Phantom and in vivo measurements of dose exposure by image-guided radiotherapy (IGRT): MV portal images v. kV portal images v. cone beam CT

Cornelia Walter, Judit Boda-Heggemann, Hansjörg Wertz, Iris Loeb, Angelika Rahn
Frank Lohr, Frederik Wenz
Journal of Radiotherapy and Oncology
Department of Radiation Oncology
University of Heidelberg, Mannheim, Germany

presented by Ariel Jefferson
Introduction to radiotherapy

• Definition: Radiotherapy (radiation therapy) is the treatment of cancerous cells with ionizing radiation
• High energy x-rays in the megavolt MV range
 – 1 photon = millions of electron volts of energy
 – Goal: to damage cell DNA to stop their proliferation
• How do we ensure precise delivery of the therapy beam to the cancer cells with minimal exposure to normal tissues?
Image guidance

- Take an image of internal patient anatomy before and sometimes during treatment
- Efficient imaging techniques minimize the difference between clinical target volume and planning target volume
 - Clinical target volume: actual site and volume of the cancerous mass
 - Planning target volume: created to account for tumor/organ movement or change in size
What determines the effectiveness of an imaging technique?

- High contrast
- Spatial resolution
- Low dose exposure to the patient
 - The most commonly used imaging techniques involve x-rays
Imaging modalities evaluated

- MV portal image
- kV portal image
- Cone beam CT
- Elekta Synergy System Linear Accelerator
MV and kV portal images

- Portal images
 - Imaging beam originates from the gantry head and is detected by the EPID (electronic portal imaging device)
Cone beam CT

- Cone beam x-ray configuration
 - Imaging beam originates from the online x-ray source which rotates
A. Amer et al.
“Imaging doses from the Elekta Synergy Cone beam CT system” 2007
Advantages and Disadvantages

• MV portal imaging
 – Uses the actual treatment beam to acquire images (standard positioning procedure)

 Advantage
 – Easy and readily available during the treatment which allows for patient repositioning if necessary

 Disadvantages
 – Provides one 2D image per acquisition
 – MV beams usually only detect bone, treatment usually targets soft tissue
Advantages and Disadvantages

- **kV portal imaging**
 - Uses a lower energy version of MV x-ray

Advantages
- Lower energy allows for detection of soft tissue structures
- Lower energy = lower absorbed dose

Disadvantage
- Provides a 2D image

Mostafi et al. patent
Advantages and Disadvantages

• Cone beam CT imaging
 – Uses a low energy kV x-rays

Advantages
 – Lower energy allows for detection of soft tissue structures
 – CBCT apparatus rotates around the patient to obtain a 360 degree series of projections
 • Once reconstructed, the projections provide a 3D volumetric image of the patient's anatomy
Questions

• Can a high contrast, spatially resolute image be acquired while limiting the radiation dose absorbed to the patient?
• More specifically, which of these imaging modalities is the most efficient for purposes of image-guided radiotherapy?
Materials and methods

- Elekta Synergy system 6 MV linear accelerator
- 5 prostate radiotherapy patients
 - 3 \textit{in vivo} dose measurements were obtained per patient (one for each imaging modality)
- CTDI phantom for 3 cone beam CT dose measurements
Materials and methods

- Quantities measured
 - MV portal image
 - anterior/posterior and lateral dose was measured \textit{in vivo} both on skin and in rectum
 - kV portal image
 - anterior/posterior and lateral dose was measured \textit{in vivo} both on skin and in rectum
 - Cone beam CT
 - \textit{In vivo} dose measured inside rectum only
 - Dose inside CTDI phantom
In vivo dose measurements

- A semi-flexible ionization chamber was fixed to the patient's skin
 - PTW 31003
 - 0.3 cm³ sensitive volume

- Rectal measurements were performed with a micro-chamber
 - PTW 23323
 - 0.1 cm³ sensitive volume
CTDI phantom measurements

- CT chamber
 - 3.14cm³ measuring volume
 - 10cm sensitive distance
- Ionization chamber
 - 0.3cm³ in size
- The two chambers were irradiated over the full length so the entire irradiated volume (length > 10cm) could be measured
Results: in vivo measurements

Table 1: Results of in-vivo dose measurements (mGy)

<table>
<thead>
<tr>
<th>Dose (mGy)</th>
<th>MV</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>av</td>
<td>57.78</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>Rectum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>av</td>
<td>33.90</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>1.81</td>
<td></td>
</tr>
</tbody>
</table>

Bold values are used to emphasize the average value of dose measurements.
Portal image Results

Fig 1. Portal images (a) kV-source 0, (b) kV-source 90, (c) MV-source 0 and (d) MV-source 90.
CBCT image results

Fig. 2. (a) Transversal, (b) coronal and (c) sagittal reconstruction of a 360° volume scan.
CTDI phantom results

- CT chamber
 - Avg CTDI in center: 10.2 mGy
 - Avg CTDI in periphery: 23.6 mGy
- From these averages, the weighted CTDI was calculated:

\[CTDI_w = \frac{1}{3} CTDI_c + \frac{2}{3} CTDI_p \]

- Result: 19.1 mGy
CTDI phantom results

• 0.3cm³ ionization chamber
 – Avg CTDI in center: 11.4 mGy
 – Avg CTDI in periphery: 25.4 mGy
• From these averages, the weighted CTDI was calculated:

\[CTDI_w = \frac{1}{3} CTDI_c + \frac{2}{3} CTDI_p \]

• Result: 20.7 mGy
• Both chamber measurements concur with the *in vivo* measurements (17.23 mGy +/- 2.76)
Statistics

- kV portal image dose was 98-99% lower than MV
 - Comparing both skin and rectal dose measurements
- Cone beam CT dose was 73% lower than MV
 - Comparing only rectal dose
Conclusions

- Gantry-mounted kV source (kV portal imaging) is a reliable tool for fast position verification
 - Low dose
 - Better image quality
- The tested kV-cone beam CT is well suited for daily position verification
 - Provides critical information about 3D patient alignment