V | ∃C ∈
C; y∈C and C ⊆X }. Then ∀X ∈P(V ); s(X ) is
called a lower approximation of X with respect to C.

Proposition 1.16. Let C be a cover of V . Then
∀X ∈P(V ); s(X )⊇V\ Hs(V\X ).

Proof. Let X ∈P(V ). Then s(X )= {y∈V | ∃C ∈C;
y∈C; C ⊆X }= ⋃ {C |C ∈C; C ⊆X }= ⋃ {C |C ∈
C; C ∩ (V\X )= ∅}⊇V\⋃ {C |C ∈C; C ∩ (V\X ) �=
∅}=V\ Hs(V\X ):

Proposition 1.17. Let C be a cover of V . Then
∀X ∈P(V ); V\s(X )= Hs(V\X ) if and only if C is a
partition of V .

Proof. Suppose that ∀X ∈P(V ); V\s(X )= Hs(V\X ).
If C={V}, then C is a partition of V . Sup-
pose that C �= {V}. Then ∃C1; C2 ∈C such that C1
*C2. By de-nition of s; s(C2)=C2. Hence Hs(V\C2)
=V\s(C2)=V\C2. Since C1 *C2; C1⊆ Hs(V\C2)
=V\s(C2)=V\C2. Hence C1 ∩C2 = ∅: Thus C is a
partition of V . The converse is well known.

Proposition 1.18. Let C be a cover of V . Then the
following assertions hold.
(1) s satis;es (l1) and (l2);
(2) ∀X; Y ∈P(V ); s(X ∩Y )⊆ s(X )∩ s(Y ).
(3) ∀X ∈P(V ); s(X )⊇ s(s(X )):

Proof. Let X; Y ∈P(V ) be such that X ⊆Y . Suppose
that s(X )= ∅. Then clearly (l1) and (l2) hold. Sup-
pose that s(X ) �= ∅. Let y∈ s(X ). Then ∃C ∈C such
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that y∈C ⊆X ⊆Y . Thus assertion (1) holds. That as-
sertion (2) holds follows from assertion (1). That as-
sertion (3) hold follows easily from assertion (1).

In Example 1.10, we have s(C1 ∩C2)= s({2})= ∅
and s(C1)∩ s(C2)=C1 ∩C2 = {2}. Hence strict in-
clusion in (2) of Proposition 1.18 is possible.
We note that if y∈ Hs(X ); then ∃ a -nite sub-

set X ′ of X such that y∈ Hs(X ′) : y∈ Hs(X ) implies
y∈ ⋃x∈X Hs({x}) by (u6) which in turn implies
y∈ Hs({x}) for some x∈X .
This result together with properties (u1), (u2), (u4),

and Corollary 1.8 yield structural results similar to
those of certain algebraic structures [8]. We list them
below since they are also used in the next section.

De�nition 1.19. Let C be a cover for V and suppose
that Hs satis-es (u4). Let X be a subset of V .
(1) A subset U of V is called a subspace of V if

U = Hs(U ).
(2) X is called free if ∀x∈X; x =∈ Hs(X \{x}).
(3) X is said to generate a subspace U of V if

U = Hs(X ).
(4) X is called a basis for a subspace U of V if X

generates U and if X is free.

Theorem 1.20 (Kuroki and Mordeson [8]). Let C be
a cover for V and suppose that Hs satis;es (u4). Let X
be a subset of V . Then the following properties are
equivalent.
(1) X is a minimal generating set of V .
(2) X is a maximally free subset of V .
(3) X is a basis of V .

Theorem 1.21 (Kuroki and Mordeson [8]). Let C be
a cover for V and suppose that Hs satis;es (u4). Then
V has a basis and the cardinality of a basis is unique.

