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Abstract

It is constructively proved that the multi-input–multi-output fuzzy systems based upon genuine many-valued implications
are universal approximators (they are called Boolean type fuzzy systems in this paper). The general approach to construct
such fuzzy systems is given, that is, through the partition of the output region (by the given accuracy). Two examples are
provided to demonstrate the way in which fuzzy systems are designed to approximate given functions with a given required
approximation accuracy. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, there have been a number of ap-
plications of fuzzy systems theory in various =elds,
for example, in control systems. In most of these ap-
plications, the main design objective is to construct a
fuzzy system to approximate a desired control or de-
cision (often experts). From a mathematical point of
view, fuzzy systems are just functions mapping their
input to output. In the context of control, the ques-
tion is whether a fuzzy controller can always be con-
structed to approximate any desired continuous and
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nonlinear control solution with enough accuracy. For
fuzzy systems used as models, the issue is whether a
fuzzy model can always be established which is ca-
pable of approximating any continuous and nonlinear
physical system arbitrarily well. The questions are of
both theoretical and practical importance. If the fuzzy
systems were proved to be universal approximators,
then one would feel more comfortable to utilize them
as controllers and models. If not, the fuzzy systems
should be used to solve only those control and mod-
eling problems that they are capable of.

Due to its importance, the issue of fuzzy systems
as universal approximators has drawn signi=cant at-
tention in the past few years and progress has been
made [1,5,6,11,13,15,17,19–24]. Consider a fuzzy
system that comprises four principle components:
fuzzi=er, fuzzy rule base, fuzzy inference engine, and
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defuzzi=er. Assume that the fuzzi=er is the most
commonly used singleton fuzzi=er, defuzzi=er is the
center of areas (COA) or averaging of maximums
(MOMs), and the fuzzy rule base for an multi-input–
single-output (MISO) system consists of rules in the
following forms:

(MISO) Rk : IF x1 is A1
k AND x2 is A2

k AND · · ·
AND xm is Am

k ;

THEN y is Bk (k = 1; 2; : : : ; n);

(1)

where Aj
k(Bk) in Uj (V ) about variable xk (y) are

linguistic terms characterized by fuzzy member-
ship function Aj

k(xj) (Bk(y)). We generally con-
sider normal membership functions, such as trian-
gular, trapezoidal or Gaussian functions. Each Rk

can be viewed as a fuzzy implication (relation)
Ak = A1

k ×A2
k × · · · ×Am

k →Bk over U ×V = (U1 ×
U2 × · · · ×Um)×V . The choice of fuzzy inference
is Mexible. This Mexibility is determined by the im-
plication operators chosen. For the previous approx-
imation work in [1,5,6,11,13,15,17,19–24], mainly
Mamdani type fuzzy systems and Takagi–Sugeno
(TS) type fuzzy systems, the implication operator
→ is always chosen as conjunctive type implica-
tion, that is, choosing → as a t-norm, such as min
(∧) and product operator. We call the corresponding
fuzzy systems the conjunctive type fuzzy systems
as in [6]. For the choice of implication operators as
genuine many-valued implications (i.e. the general-
ization of that of classic implications, mainly contain
S-implications, R-implications and QL-implications
[7–9]), at present, there do not exist any approxima-
tion results in the literature for such fuzzy systems.
Although J.L. Castro has done some work in this
respect as genuine many-valued implications chosen
as R-implications (with some restrictions), we shall
see later that his inference approach corresponding
to R-implications is not appropriate. However, as the
results of the experiment show [2–4,10], the Boolean
type fuzzy systems (we call the fuzzy system based
on genuine many-valued implications the Boolean
type fuzzy system as in [7]) have good control capa-
bility compared to other implication operators such as
conjunctive type implication operators. Furthermore,
since the fuzzy logic based on genuine many-valued

implications is a generalization of classic logic, it
has been studied as multi-valued logic systems [8,9]
and thus has a strict logic foundation [18], it also has
a widespread use in expert systems [2–4,10]. The
question “Are they also universal approximators
and how is their approximation mechanisms” still
remains unanswered. However, we have answered
this question for SISO Boolean type fuzzy systems
in [14]. In this paper, these results will be extended
to multi-input–multi-output (MIMO) fuzzy systems
based on genuine many-valued implications.

The structure of the rest of the paper is as follows.
In Section 2, we review the inference methods of
multi-rules fuzzy systems for MIMO fuzzy systems.
We discuss the approximation properties of MIMO
fuzzy systems based on R-implications in Section 3
and those of MIMO fuzzy systems based on S- and
QL-implications in Section 4. In Section 5, we shall
illustratively design two fuzzy systems based on gen-
uine many-valued implication for two given functions
with a required approximation accuracy and compare
the optimal fuzzy rules to those conjunctive fuzzy sys-
tems. Conclusions are made in the last section. One
appendix for the proofs of the propositions in the pa-
per is included.

2. The choice of multi-rules fuzzy inference
methods

We =rst review the (multi-rules) fuzzy inference
method presented in the previous paper [14]. Since the
MIMO fuzzy systems can always be separated into a
group of MISO fuzzy systems [12], without loss of
generality, we assume in this paper that fuzzy sys-
tems are MISO systems f : U ⊆Rm → V ⊆R as form
(1), where U = U1 ×U2 × · · · ×Um ⊆Rm is the input
space and V ⊆R is the output space. The MIMO ver-
sions of all results in this paper can be easily obtained
by doing a few simple manipulations.

For the rule Rk , its antecedent fuzzy set Ak = A1
k ×

A2
k× · · ·×Am

k on U = U1 ×U2× · · ·×Um with mem-
bership function Ak(x) = A1

k(x1) ∗A2
k(x2) ∗ · · · ∗Am

k
(xm), where ∗ is the T-norm [8,9], x=(x1; x2; : : : ; xm)∈
U . Then each Rk can be viewed as fuzzy implica-
tion relation Ak = A1

k ×A2
k × · · · ×Am

k →Bk , which
is a fuzzy set in U ×V with a membership function
Rk(x; y) = Ak(x)→Bk(y).
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For fuzzy system (1) and a given input A′, inference
approaches are presented as follows:

B′ = A′ ◦
m⋃

k=1

(Ak → Bk); (2)

B′ =
m⋃

k=1

A′ ◦ (Ak → Bk); (3)

B′ = A′ ◦
m⋂

k=1

(Ak → Bk); (4)

B′ =
m⋂

k=1

A′ ◦ (Ak → Bk); (5)

where ◦ denotes the relation composition operator, it is
the just generalized Zadeh’s max-∗ composition rules,
where ∗ is a certain t-norm operator.

