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1 Introduction.

Consider an arbitrary digraph ¢, with pebbles placed on some of its vertices.
Suppose that, for any directed edge (v, w) of G, we are allowed to change
the configuration of pebbles by removing two pebbles from v and placing
one pebble on w. Then for a vertex v of G, if n exists such that, however
n pebbles are placed on GG, one pebble can always be moved to v, we let
f (v, G) be the smallest such n. The pebbling number of an undirected graph
G, f(G), is max,ey (e f(v, G). It is conjectured by Ronald Graham (see [1])
that for all graphs G and H, f(G x H) < f(G)f(H). We will prove this
when G and H are trees, and compute f(G) exactly for some graphs G.

2 Pebbling products.

Let T be a tree and let v be a vertex of T'. Let 77 be the rooted tree obtained
from T by directing all edges towards v. A path-partition of a rooted tree U is
a partition of the edges of U such that each set of edges in the partition forms
a directed path. A mazimum path-partition of a rooted tree U with height
n is a path-partition P of U such that every path in P touches a leaf, and,
for all 0 < m < n, if we consider the vertex-induced subtree U’ of U induced
by the set of all leaves of level m or greater and ancestors of these leaves,



then {P, € P|Py, C E(U")} is a path-partition of U'. The path-size sequence
of a path-partition {P,..., P,} is an n-tuple (ai,...,a,), where q; is the
number of edges in P; and the P;’s are ordered so that a; > a, > ... > a,.
If we have a maximum path-partition P of a rooted tree U with height h, let
U’ be the subtree of U induced by all leaves of level h and their ancestors.
Then some subset of P is a path-partition of U’, so some path in P must
run from a leaf of level h to the root. Hence if (ay,...,a,) is the path-size
sequence of a maximum path-partition of U, we must have a; = h.

If we have a digraph G with some pebbles placed on it, we let p be the
total number of pebbles on G and ¢ be the number of vertices of G with an
odd number of pebbles. If G is a digraph and v is a vertex of GG, we say that
(G,v) can be («, 3,7)-pebbled if

1. Forallm > 1,if p > a+ (m — 1)3, then m pebbles can be moved to v.

2. Forallm > 2 if p4+ ¢ > 2y + (m — 2)3, then m pebbles can be moved
to v.

Theorem 1 Let U be a rooted tree with root v and let G be a digraph with
w a vertex of G. If (G, w) can be («, 3,7)-pebbled, then (U x G, (v, w)) can
be (X + a, 2", X + max(c, 7))-pebbled, where

—de +ﬁz (2% —d;j - 1),
7=1
h is the height of U, and (dl, ..., d,) is the path-size sequence of any maxi-
mum path-partition of U.

Proof. We induct on h. If h is zero, the result follows trivially. Otherwise
let P be a maximum path-partition of U, and let U’ be the subtree of U
induced by the set of all vertices of level less than h. Then {P, N E(U') #
0|Py, € P} = P', say, is a path-partition of U’. It can easily be seen that

P’ is maximum. Let vy,...,v, be the vertices in U which are parents of
leaves of level h. Then in P’ there is a path to each v;, P; say; let a; be
the number of edges in P;. If by,...,b, are the lengths of the remaining

paths in P’, then the induction hypothesis says that ((v,w),U’ x G) can be
(X' + a, ﬁQh ' X' + max(a, v7))-pebbled, where

m

(a4 Do) + B2 — - z b b, —1).
i=1 j=1 i=1



Now U can be obtained from U’ by adding leaves to vy, ..., v,. Suppose we
add L leaves in all. Then the path-partition P must consist of the paths of
lengths by,...,b,,, combined with the paths P;,..., P,, each augmented by
an edge from v; to one of its leaves, and L — n one-edge paths from the v;’s
to their other leaves. Hence we have

m

X = O ai+d bj+L)+6) (2% —a,—2) Z i —b; —1)
i=1 j=1 i=1

n
= X'4+9L+ 8 (2% —1).