As an example, consider Example 1.13. {1} is a
basis for V as is {2} and also {3}.
Properties (u1)–(u4) yield structural results similar

to those of (fuzzy) -nite state machines and (fuzzy) di-
rected graphs. These results deal with such concepts as
primaries, connectedness, and retrievability [14] and
[15]. The interested reader can easily -nd them in the
references.
We now consider another approach. Let Hg; g :

P(V )→P(V ).

Clearly, ∀X ∈P(V ); g(X )=V\ Hg(V\X ) ⇔ Hg(X )
=V\g(V\X ).

Proposition 1.22. Suppose that ∀X ∈P(V ); Hg(X )=
V\g(V\X ). Then Hg satis;es (ui) ⇔ g satis;es (li)
for i=1; 2; 3; 4.

Proof. Let X; Y ∈P(V ). Then X ⊆ Hg(X )⇔X ⊆
V\g(V\X )⇔V\X ⊇ g(V\X ). Hence Hg satis-es
(u1)⇔ g satis-es (l1). Suppose that X ⊆Y . Then
Hg(X )⊆ Hg(Y )⇔V\g(V\X )⊆V\g(V\Y ) ⇔ g(V\X )
⊇ g(V\Y ). Hence Hg satis-es (u2)⇔ g satis-es
(l2). Now Hg(X ∪Y )= Hg(X )∪ Hg(Y )⇔V\g(V\X ∪Y )
=V\g(V\X )∪V\g(V\Y )⇔g(V\X ∪Y )= g(V\X )
∩g(V\Y )⇔g((V\X )∩(V\Y ))= g(V\X )∩g(V\Y ).
Hence Hg satis-es (u3)⇔ g satis-es (l3). Now Hg(X )
= Hg( Hg(X ))⇔V\g(V\X )=V\g(V\ Hg(X ))⇔g(V\X )
= g(V\ Hg(X )) ⇔ g(V\X ) = g(V\ Hg(V\g(V\X )))⇔
g(V\X )= g(V\(V\g(V\X ))) ⇔ g(V\X ) = g(g(V\
X )). Hence Hg satis-es (u4)⇔ g satis-es (l4).

Let s :P(V )→ P(V ) be such that (u1) holds. De-
-ne C= {s({x}) | x ∈ V}. We have x ∈ s({x}). Thus
C is a cover of V called the cover induced by s.

Proposition 1.23. Let Hg; g :P(V )→P(V ). Suppose
that x∈ Hg({x}) ∀x∈V . Let C= { Hg({x}) | x∈V}.
Then any two of the following three assertions im-
plies the third.
(1) ∀X ∈P(V ); g(X )=V\ Hg(V\X ) and Hg(X )=

V\g(V\X ).
(2) ∀X ∈P(V ); Hg(X )= {z ∈V | Hg({z})∩X �= ∅}:
(3) ∀X ∈P(V ); g(X )= {z ∈V | Hg({z})⊆X }:

Proof. (2) and (3) ⇒ (1): Let X ∈P(V ). Then
y∈V\ Hg(V\X )⇔y =∈ Hg(V\X )⇔y =∈{z ∈ V | Hg({z})
∩ (V\X ) �= ∅}⇔y ∈ {z ∈ V | Hg({z}) ∩ (V\X ) = ∅}
⇔y∈{z ∈V | Hg({z})⊆X }⇔y∈ g(X ), where we
note that y =∈{z ∈V | Hg({z})∩ (V\X ) �= ∅}⇔ Hg({y})
∩ (V\X )= ∅. Thus g(X )=V\ Hg(V\X ) and so
Hg(X )=V\g(V\X ).
(1) and (3) ⇒ (2): y∈ Hg(X )⇔y∈V\g(V\X )⇔

y =∈ g(V\X ) ⇔ y =∈ {z ∈ V | Hg({z})⊆V\X } ⇔ y ∈
{z∈V | Hg({z})∩X �= ∅}.
(1) and (2) ⇒ (3): y∈ g(X )⇔y∈V\ Hg(V\X )⇔

y =∈ Hg(V\X )⇔y =∈{z ∈V | Hg({z})∩ (V\X ) �= ∅}⇔
y∈{z ∈V | Hg({z})⊆X }:
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2. Upper and lower approximation applied to
commutative rings