Assume that the input is a singleton x = x0, then in
the above algorithm, (2) and (3) are equivalent, and
(4) and (5) are equivalent.

Assume that the requirement of the membership
function Ck(x) (x∈X ⊆R), for each input variable
and for each output variable in (1), is the same as
that of paper [23]. We assume that {Ck} is contin-
uous, normal, consistent and complete, that is, for
any k, there exists x∈X such that Ck(x) = 1; and for
any x∈X , there exists k such that Ck(x)¿0; and if
Ck(x) = 1, then Cj(x) = 0 for any j �=k. In particu-
lar, if

∑
Ck(x) = 1 holds for any x∈X , then {Ck} is

called a normal base set. For the background of this
requirement, we refer to [23]. We assume that Ck(x)
is a pseudo-trapezoid-shaped membership function for
any k, that is, Ck(x) has the following forms:

Ck(x; xk ; bk ; ck ; xk+1)

=




M (x); x ∈ [xk ; bk);

1; x ∈ [bk ; ck);

D(x); x ∈ [ck ; xk+1];

0; x ∈ U − [xk ; xk+1];

(6)

where xk6bk6ck6xk+1; xk¡xk+1; M (x)¿0 is
strictly increasing in [xk ; bk) and D(x)¿0 is strictly
decreasing in [ck ; xk+1]. In particular, if bk = ck , then
Ck(x) is pseudo-triangle-shaped membership func-
tion. We assume that the membership function is

pseudo-triangle-shaped in the following, the discus-
sion for that of pseudo-trapezoid-shaped membership
function is similar.

We have the following general result.

Lemma 2.1 (Li et al. [14]). If the implication oper-
ator is chosen as a t-norm; inference algorithm is as-
sumed as (4); then B′ ≡ 0.

Hence, if we use inference method (4) and (5) for
conjunctive type implication operator, then the out-
put is always 0 for any input. In this case, the control
is impossible for any processes; the inference method
(2) and (3) should be used. This is also the theoret-
ical explanation of the related experiment results in
[3,4,10].

On the other hand, if → is chosen as genuine
many-valued implication, then I(0; x)≡ 1 holds for
any x∈ [0; 1], in this case, we should use inference
method (4) and (5) instead of (2) and (3), some
reason is presented in the following lemma.

Lemma 2.2 (Li et al. [14] and MSantaras [16]). If
the implication operator is chosen as a genuine many-
valued implication; inference method is assumed as
(2); then B′ ≡ 1.

Remark 2.3. From the formal logic and matching
points of view, we can also give some explanation as
follows:

From the view of semantics of formal logic, fuzzy
inference based on genuine many-valued implications
assume that, if the truth-values of the antecedents of
the rules are false, then the truth-values of the rules are
true, and truth-values of the rules are non-increasing
about the antecedents of the rules. However, in the
actions of control, or in the common-sense inference,
we always assume that, if the truth-values of the an-
tecedents of the rules are false or nearly false, then the
corresponding rules shall not be =red or have little ef-
fect on the =nal control. In this case, it is reasonable
to use the inference form (5) instead of (3) so as to
diminish the eTect of those rules with small matching
degree of the antecedents.

On the other hand, from the matching point of view,
fuzzy inference based on conjunctive implications as-
sumes that, the bigger the matching degrees (or the
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truth-values) of the antecedents of the rules, the larger
is the contribution of the rules to the =nal control. So,
if the matching degrees of the antecedents of the rules
are zeros (false), then the corresponding rules shall not
be =red or have little aTect on the =nal control action.
In this case, it is reasonable to use the inference form
(3) instead of (5).

Remark 2.4. From Remark 2.3, we give some notes
about the constructions of the fuzzy systems based on
R-implications by Castro in [5].

For R-implications I : [0; 1]× [0; 1]→ [0; 1] satis-
fying the condition I(a; 0) = 0 if a�=0, given input
x = x0, then Castro assumed that the output of the ith
rules was

B′
i(y) =

{
0; Ai(x0) = 0;

I(Ai(x0); Bi(y)); Ai(x0)�=0
(7)

and the =nal fuzzy output was

B′(y) =
∨
i

Bi(y): (8)

In fact, Castro used the inference method (3) instead
of (5). As mentioned in the above remark, this is only
reasonable for the case I being a conjunctive impli-
cation, so the choice of inference approach (8) using
R-implications is not appropriate, even though there
has been some restriction on each consequent part of
fuzzy rules, as (7). From the matching point of view,
the required principle: for input x = x0 is the smaller
the value (not necessary 0) Ai(x0), the smaller will be
the consequent value B′

i(y) of the corresponding rule
Ri. However, choice (7) as a consequent value B′

i(y)
of the corresponding rule Ri is contrary to the required
principle. In fact, since I is an R-implication, I(a; b) is
nonincreasing about the =rst variable a, given an input
x = x0, the smaller the value (not necessary 0) of the
antecedent Ai(x0), the larger is the value of the conse-
quent B′

i(y) (if B′
i(y) �= 0) of the corresponding rule

Ri. This forces B′(y), which is the supremum of all
B′

i(y), to be large (enough) at y as long as B′
i(y) �= 0,

even though Ai(x0) is extremely small. This points out
the inference approach (7) and (8) used by Castro in
[5], for R-implications is not appropriate.

3. Approximation capability of MISO fuzzy
systems based on R-implication

Suppose that I is an R-implication in this section,
T is the corresponding t-norm. Then I : [0; 1]× [0; 1]
→ [0; 1] is de=ned as follows:

I(a; b) = sup{c ∈ [0; 1] |T (a; c)6b}: (9)

The defuzzi=cation method is always assumed as the
averaging of MOA.

For MISO fuzzy system (1), let x = x0 = (x1
0 ; : : : ;

xm
0 ) be a singleton input, then the fuzzy output based

on I is

B′(y) =
n∧

k=1

(Ak(x0) → Bk(y)): (10)

Suppose that only Ak(1)(x0); : : : ; Ak(l)(x0) are not
zero in the following, then Eq. (10) can be simply
rewritten as follows:

B′(y) =
l∧

i=1

(Ak(i)(x0) → Bk(i)(y)): (11)

Since we require {Bi} to be consistent, for any y∈V ,
there are at most two adjacent elements Bk; Bk+1 such
that Bk(y)¿0; Bk+1(y)¿0. In this case, Eq. (11) can
be calculated as follows:

B′(y) =
∧
i∈T1

(Ak(i)(x0) → Bk(y)) ∧
∧
i∈T2

(Ak(i)(x0)

→ Bk+1(y))
∧
i∈T3

(Ak(i)(x0) → 0): (12)

For input x = x0, there is one determined output
y = y0, for system (1). For this output y = y0, it is
reasonable to require that the value B′(y0) is mainly
determined by the =rst two terms of Eq. (12), that is,

B′(y) =
∧
i∈T1

(Ak(i)(x0) → Bk(y)) ∧
∧
i∈T2

(Ak(i)(x0)

→ Bk+1(y)): (13)

If we have the following assumption on fuzzy sys-
tem (1), then Eqs. (12) and (13) are equivalent.

Assumption. For any singleton input x = x0, if the
rules Rk(1); : : : ; Rk(l) are =red, that is, the member-
ship values Ak(1)(x0); : : : ; Ak(l)(x0) of the antecedents
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of these rules are not zero, then the membership func-
tions Bk(1)(y); : : : ; Bk(l)(y) of the consequent part of
these rules have at most two adjacent di<erent ele-
ments Bk(y); Bk+1(y).

In fact, for some R-implications, this assumption is
necessary.

Lemma 3.1. If the membership functions {Bi} are
required to be consistent; and the implication op-
erator I satis=es the condition I(a; 0) �= 0 whenever
a �= 0; then for the rule base (1); if we use infer-
ence method (10) as above; and the consequent part
Bk(1)(y); : : : ; Bk(l)(y) have at least 3 elements; then
B′(y) ≡ 0.

In fact, the above assumption is also reasonable,
because many rules based on the practical fuzzy con-
trol have the forms, and we can indeed construct such
kinds of fuzzy systems (in Theorem 3.9) below. This
requirement justi=es the following principle: If the in-
puts or antecedent parts intersect; then the outputs
or consequent parts must intersect.

In this paper, we always make this assumption on
fuzzy systems. In this case, Eq. (13) always holds.
For a Boolean implication →, since a→ b is non-
increasing to =rst variable a and T1; T2 are =nite sets of
{1; 2; : : : ; l} in Eq. (13), then there exists k1 ∈T1 such
that

∧
i∈T1

(Ak(i)(x0) → Bk(y)) = (
∨

i∈T1
Ak(i)(x0)) →

Bk(y) = Ak1 (x0)→Bk(y) and k2 ∈T2 such that
∧

i∈T2

(Ak(i)(x0)→Bk+1(y)) = Ak2 (x0)→Bk+1(y). Without
loss of generality, we can assume that k1 = k; k2 = k +
1, then Eq. (13) can be simply rewritten as follows:

B′(y) = (Ak(x0) → Bk(y))

∧(Ak+1(x0) → Bk+1(y)): (14)

Let Y0 = {y0 |B′(y0) = maxy∈V B′(y)}, then the
control output y0 is one chosen point of Y0 (such as
the middle point of Y0, but we do not make this restric-
tion). We thus obtain a function y0 = G(x0); x0 ∈U ;
it is called the system function of (1) in this paper.

We =rst discuss the form of G(x) in the following
propositions.

Lemma 3.2. For any continuous t-norm T; the fol-
lowing equation has one solution for any a; b∈ (0; 1]

T (a; z) = T (b; 1 − z): (15)

Remark 3.3. (1) If f(z) = T (a; z) : [0; 1]→ [0; a] is
strictly the increasing mapping for any a∈ (0; 1], then
the solution of Eq. (15) is unique.

(2) As for some examples, we give the solution of
(15) for some t-norms:

(i) T =∧; min operator: If a6b, then the solution of
Eq. (15) is

z =

{
1=2; a ¿ 1=2;

1 − a; a61=2

if a¿b, then the solution of (15) is

z =

{
1=2; b ¿ 1=2;

1 − b; b 6 1=2

(ii) T = •, product operator: z = b=(a + b).
(iii) T (a; b) = max{0; a + b−1}, bounded sum:

z = (1 + |b − a|)=2.

Corollary 3.4. For a; b∈ (0; 1]; if a + b61; then
Eq. (15) has one solution z satisfying a61 − z and
b6z.

Theorem 3.5. Suppose that T is a continuous t-norm,
I is the corresponding R-implication; then the system
function of MISO fuzzy systems (1) based on I is
de=ned as follows: for any input x = x0; there are
two rules Rk; Rk+1 such that Eq. (14) holds; then

y0 = G(x0) = B−1
k (z); (16)

where z is just the solution of Eq. (15) for
a = Ak+1(x0); b = Ak(x0) and y0 = B−1

k (z) satis=es
the condition Bk(y0) + Bk+1(y0) = 1.

Corollary 3.6. If I is the Goguen implication; that
is; I(a; b) = 1∧ b=a; then the system function of (1)
based on I has the following form:

y0 = G(x0) = B−1
k

(
Ak(x0)

Ak(x0) + Ak+1(x0)

)
:

This is from Theorem 3.5 and Remark 3.3(2)(ii).
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Corollary 3.7. If I is GAodel-implication; then the sys-
tem function of (1) based on I is as follows:

y0 = G(x0)

=




B−1
k (1=2); min{Ak(x0); Ak+1(x0)}

¿ 1=2;

B−1
k (1 − Ak+1(x0)); Ak+1(x0) 6 1=2 and

Ak+1(x0) 6 Ak(x0);

B−1
k (1 − Ak(x0)); Ak(x0) 6 1=2 and

Ak+1(x0) ¿ Ak(x0):

This is from Theorem 3.5 and Remark 3.3(2)(i).

Corollary 3.8. If I is Lukasitwicz implication; that
is; I(a; b) = (1 − a + b)∧ 1; then the system function
of (1) has the following form:

y0 = G(x0) = B−1
k (1=2 + |Ak(x0) − Ak+1(x0)|=2):

This is from Theorem 3.5 and Remark 3.3(2)(iii).
For fuzzy systems based on R-implication opera-

tors, the results in [3,4,10] showed their good con-
trol capability compared to other implication operators
such as conjunctive type implication operators. Then,
whether or not the fuzzy systems based upon these im-
plications are universal approximators, the following
theorem answers this problem.