Let R be a commutative ring with identity. We
use the notion of the prime spectrum of R to de-
-ne a cover of I= {I | I is an ideal of R; I �= R}.
Let P denote the set of all prime ideals of R and
∀X ∈P(I), the power set of I, let PX denote
{P ∈P | ∃I ∈X such that P⊇ I}. Then P is known
as the prime spectrum of R and the closed sub-
sets of P in the Zariski topology are exactly the
P{I}, where I ∈I. Let C= {P{I}U{I} | I ∈I}.
Then C is a cover of I. Now C is not neces-
sarily semi-irredundant. For example, let R denote
the polynomial ring F[x; y] in algebraically inde-
pendent indeterminates x; y over the -eld F . Con-
sider the prime ideals 〈x〉 and 〈x; y〉 of R. Then
P{〈x;y〉}∪{〈x; y〉}=P{〈x;y〉} ⊂P{〈x〉}=P{〈x〉}∪{〈x〉}.
De-ne Hs :P(I)→P(I) as in De-nition 1.2, i.e.,

∀X ∈P(I); Hs(X )= {J ∈I | ∃P{I} ∪{I}∈C; J ∈
P{I} ∪{I} and (P{I} ∪{I})∩X �= ∅}. De-ne
Hg :P(I)→P(I) by ∀X ∈P(I); Hg(X )=PX ∪X .
Then C is the cover induced by Hg. In fact, Hg here
de-nes C just as does the Hg in Section 1 since
C= { Hg({I}) | I ∈I}.
By choosing the cover C in the above manner, we

can apply techniques from both algebraic geometry
and rough set theory to the study of the ideal theory:
By adjoining {I} to P{I}, we will be able to show
that Hg satis-es (u1)–(u4).

Proposition 2.1. Let R be a commutative ring with
identity and let Hs and Hg be de;ned as above. Then
∀X ∈P(I); Hg(X )⊆ Hs(X ).

Proof. Let J ∈ Hg(X ). Then either J ∈PX or J ∈X .
Suppose J ∈X . Then J ∈P{J}∪{J} and (P{J}∪{J})
∩X �= ∅. Thus J ∈ Hs(X ). Suppose J ∈PX . Then J
is a prime ideal of R and ∃K ∈X such that J ⊇K .
Hence J ∈P{K} ∪{K} and (P{K} ∪{K})∩X �= ∅.
Thus J ∈ Hs(X ). Hence Hg(X )⊆ Hs(X ).

Proposition 2.2. Let R be a commutative ring with
identity and let Hs and be de;ned as above.
(1) If K is an ideal of R which is not prime; then

Hs({K})=P{K} ∪{K}:
(2) If P is a prime ideal; then Hs({P})=P∪ SP;where

SP = {I ∈I | I ⊆P}.

Proof. (1) Hs({K})= {J ∈I | ∃P{I} ∪{I}∈C; J ∈
P{I} ∪{I} and (P{I} ∪{I})∩{K} �= ∅}=P{K}∪
{K} since K is not prime and so (P{I} ∪{I})∩
{K} �= ∅ if and only if I =K .
(2) Hs({P})= {J ∈I | ∃P{I} ∪{I}∈C; J ∈P{I}

∪{I} and (P{I} ∪ {I})∩{P} �= ∅}. Now (P{I} ∪
{I})∩{P} �= ∅ if and only if either P ∈P{I} or
P= I . If P ∈P{I}, then J ∈P{I} ∪{I} if and only if
J is either a prime ideal containing an ideal which P
contains or J ⊆ I , where I ⊆P. If we let I = 〈0〉, then
P⊇ I and every J ∈P contains I .