Theorem 3.9. The fuzzy systems based on R-
implications with MOA defuzzi=er are universal
approximators. That is; for any continuous func-
tion f : U →R over a compact subset U ⊆Rm and
an arbitrary given positive number "; there is a
fuzzy system; its corresponding system function
y = G(x) (as given in Theorem 3:5) based on a given
R-implication with MOA defuzzi=er satis=es the
inequality relation

max
x∈U

|f(x) − G(x)|¡":

Proof. For simplicity and better presentation, we will
prove the case of two variables (i.e., m = 2). The proof
for more variables is similar.

Since f is continuous, the image of f is also
a closed interval assumed as [c; d]. For the given

", there exists a natural number N such that
(d − c)=N¡"=2. Let e = (d − c)=N , suppose that
y1 = c; y2 = c + e; : : : ; yk+1 = c + ke; : : : ; yN+1 = d.
Constructing membership functions B1; B2; : : : ; BN+1

such that the support of B1 is [y1; y2), the support of
BN+1 is (yN ; yN+1], the support of Bk is (yk−1; yk+1)
for 1¡k¡N + 1, and {Bk}N+1

k=1 is a normal base set
(such as the symmetric triangle-shaped membership
functions), then Bk(yk) = 1 for any k = 1; 2; : : : ; N +1.
Let

U1 = f−1([y1; y1 + 2
3e)); : : : ; Uk

= f−1((yk − 2
3e; yk + 2

3e)); : : : ;

UN+1 = f−1((yN+1 − 2
3e; yN+1])

then {U1; U2; : : : ; UN+1} forms an open cover of U
and Ui1 ∩Ui2 �= ∅ if and only if i1; i2 are the adjacent
numbers.

For the given e, since f is uniform continuous
over compact set U , there exists a positive num-
ber %, such that |f(x) − f(x′)|¡e=2 whenever
d(x; x′)¡%, where d(x; x′) = max{|x1−x′1|; |y1−y′

1|},
x = (x1; y1), x′ = (x′1; y

′
1). Therefore, there exists a =-

nite set F = {x1 = (x1
1 ; x

1
2); : : : ; xs = (xs

1; x
s
2)} such that

the %=2-neighborhood of F forms another open cover
of U; that is, {(xi

1 − %=2; xi
1 + %=2)× (xi

2 − %=2; xi
2 +

%=2) | i = 1; : : : ; s} forms an open cover of U , and the
following appropriate condition holds.

Appropriate condition. Write the partition points of
[a1; b1] and [a2; b2] formed by F by x1

1¡ · · ·¡x1
l ; x2

1
¡ · · ·¡x2

d (then |x1
i − x1

i+1|¡% and |x2
i − x2

i+1|¡%);
then for any open rectangle (x1

i ; x
1
i+2)× (x2

j ; x
2
j+2); it

meets {Uk} at most two adjacent elements.
Constructing the normal base set {A1

i } for [a1; b1]
and {A2

i } for [a2; b2] such that the support of A1
k is

(x1
k−1; x

1
k+1) and the support of A2

k is (x2
k−1; x

2
k+1), then

A1
k(x1

k) = 1 and A2
k(x2

k) = 1 for any k. Fuzzy rules base
is designed as follows:

Rij: IF x1 is A1
i AND x2 is A2

j ;

THEN y Cij:(i = 1; 2; : : : ; l; j = 1; 2; : : : ; d));

where Cij is chosen as there exists k such that xi ∈Uk

(there are at most two Uk such that xi ∈Uk as the
construction of Uk), then Cij is chosen as Bk .
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As the appropriate condition and the properties of
the open cover {Uk}, the assumption of this paper for
the rule base holds. This is because, for any single-
ton input x = x0; if the rules Rk(1); : : : ; Rk(l) are =red,
that is, the membership values Ak(1)(x0); : : : ; Ak(l)(x0)
of the antecedents of these rules are not zero, then
the membership functions Bk(1)(y); : : : ; Bk(l)(y) of the
consequent part of these rules have at most two adja-
cent diTerent elements Bk; Bk+1.

For any input x0 ∈ [a1; b1]× [a2; b2], if x0 ∈ [x1
i ; x

1
i+1]

× [x2
j ; x

2
j+1], then

B′(y) = Ai(x0) → Ci(y) ∧ Ai+1(x0) → Ci+1(y):

Suppose that Ci =Bk , then Ci+1 =Bk+1; Bk or Bk−1 as
the appropriate condition. In this case, y0 = C−1

i (Ai

(x0)) (as in Theorem 3.5) is in [yk−1; yk ] or [yk ; yk+1].
It is no hurt to assume that y0 ∈ [yk ; yk+1], then
max{|y0−yk |; |y0−yk+1|}6e. Noting that x0 belongs
to at most two adjacent open sets Uk or Uk+1, it follows
that |f(x0) − f(yk)|¡ 2

3e or |f(x0) − f(yk+1)|¡ 2
3e;

and thus

|G(x0) − f(x0)|
= |y0 − f(x0)|
6 min{|y0 − yk | + |yk − f(x0)|; |y0 − yk+1|

+|yk+1 − f(x0)|}
6 e + 2

3e = 5
3e ¡ 5

6 " ¡ ":

Hence, maxx∈U{|G(x) − f(x)|}¡".
Furthermore, if all the consequent membership

functions {Bi} are assumed as symmetric triangle-
shaped, then the system function y = G(x) de=ned by
(16) has the simple form that we calculated in the fol-
lowing. As an example, only two inputs fuzzy systems
are considered. R-implication is chosen as Goguen-
implication, t-norm is just a product operation.

In this case, for any singleton input x0 = (x1
0 ; x

2
0),

there are at most four rules =red, and Eq. (10) has the
following form:

B′(y) = A1
i (x

1
0)A2

j (x
2
0) → Bij(y)

∧A1
i (x

1
0)A2

j+1(x2
0) → Bi; j+1(y)

∧A1
i+1(x1

0)A2
j (x

2
0) → Bi+1; j(y)

∧A1
i+1(x1

0)A2
j+1(x2

0) → Bi+1; j+1(y):

As the assumption for the fuzzy rule base in this pa-
per, there are three cases for consequent membership
functions:

(1) Bi; j(y) = Bi+1; j(y) = Bi; j+1(y) = Bi+1; j+1(y) =
Bk . In this case, since Bk is symmetrically triangle-
shaped and Bk(yk) = 1, then there exists non-negative
real number % such that for any y∈ [yk − %; yk + %];
B′(y) attains its maximum value 1. It follows that

y0 = G(x0) = yk : (17a)

(2) Bi; j(y) =Bi+1; j(y) =Bi; j+1(y) =Bk; Bi+1; j+1(y)
= Bk+1. Let a = A1

i (x
1
0), b = A2

j (x
2
0), as Bk; Bk+1 are

triangle-shaped, it follows that

B′(y) =
y − yk+1

ab(yk − yk+1)
∧ y − yk+1

a(1 − b)(yk − yk+1)

∧ y − yk+1

(1 − a)b(yk − yk+1)

∧ y − yk

(1 − a)(1 − b)(yk+1 − yk)
∧ 1

=
y − yk+1

max{ab; a(1 − b); b(1 − a)}(yk − yk+1)

∧ y − yk

(1 − a)(1 − b)(yk+1 − yk)
∧ 1:

There are three cases
(2a) b¿a and a61=2. In this case,

B′(y) =
y − yk+1

(1 − a)b(yk − yk+1)

∧ y − yk

(1 − a)(1 − b)(yk+1 − yk)
∧ 1

and y0 = G(x0) satis=es the following equation:

y0 − yk+1

(1 − a)b(yk − yk+1)

=
y0 − yk

(1 − a)(1 − b)(yk+1 − yk)

⇒ (1 − b)y0 − (1 − b)yk+1 = −by0 + byk

⇒ y0 = byk + (1 − b)yk+1: (17b)

In this case, the four =red rules Ri; j; Ri+1; j ; Ri; j+1;
Ri+1; j+1 reduce to two simple rules

IF x2 is A2
j THEN y is Bk ;

IF x2 is A2
j+1 THEN y is Bk+1:
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(2b) b¿0:5 and a¿0:5. In this case,

B′(y) =
y − yk+1

ab(yk − yk+1)

∧ y − yk

(1 − a)(1 − b)(yk+1 − yk)
∧ 1

and y0 = G(x0) satis=es the following equation:

y0 − yk+1

ab(yk − yk+1)
=

y0 − yk

(1 − a)(1 − b)(yk+1 − yk)

⇒ (1 − a)(1 − b)(y0 − yk+1)

= −ab(y0 − yk) ⇒ y0

=
1 − a − b + ab
1 − a − b + 2ab

yk

+
ab

1 − a − b + 2ab
yk+1: (17c)

(2c) a¿b and a60:5. In this case, as in case (2a),
we can obtain that

y0 = ayk + (1 − a)yk+1: (17d)

The four =red rules were reduced to two simple
rules as in case (2b).

Case (2) can be seen as three of the four =red conse-
quent membership functions that are same, while the
other is diTerent.

(3) Bi; j(y) =Bi+1; j(y) =Bk; Bi; j+1(y) =Bi+1; j+1(y)
= Bk+1, two of four =red consequent membership
functions are the same and the other two are the other
similar ones. In this case,

B′(y) =
y − yk+1

max{ab; a(1 − b)}(yk − yk+1)

∧ y − yk

max{b(1 − a); (1 − a)(1 − b)}(yk+1 − yk)

∧1:

There are two cases:
(3a) b¿0:5. In this case, y0 = G(x0) satis=es the

following equation:

y0 − yk+1

ab(yk − yk+1)

=
y0 − yk

b(1 − a)(yk+1 − yk)
⇒ (1 − a)(y0 − yk+1)

= −a(y0 − yk) ⇒ y0 = ayk + (1 − a)yk+1:
(17e)

(3b) b60:5. In this case, y0 = G(x0) satis=es the
following equation:

y0 − yk+1

a(1 − b)(yk − yk+1)

=
y0 − yk

(1 − a)(1 − b)(yk+1 − yk)

⇒ (1 − a)(y0 − yk+1)

= −a(y0 − yk) ⇒ y0 = ayk + (1 − a)yk+1:
(17f)

As in cases (2b) and (2c), the four =red rules are
reduced to two simple rules in case (3).

The combination of formulas (17a)–(17f) is
just the analytic representation of systems function
y = G(x1; x2) for this kind of fuzzy system. Example
2 in Section 5 illustrates the formula.

In fact, the above discussion to two-input fuzzy
systems (1) reMects certain decoupling properties of
fuzzy systems based on R-implications, and this kind
of properties should be researched in the future.

Remark 3.10. The results of Theorem 3.9 show the
approximation capability of MISO Fuzzy systems
based on R-implications, and the proof of Theo-
rem 3.9 gives an approach to explicitly construct
such a fuzzy system, in particular, its consequent
part is constructive. It is not like other approaches
[1,5,6,11,13,15,17,19–24], where their membership
functions in the consequent part cover each other
not satisfying the consistent conditions or consequent
part that is simply chosen as a real number. We
actually provide an approach to construct normal,
complete and consistent membership functions in the
consequent part.

The approximation mechanism of MISO fuzzy
systems based on R-implications is similar to that
of conjunctive type implications, that is, the nearer
the distances of the input x = x0 and the antecedent
membership Ai, the nearer the distances of the output
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y0 = B−1
k (z) and the corresponding consequent mem-

bership Bi will be, and the output y0 is only related
with the 2m adjacent base elements of the input x = x0.

4. Approximation capability of MISO
fuzzy systems based on S-implications and
QL-implications

S-implication and QL-implication are de=ned, re-
spectively as follows:

I(a; b) = S(N (a); b); I(a; b) = S(N (a); T (a; b));(18)

where S is a t-conorm, T is a t-norm, N is a negation,
S and T are dual through N [8–10]. They both gener-
alize classical genuine many-valued logic and satisfy
the following condition

I(0; b) = 1: (19)

They generally do not satisfy the condition I(a; b) = 1
whenever a6b, so the discussion of Section 3 does
not hold for S- and QL-implications. We shall give
other analyses in the following.

The requirements of membership functions are the
same as those of Theorem 3.9. In this case, inference
formula (14) also holds, that is,

B′(y) = S(N (Ai(x0)); Bi(y))

∧S(N (Ai+1(x0)); Bi+1(y)); (20)

B′(y) = S(N (Ai(x0)); T (Ai(x0); Bi(y)))

∧S(N (Ai+1(x0)); T (Ai(x0); Bi+1(y))): (21)

The defuzzi=er is also assumed as MOA.

Lemma 4.1. Let I(a; b) = (1 − a)∨ b be Kleene–
Dienes implication; I(a; b) = (1 − a)∨ (a∧ b) be
Zadeh implication; then the system function corre-
sponding to fuzzy system (1) is

y = G(x) =




yi; Ai(x0) ¿ Ai+1(x0);

yi+1; Ai(x0) ¡ Ai+1(x0);

(yi + yi+1)=2; Ai(x0) = Ai+1(x0);

(22)

which lies in the interval [yi; yi+1]; the intersection
supports of Bi and Bi+1. Generally; G(x) is not con-
tinuous.