Example 2.3. Let R denote the polynomial ring
F[x] in an indeterminate x over a -eld F and let Hs
and be de-ned as above. We show that Hs({〈x4〉})⊂
Hs(Hs({〈x4〉})). By Proposition 2.2, Hs({〈x4〉})=P{〈x4〉}
∪ {〈x4〉} = {〈x〉} ∪ {〈x4〉}. Now Hs(Hs({〈x4〉})) =
Hs({〈x〉}∪ {〈x4〉})= Hs({〈x〉})∪ Hs({〈x4〉})= Hs({〈x〉})∪
({〈x〉}∪ {〈x4〉}). Now Hs({〈x〉})=P∪ S{〈x〉}. There-
fore, we see that 〈x2〉 ∈ Hs(Hs({〈x4〉})), but 〈x2〉 =∈
Hs({〈x4〉}).
Example 2.4. Let R denote the polynomial ring
F[x; y] in indeterminates x and y over a -eld F and
let Hs and be de-ned as above. Consider the prime ideal
P= 〈x; y〉 of R. Letp(y)∈R,p(y) �=y, be irreducible
over F . Then 〈x; p(y)〉 ∈P. Now 〈x; p(y)〉 =∈P{P}
and 〈x; p(y)〉 =∈ SP .
A commutative ring R with identity is said to be

quasi-local if it has a unique maximal ideal.

Proposition 2.5. Let R be a quasi-local ring. Let Hs be
de;ned as above. Let M denote the unique maximal
ideal of R. Then Hs({M}) = I.

Proof. Hs({M}) = P∪ S{M} = I since M contains
every ideal of R.

Let R denote F1⊕F2, the direct sum of the -elds
F1 and F2. ThenI= {〈(0; 0)〉; 〈(0; 1)〉; 〈(1; 0)〉}. Then
M1 = 〈(1; 0)〉 and M2 = 〈(0; 1)〉 are maximal ideals of
R. Now Hs({M1})= Hs({M2})= Hs({〈(0; 0)〉})=I, but
R is not quasi-local and 〈(0; 0)〉 is not a prime ideal of
R. We see that the converse of Proposition 2.5 does
not hold.

Theorem 2.6. Let R be a commutative ring with iden-
tity and let Hg be de;ned as above. Then Hg satis;es
(u1)–(u4).
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Proof. By de-nition of Hg, X ⊆ Hg(X ) ∀X ∈P(I)
and so (u1) holds. Suppose X; Y ∈P(I) and X ⊆Y .
If P is a prime ideal of R for which there exists
I ∈X such that P⊇ I , then P contains an ideal in
Y , namely I . Thus Hg(X )⊆ Hg(Y ) and so (u2) holds.
For X; Y ∈P(I), Hg(X ∪Y )= {P ∈P | ∃I ∈X ∪Y
such that P⊇ I}∪X ∪Y = {P ∈P | ∃I ∈X such that
P⊇ I}∪X ∪{P ∈P | ∃I ∈Y such that P⊇ I}∪Y =
Hg(X )∪ Hg(X ) and so (u3) holds. Let X ∈P(I) and
P ∈ Hg( Hg(X )). Then either P is a prime ideal of R such
that ∃Q∈ Hg(X ) such that P⊇Q or P ∈ Hg(X ). Suppose
P is a prime ideal of R such that ∃Q∈ Hg(X ) such that
P⊇Q. Then either Q is a prime ideal of R such that
∃J ∈X such that Q⊇ J or Q∈X and so P ∈ Hg(X )
since P⊇Q and P is a prime ideal. In any of these
cases, we have P ∈ Hg(X ). Thus Hg( Hg(X ))⊆ Hg(X ).
Hence (u4) holds since Hg(X )⊆ Hg( Hg(X )) by (s1).

Corollary 2.7. Let R be a commutative ring with
identity and let Hg be de;ned as above. Then Hg satis-
;es (u6).

Proof. By Theorem 1.5, it suDces to show that
Hg satis-es (u5). Let X ∈P(I) and let I ∈ Hg(X ).
Then I ∈PX ∪X . Hence either I ∈PX or I ∈X . If
I ∈X , then I ∈ Hg({I}) and {I}⊆X . If I ∈PX , then
∃J ∈X such that I ⊇ J and I is a prime ideal. Hence
I ∈P{J} ⊆ Hg({J}) and {J}⊆X .

De-ne g :P(I)→P(I) by ∀X ∈P(I), g(X )=
{I ∈I | Hg({I})⊆X }.

Theorem 2.8. Let R be a commutative ring with iden-
tity and let g be de;ned as above; where V =I. Then
g satis;es (l1)–(l4).

Proof. That g satis-es (l1) and (l2) is immediate
from the de-nition of g. Let X; Y ⊆P(I). Then
J ∈ g(X )∩ g(Y )⇔ J ∈ g(X ) and J ∈ g(Y )⇔P{J} ∪
{J}⊆X and P{J} ∪{J}⊆Y ⇔P{J} ∪{J}⊆X ∩Y
⇔ J ∈ g(X ∩Y ). Hence g satis-es (l3). Now g(X ) is
the union of those P{I} ∪{I} which are contained in
X since P ∈P{I} and P{I} ∪{I}⊆X ⇒P{P} ∪{P}
⊆X and so P ∈ g({X }). Hence P{I} ∪{I}⊆X im-
plies P{I} ∪{I}⊆ g(X ). Hence g(X )⊆ g(g(X )).
However g(g(X ))⊆ g(X ) by (l1) and (l2). Thus (l4)
holds.

Let X ∈P(I). LetMX = {M ∈I | ∃I ∈X; M ⊇ I ,
and M is maximal}. Let M= {M ∈I |M is a maxi-
mal ideal}.

Example 2.9. Let R denote the polynomial ring
F[x; y] in algebraically independent indeterminates
x; y over the -eld F . Let Hg and g be de-ned as
above. Let X =M{〈x〉} ∪{〈x〉}. Then Hg({〈x〉})=X ,
Hg({M})= {M}, ∀M ∈M{〈x〉}, and Hg(X )=X since a
prime ideal strictly containing 〈x〉 is a maximal ideal of
R. Thus, g(X )= {I ∈I | Hg({I})⊆X }= {I ∈I |P{I}
∪{I}⊆M{〈x〉} ∪{〈x〉}}=X since either I = 〈x〉 or
I ∈M{〈x〉}. Note that 〈x〉 is not a maximal ideal of R.

Example 2.10. Let R, Hg and g be de-ned as in
Example 2.9. Let X = {〈x; y〉; 〈x〉; 〈x2〉}. Then Hg(X )
=PX ∪X =MX ∪{〈x〉; 〈x2〉}. Now g(X )={I ∈I |
Hg({I})⊆X }. We have that Hg({〈x〉})=MX ∪{〈x〉}
*X and Hg({〈x2〉})=MX ∪{〈x〉; 〈x2〉}*X . How-
ever, Hg({〈x; y〉})= {〈x; y〉}⊆X . Hence g(X )=
{〈x; y〉}⊆X .

Theorem 2.11. Let R be a commutative ring
with identity and g be de;ned as above. Then
∀I ∈I; g({I}) �= ∅ if and only if I is a maximal
ideal of R.

Proof. g({I})= {J ∈I | Hg(J )⊆{I}}={J ∈I |P{J}
∪{J}⊆{I}}. Thus either g({I})= ∅ or ∃J ∈I such
that P{J} ∪{J}⊆{I}. If such a J exists, then J = I
and P{I}= {I}. (P{I} �= ∅ since I is contained in a
maximal ideal.) Hence if such a J exists, J = I is
a maximal ideal of R. That is, g({I}) �= ∅ implies I
is a maximal ideal of R. Conversely, suppose I is a
maximal ideal of R. Then P{I} ∪{I}= {I} and so
g({I})= {I}. Hence g({I}) �= ∅.