Lemma 4.2. For S-implication I(a; b) = 1 − a + ab;
Reichenbach implication; the system function of
fuzzy system (1) is

y = B−1
i

(
Ai(x0)

Ai(x0) + Ai+1(x0)

)
; (23)

which lies in the interval [yi; yi+1]; the intersection
supports of Bi and Bi+1.

Lemma 4.3. For QL-implication I(a; b) = 1−a+a2b
and fuzzy system (1); its system function is

y = B−1
i

(
Ai(x0) − Ai+1(x0) + A2

i+1(x)
A2

i (x) + A2
i+1(x)

)
; (24)

which lies in the interval [yi; yi+1]; the intersection
supports of Bi and Bi+1.

Although the corresponding system functions of
fuzzy system (1) based on diTerent S-implications and
QL-implications are not the same, the following ap-
proximation theorem always holds:

Theorem 4.4. MISO fuzzy systems based on
S-implications and QL-implications with MOA de-
fuzzi=er are also universal approximators.

Remark 4.5. Since the formulas of fuzzy systems
based on diTerent kinds of S-implications and QL-
implications are diTerent, the corresponding system
functions of fuzzy system (1) are not the same.
Therefore, their corresponding control capabilities
are diTerent. Furthermore, from the results of Lem-
mas 4.2 and 4.3, we can implement continuous
control action with diTerent weights through the S-
implication I(a; b) = 1 − a + ab and QL-implication
I(a; b) = 1 − a + a2b. In this case, we have a better
control capability. These results give a theoretic ex-
planation of related experiment results in [3,4,7,10].

5. Examples

In the following examples, we shall use our ap-
proach to approximate the given continuous functions.
The comparison of optimal fuzzy rules by our ap-
proach and those by Ying in [21] is presented.
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Fig. 1. The membership functions of the output variable in Example 1.

Example 1. Design a fuzzy system based on genuine
many-valued implication to approximate the continu-
ous function F(x) = sin (x)=x de=ned on [−3; 3] with
" = 0:2.

The image set of F(x) on [−3; 3] is [0:0470; 1].
Design the fuzzy system through dividing the image
set [0:0470; 1] into [(1 − 0:0470)=0:2] + 1 = 5 parts,
and then decide the input fuzzy membership functions.

The membership functions of the consequent part
are B1; B2; B3; B4; B5; B6, which are depicted as follows
(Fig. 1).

The membership functions of input variables are
A1; A2; : : : ; A11, which are depicted as follows (Fig. 2).

Fuzzy rule base is

R1: IF x is A1 or A11; THEN y is B1;

R2: IF x is A2 or A10; THEN y is B2;

R3: IF x is A3 or A9; THEN y is B3;

R4: IF x is A4 or A8; THEN y is B4;

R5: IF x is A5 or A7; THEN y is B5;

R6: IF x is A6; THEN y is B6:

Using R-implication as implication operator, the
systems function of this fuzzy system is depicted in the
following graph (Fig. 3). A comparison of the graph
of F(x) = sin x=x is also depicted in the same =gure.

The approximation error is " = 0:0864¡0:2.
In this example, we use only 6 rules to approximate

F(x) = sin x=x with an accuracy " = 0:2, while Ying in
[21] used 207 rules to approximate the same function.

Example 2. Design a fuzzy system based on genuine
many-valued implication to uniformly approximate
the polynomial z = P(x1; x2) = 0:52+0:1x1 +0:38x2−
0:06x1x2 de=ned on [−1; 1]2 with " = 0:1.

The image set of P over [−1; 1]2 is [−0:02; 0:94].
Design the fuzzy system by dividing the image set
[−0:02; 0:94] into [(0:94 − (−0:02))=0:1] + 1 = 10
parts, and then decide the input fuzzy membership
functions.

The membership functions of the consequent part
are B1; B2; : : : ; B11, which are depicted as follows
(Fig. 4).

The membership functions of input variables x1

and x2 are A1
1; A

1
2; : : : ; A

1
7 and A2

1; A
2
2; : : : ; A

2
19, they are

depicted as follows (Figs. 5 and 6), respectively.
Table 1 gives us Fuzzy rule base as follows:

In this table, the natural number 1; 2; 3; : : : represents
the index number of the membership function for the
related variable x1; x2 or z.

Using Goguen implication, the =gure of system
function G(x1; x2) is depicted as follows (Fig. 7). A
comparison of the =gure of P(x1; x2) and the =gure of
the errors of the system function (or approximation
function) and the origin function P(x1; x2) are also de-
picted in Figs. 8 and 9.

The approximation error is " = 0:084¡0:1.
In this example, we use only 133 rules (not consid-

ering decoupling) to approximate P(x1; x2) = 0:52 +
0:1x1 + 0:38x2 − 0:06x1x2 with an accuracy " = 0:1,
while Ying in [21] used 225 rules to approximate the
same function.
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Fig. 2. The membership functions of the input variable in Example 1.
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Fig. 3. The comparison of system function y = G(x) (solid-line) and the origin function y = F(x) (dotted-line).
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Fig. 4. The membership functions of the output variable in Example 2.
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Fig. 5. The membership functions of the =rst input variable in Example 2, where Ai represents A1
i (i = 1; : : : ; 7).
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Fig. 6. The membership functions of the second input variable in Example 2, where Ai represents A2
i (i = 1; : : : ; 19).

Table 1
Z values

x2

x1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10
2 2 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10
3 2 3 3 3 3 4 5 5 6 6 7 7 8 8 9 9 9 10 11
4 3 3 3 4 4 4 5 6 6 7 7 8 8 9 9 9 10 10 11
5 4 4 4 4 5 5 5 6 7 7 8 8 8 9 9 9 10 10 11
6 4 4 5 5 5 6 6 6 7 7 8 8 9 9 9 10 10 11 11
7 5 5 5 5 6 6 6 7 7 7 8 8 9 9 9 10 10 11 11

6. Conclusion

We discuss the approximation theory of MIMO
Boolean type fuzzy systems and obtain the following

results:

(1) The fuzzy systems based upon R-, S-, QL-
implications are universal approximators, their
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Fig. 7. The system function z = G(x1; x2) of the fuzzy system in
Example 2 based on Goguen-implication.