Corollary 2.12. Let I ∈I. Then the following asser-
tions are equivalent.
(1) g({I}) �= ∅.
(2) I is a maximal ideal of R.
(3) g({I})= {I}.
(4) g({I})= {I}.
(5) g({I})= g({I}).

Proof. That (1) ⇔ (2) ⇔ (3) follows from
Theorem 2.11 and its proof. Now g({I})={I}⇔P{I}
∪{I}⊆{I}⇔ g({I})⊆{I}⇔ g({I})= {I}. Hence
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(3) and (4) are equivalent. Also g({I})= g({I})⇔
g({I})=P{I} ∪{I}⇔P{I} ⊆{I}⇔ I is maximal.
Hence (5) and (2) are equivalent.

Recall thatM denotes the set of all maximal ideals
of R. Then

g(M) =
⋃
M∈M

g({M}) =
⋃
M∈M

{M} =M⊇ g(M):

Now g(M)= {J ∈I | g({J})⊆M}=M. Thus
g(M)= g(M)=M.

Example 2.13. Let R, g, and g be de-ned as in
Example 2.9. Let X = {〈x〉}. Then 〈x; y〉 ∈P{〈x〉}.
Thus P{〈x〉} ∪{〈x〉}*X . Hence g({〈x〉})= ∅.

We now determine structural results for I us-
ing the above concepts. Let N denote the set
of all ideals of R which are not prime. Then
I =

⋃
J∈N(P{J} ∪ {J}) = ⋃J∈N g({J}) = g(N).

HenceN generatesI (with respect to g). Let I ∈N.
Then

I �∈
⋃

J∈N\{I}
(P{J} ∪{J})= g(N\{I}):

Thus N is a basis for I (with respect to g).
Now g({I})= g(g({I})) by Theorem 2:7. If

I; J ∈N and I �= J , then g({I})⊆ g({J}) is im-
possible since I �∈ g({J}). Thus {g({I}) | I ∈N}
is the set of primaries of I [7, p. 179], and
I=

⋃
I∈N g({I}). However, we see that this union

is not a direct union, i.e., it is not the case that, in
general g({I})∩ g({J})= ∅ when g({I}) �= g({J})
and I; J ∈N.

3. Fuzzy ideals

We now examine the situation for fuzzy ideals
of a commutative ring with identity R. Let L be a
complete distributive lattice. An L-subset of R is a
function of R into L. If S is a subset of R and a∈L, we
de-ne the fuzzy subset aS of R by ∀x∈R; aS(x)= a
if x∈ S and aS(x)= 0 otherwise. We use the notion
of the L-prime spectrum of R [10,1–5], to de-ne
a cover of FI= {I | I is an L-ideal of R; I �=1R}.
Let FP denote the set of all prime L-ideals of
R and ∀X ∈P(FI), the L-power set of FI; let

FPX denote {P ∈FP | ∃ I ∈X such that P⊇ I}.
Then FP is known as the L-prime spectrum of R
and the closed subsets of FP in the Zariski topol-
ogy are exactly the FP{I}, where I ∈FI. Let
C= {FP{I} ∪{I} | I ∈FI}. Then C is a cover of
FI. If I is an L-ideal of R, then I∗= {x∈R | I(x)=
I(0)} is an ideal of R.
De-ne s :P(FI)→P(FI) as in De-nition 1.2,