Fig. 8. The =gure of origin function z = P(x1; x2) in Example 2.

corresponding formulas of system functions are
given.

(2) General approaches to construct fuzzy sys-
tems are given; two examples illustrate the
approaches.

(3) Defuzzi=cation methods and inference methods
are given for Boolean type fuzzy systems.

The optimal fuzzy rules and decoupling properties
of MIMO (i.e. (1)) Boolean type fuzzy systems should
be further researched in the future.

Fig. 9. Errors of the origin function and approximation function
(system function) in Example 2.

Appendix

Proof of Lemma 3.1. As the choice of implication I
and {Bi}, it follows that, if Bk(1)(y); : : : ; Bk(l)(y) have
at least three elements, then for any y∈V , there exists
i(y); 16i(y)6l such that Bk(i)(y) = 0. In this case,
Ak(i)(x0) �= 0 and Ak(i)(x0)→Bk(i)(y) = Ak(i)(x0)→ 0
= 0. It follows that B′(y) =

∧l
i = 1 (Ak(i)(x0)→Bk(i)

(y)) = 0. Hence, B′(y) ≡ 0.

Proof of Lemma 3.2. Since T is a continuous t-norm,
the functions f : [0; 1]→ [0; a] and g : [0; 1]→ [0; b]
de=ned by f(z) = T (a; z); g(z) = T (b; 1 − z) are
continuous surjections, f(z) is nonincreasing and
g(z) is nondecreasing. Let h(z) = f(z) − g(z), then
h(0) = f(0) − g(0) = T (a; 0) − T (b; 1) =−b and
h(1) = f(1) − g(1) = T (a; 1) − T (b; 0) = a, and thus
h : [0; 1]→ [−b; a] is a nonincreasing continuous sur-
jection. Since a; b¿0 and h(0) =−b60; h(1) = a¿0,
there is at least one point z ∈ [0; 1] such that h(z) = 0.
This z is just the solution of Eq. (15).

Proof of Corollary 3.4. Since a + b61, it follows
that a61 − b; b61 − a, then [b; 1 − a] �= ∅. For
any z ∈ [b; 1 − a], h(z) = T (a; z) − T (b; 1 − z) has
the following properties: h(b) = T (a; b) − T (b; 1 −
z) = T (b; a)−T (b; 1−b)60 and h(1−a) = T (a; 1−
a)− T (b; a) = T (a; 1− a)− T (a; b)¿0. Since h(z) is
continuous, it follows that there exists one z ∈ [b; 1−a]
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such that h(z) = 0, this is just to say that Eq. (15) has
one solution z satisfying a61 − z and b6z.

Proof of Theorem 3.5. For any input x = x0, there
are two rules Rk; Rk+1 to make Eq. (14) hold, that is,
B′(y)=(Ak(x0)→Bk(y))∧(Ak+1(x0)→Bk+1(y)). Let
F(x0; y) = B′(y), since →; T and ∧ are continuous,
F(x0; y) is continuous with respect to x0 and y.
Thus, for any x0, there exists one y0 ∈V such that
B′(y0) = maxy∈V B′(y), and thus y0 = G(x0) is also
continuous w.r.t. x0.

Since Ak(x0)→Bk(y) and Ak+1(x0)→Bk+1(y) are
both continuous membership functions with nonempty
intersections, so the y that B′(y) gets its maximum
value from satis=es the following equation:

(Ak(x0) → Bk(y)) = (Ak+1(x0) → Bk+1(y)): (A.1)

Let Y1 = {y∈V |Ak(x0)6Bk(y) and Ak+1(x0)6
Bk+1(y)}, if Y1 �= ∅, then Ak(x0) + Ak+1(x0)6Bk(y)
+ Bk+1(y) = 1, from Corollary 3:4, there exists
a solution z of Eq. (15) such that b = Ak(x0)6z
and a = Ak+1(x0)61 − z. Let z = Bk(y) and 1 −
z = Bk+1(y), since Bk(y) is pseudo-triangle-shaped,
there exists one unique point y0 = B−1

k (z) satisfying
Bk(y0) + Bk+1(y0) = 1 and y0 ∈Y1.

If Y1 = ∅, then we must have Ak(x0)¿Bk(y) and
Ak+1(x0)¿Bk+1(y). Since T is continuous, for any
a∈ (0; 1], the map T (a; ) : [0; 1]→ [0; a] is always
surjective, then we should have

T (Ak(x0); Ak(x0) → Bk(y)) = Bk(y);

T (Ak+1(x0); Ak+1(x0) → Bk+1(y)) = Bk+1(y): (A.2)

From Eqs. (A:1) and (A:2), we can obtain the fol-
lowing equation:

T (Ak+1(x0); Bk(y)) = T (Ak(x0); Bk+1(y)): (A.3)

Let z = Bk(y), then z is just the solution of Eq. (15)
for a = Ak+1(x0); b = Ak(x0). In this case, (A:3) has
only one solution y0 = B−1

k (z) satisfying Bk(y0) +
Bk+1(y0) = 1.

Proof of (Appropriate Condition) of Theorem 3.9.
Otherwise, there exist at least three elements
Uj1 ; Uj2 ; Uj3 that intersect with E = (x1

i ; x
1
i+2)× x2

j ;
x2
j+2). Without loss of generality, it is no hurt to

assume that j1¡j2¡j3, then Uj1 ∩Uj3 = ∅. Choos-
ing al = (a1

l ; a
2
l )∈Ujl ∩ (xi; xi+2) (l = 1; 2; 3), then it

follows that

f(al) ∈ (yjl − 2
3e; yjl + 2

3e)

and thus, |f(a1) − f(a3)|¿(yj3 − 2
3e) − (yj1 + 2

3e)
= (yj3 − yj1 ) − 4

3e. Being the choice of yj3 ; yj1 , it fol-
lows that yj3 − yj1¿2e; and thus,

|f(a1) − f(a3)| ¿ 2e − 4
3e = 2

3e ¿ 1
2e: (A.4)

On the other hand, since a1; a3 ∈E and d((x1
i+2;

x2
j+2); (x1

i ; x
2
j ))6d((x1

i+2; x
2
j+2); (x1

i+1; x
2
j+1)) + d((x1

i+1;
x2
j+1); (x1

i ; x
2
j ))6%=2 + %=2 = %, it follows that |a1

− a3 |¡%, and thus, |f(a1) − f(a3)| ¡ e=2, this
inequality contradicts with the inequality (A.4). This
proves that the appropriate condition holds.