i.e., ∀X ∈P(FI), s(X )= {J ∈FI | ∃FP{I} ∪{I}
∈C, J ∈FP{I} ∪{I} and (FP{I} ∪{I})∩X �= ∅}.
De-ne g :P(FI)→P(FI) by ∀X ∈P(FI),
g(X )=FPX ∪X . Then C is the cover induced
by g. In fact, g here de-nes C just as does
the g in Section 1 since C= {g({I}) | I ∈FI}.
De-ne g :P(FI)→P(FI) by ∀X ∈P(FI),
g(X )= {I ∈FI | g({I})⊆X }. An L-ideal M of R is
called maximal if M �=1R and there is no L-ideal of
R strictly containing M other than 1R. Then an L-deal
of R is maximal if and only if M can be expressed
as M =1M∗ ∪ aR, where a∈L\{0} is a dual atom
(maximal element) of L and M∗ is a maximal ideal
of R. Now the results in Section 2 can be extended
immediately to L-ideals except for those dealing with
maximal ideals. For example, let L= [0; 1]. Then L
has not dual atoms and so R has no maximal L-ideals
in the usual sense. Hence Theorem 2.11 and Corol-
lary 2.12 cannot be immediately extended to L-ideals.
We now provide some details to the discussion of

the extension of the results of Section 2 to L-ideals.
The proofs of the following results are the same as for
crisp ideals.

Theorem 3.1. Let R be a commutative ring with iden-
tity and let s; g; and g be de;ned as above. Then the
following assertion hold:
(1) ∀X ∈P(FI); g(X )⊆ s(X ).
(2) If K is an L-ideal of R which is not prime; then

s({K})=FP{K} ∪{K}.
(3) If P is a prime L-ideal; then s({P})=FP∪ SP;

where SP = {I ∈FI | I ⊆P}.
(4) Then g satis;es (u1)–(u4) and (u6).
(5) Then g satis;es (l1)–(l4).

Proposition 3.2. Let R be a quasi-local ring. Let s be
de;ned as above. Suppose that L has a unique dual
atom; e.g.; L is a ;nite chain. LetM denote the unique
maximal L-ideal of R. Then s({M})=FI.
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We recall that an L-ideal of R is called a general-
ized maximal L-ideal if for any L-ideal J of R, I ⊆ J
implies that either I∗= J∗ or J =1R. Then a gener-
alized maximal L-ideal of R can be characterized as
follows: An L-ideal I of R is a generalized maximal
ideal if and only if I can be expressed as I =1I∗ ∪ aR,
where I∗ is a maximal ideal of R and a∈L\{1}
[13, p. 97].
Suppose that L= [0; 1]. Let I ∈FI be a general-

ized maximal L-deal. ThenFP{I} ∪{I}= {J | J ⊇ I ,
J is a generalized maximal L-ideal} and it is impossi-
ble forFP{I} ∪{I}⊆{I} since I has an in-nite num-
ber of generalized maximal L-ideals which contain I .
(Any generalized maximal L-ideal J of R with J∗= I∗
and J (x)¿I(x) ∀x∈R\I∗ is a member of FP{I}.)
Hence Theorem 2.11 and Corollary 2.12 are not imme-
diately extendible. However, we do have the following
extensions.

Theorem 3.3. Suppose that every element of L\{1}
is contained in a dual atom. Let R be a commutative
ring with identity and g be de;ned as above. Then
∀I ∈FI; g({I}) �= ∅ if and only if I is a maximal
L-ideal of R.

Corollary 3.4. Suppose that every element of L\{1}
is contained in a dual atom. Let I ∈FI. Then the
following assertions are equivalent.
(1) g({I}) �= ∅.
(2) I is a maximal L-ideal of R.
(3) g({I})= {I}.
(4) g({I})= {I}.
(5) g({I})= g({I}).

For further research projects, one might examine
Theorem 2.11 and Corollary 2.12 for L= [0; 1] since
L in this case is the lattice most often used and for
which most of the applications exist. Also, we know
that the closed subsets ofFP in the Zariski topology
are exactly theFP{I}, where I ∈FI. Because of the
importance of theFP{I} ∪{I} in the above develop-
ment, their topological properties may be of interest.
The ultimate goal is to further develop the ideas initi-
ated here and apply them to the study of fuzzy inter-
section equations. A possible start is to examine the
examples of fuzzy intersection equations given and
studied in [13].
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