To prove Lemma 4:1, we need the following lemma.

Lemma A. For two di<erent membership functions
Ai = A1

i ∗ · · · ∗ Am
i and Aj = A1

j ∗ · · · ∗ Am
j in MISO

fuzzy system (1); where ∗ is any t-norm; for any input
x0 ∈U = U1 × · · · × Um; we always have Ai(x0) +
Aj(x0)61.

Proof. If Ai(x0) = 0 or Aj(x0) = 0, then Ai(x0) +
Aj(x0)61 is obvious.

If Ai(x0) �= 0 or Aj(x0) �= 0, then for all 16i6m, Ak
i

(x0) �= 0 and Ak
j (x0) �= 0. Since {Ak

i } is a norm base
for variable xk ∈Uk , there is at least one k such that
Ak

i (x0) + Ak
j (x0) = 1, then it follows that Ai(x0) +

Aj(x0) = A1
i ∗· · ·∗Am

i (x0)+A1
j ∗· · ·∗Am

j (x0)6Ak
i (x0)+

Ak
j (x0) = 1.

Proof of Lemma 4.1. In this case, Eqs. (20) and (21)
can be rewritten as follows:

B′(y) = [(1 − Ai(x0)) ∨ Bi(y)]

∧[(1 − Ai+1(x0)) ∨ Bi+1(y)]; (A.5)

B′(y) = [(1 − Ai(x0)) ∨ (Ai(x0) ∧ Bi(y))]

∧[(1 − Ai+1(x0)) ∨ (Ai+1(x0) ∧ Bi+1(y))];

(A.6)
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where x0 ∈ (xi; xi+1). Write a = Ai(x0); b = Ai+1(x0)
and z = Bi(y), since a + b = Ai(x0) + Ai+1(x0)61
(Lemma A), Eqs. (A:5) and (A:6) are as
follows:

B′(y) = [1 − (a ∨ b)] ∨ [(1 − b) ∧ z]

∨[(1 − a) ∧ (1 − z)] ∨ [z ∧ (1 − z)]; (A.7)

B′(y) = [1 − (a ∨ b)] ∨ [(1 − b) ∧ a ∧ z]

∨[(1 − a) ∧ b ∧ (1 − z)]

∨[a ∧ b ∧ z ∧ (1 − z)] (A.8)

then B′(y) can be calculated as follows:

B′(y)

=




(1 − a) ∨ [(1 − b) ∧ z]; a ¿ b;

(1 − b) ∨ [(1 − a) ∧ (1 − z)]; a ¡ b;

1 − a; a = b;

(A.9)

B′(y)

=




(1 − a) ∨ [a ∧ z]; a ¿ b;

(1 − b) ∨ [b ∧ (1 − z)]; a ¡ b;

1 − a; a = b;

(A.10)

Since Bi(y) is symmetric, the point that B′(y) gets its
maximum value for the case a¿b must satisfy the re-
lation Bi+1(y)¿1−b¿a, in this case y0 = yi; and sim-
ilarly, y0 = yi+1 for the case a¡b; for the case a = b,
the maximum value 1−a of B′(y) gets at all y∈ [c; d],
in this case, we obtain that y0 = (c + d)=2, this value
will aTect the approximation capability of the corre-
sponding fuzzy system, so we make some corrections
in this case: as the =red consequent membership func-
tions are only Bi and Bi+1, then it is reasonable that
y0 lies in (yi; yi+1) (we assume that the support set
of Bi(y) and Bi+1(y) is (yi−1; yi+1) and (yi; yi+2), re-
spectively), then we get y0 = (yi +yi+1)=2. This com-
pletes the proof.

Proof of Lemma 4.2. In this case, Eq. (22) can be
rewritten as follows:

B′(y) = [1 − Ai(x0) + Ai(x0)Bi(y)]

∧[1 − Ai+1(x0) + Ai+1(x0)Bi+1(y)]: (A.11)

It is no hurt to assume that the support set of
Bi(y) and Bi+1(y) is (yi−1; yi+1) and (yi; yi+2), re-
spectively, in the following. We declare that the
unique point that B′(y) gets its maximum value
lies in [yi; yi+1]. First, if y =∈ [yi−1; yi+2], then
B′(y) = [1 − Ai(x0)]∧ [1 − Ai+1(x0)] = 1 − (a∨ b),
where Ai(x0) = a; Ai+1(x0) = b, it follows that if
there exists y such that B′(y)¿1 − (a∨ b), then
y∈ (yi−1; yi+2). We prove that there exists y such that
B′(y)¿1 − (a∨ b) in the following. Let z = Bi(y),
then

B′(y) = (1 − a + az) ∧ [1 − b + b(1 − z)]

= (1 − a + az) ∧ (1 − bz): (A.12)

In order to demand B′(y)¿1 − (a∨ b), it suUces to
require that the following inequality has a solution z
for any a∈ [0; 1]

1 − a + az ¿ 1 − (a ∨ b);

1 − bz ¿ 1 − (a ∨ b): (A.13)

The above inequality can be rewritten as follows:

a(1 − z) ¡ a ∨ b;

bz ¡ a ∨ b: (A.14)

The above equality holds for any 0¡z¡1.
For a =xed a∈ [0; 1], because z1 = 1 − a + az and

z2 = 1−bz represent two direct lines, its slope is a and
(−b), respectively, then z1 is strictly increasing about
z and z2 is strictly decreasing about z. The point that
B′(y) gets its maximum value is the intersection point
of these two direct lines, then it satis=es the equation
z = a=(a + b), that is

Bi(y0) =
Ai(x0)

Ai(x0) + Ai+1(x0)
and

Bi+1(y0) =
Ai+1(x0)

Ai(x0) + Ai+1(x0)
: (A.15)
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For the input x0 ∈ [xi; xi+1], Bi(y) and Bi+1(y) are the
only two =red consequent parts, then y0 must lie in
the intersections of the supports of Bi(y) and Bi+1(y),
that is, y0 ∈ [yi; yi+1]. Since Bi(y) is strictly mono-
tone in the interval [yi; yi+1], there exists a unique
point

y0 = B−1
i

(
Ai(x0)

Ai(x0) + Ai+1(x0)

)

to make Eq. (A:15) hold, this is just the output of the
fuzzy system.

The proof of Lemma 4:3 is similar to that of
Lemma 4:2.

The proof of Theorem 4:4 is similar to that of
Theorem 3:9.
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