i=1
Now since P is maximum, the augmented P;’s together with these L —n
one-edge paths must form a path-partition for the subtree Uy of U induced
by the leaves of degree h and their ancestors. Hence if we let U] be the
subtree of U’ induced by the v;’s and their ancestors, the P;’s must form a
path-partition of Uj. Then if we set G equal to the trivial graph and use the

induction hypothesis, since the trivial graph can be (1,1, 1)-pebbled, we find
that U} can be (Q, 2", Q)-pebbled, where

Q:Z2“"—n+1
i=1

Now, first, let m > 1. We will prove that if p > X +a+ $2"(m — 1), then m
pebbles can be moved to (v, w). Let [y, ..., [, be the level-h leaves of U, and
let p’ be the number of pebbles in U’ x G and p;, be the number of pebbles
in {l;} x G, where 1 < k < L. Define ¢’ and g, similarly. Then if

L B
P+ ; B> Xt a+ 2" Y m—1),
k=1

we will be done, since for each vertex x € Ly, y € GG, we can take two pebbles

off (z,y) and put one pebble on some (v;,y). Hence for each k, we can take

Pk — qx pebbles from {l;} x G and move (p, — gx)/2 pebbles into U' x G.

Then we will have a total of at least X'+ a+ 32" '(m — 1) pebbles in U’ x G,

and will be able to move one pebble to (v, w), by the induction hypothesis.
Otherwise, since p > X + a + 32"(m — 1), we will have

L L
k+Qk / Pk — Qk
= p—DP —
> F kZ::l 5

k=1




> (X +a+82"(m—-1))— (X' +a+p82"(m-1))
= (X - X)+p2" (m 1),

SO

L
Zpk—l-qk >2(X — X') + 32"(m — 1).

Now for each k, if py+¢q, > 27+ (r—2)3, we can take pebbles from {l; } xG and
move r pebbles to (I, w), by hypothesis. Hence if (py +qx —27)/26 > r > 0,
we can move 2r + 2 pebbles to (I, w) and then r + 1 pebbles from (I, w)
into {vy,...,v,} x {w}, so we can move at least (px + g — 277)/23 pebbles
into U} x {w}. But then, doing this for all k£, we can put at least

ipk-i‘%*%

k=1

pebbles in U] x {w}, and then

Lope+ Qk — 2y Shoi(pk +ar) — 27L
,; - 28
- 2(X — X'+ B2"(m — 1) — 2vL
20
28, (2% 1) + 2" (m 1)
20

= zn:(ri — 1)+ 2" (m —1)
=1
= Q—-1+2"(m-1),

so we can move m pebbles to (v, w), since U} can be (Q,2"', Q)-pebbled.

Now we will prove that for all m > 2, if p+ ¢ > 2max(a,y) +2X + (m —
2) 32", then m pebbles can be moved to (v, w). If p'+¢' > 2 max(a, v)+2X'+
(m — 2)32"71, then we are done, by the induction hypothesis. Otherwise,
suppose that for some [ € {3,...,m},

2max(a,v) +2X' + (1 —2)32" " —¢ >

> 2max(a,y) +2X' + (1 - 3)32" " —

q.



Then we can move [ — 1 pebbles to (v, w) in U’ x G. Also, we have
p+qg—p —q¢ > 2(X-X)+(m-2)p2" - (1-2)p2""
= 2(X - XY+ (©2m —1—2)32" ",
so as in the first part, we can move |(2m — 1 — 2)/2] + 1 pebbles to (v, w),
giving a total of
2m — 1 — 2
2
but since [ > 2, 1 +1/2 <[ and we are done. If

|+1+l1:m1+lB-‘,

2max(a,v) +2X' — ¢ >p' > X'+ a,

then we can proceed as above with [ = 2.

Suppose finally that p' < X' + a. Then we claim that we can move
X'+ a—p' pebbles into U’ x G and still leave enough pebbles in (U\U') x G
to move m — 1 pebbles to (v, w). To move X’ + o — p' pebbles into U' x G
at all, we need to have

L J—

Zpk gk ZX,+Oé_pl- (1)
o1 2

After moving ¢ pebbles out of the {l;} x G’s, the ¢;’s will still be the same

as before, because we remove pebbles by 2’s, but the sum of the p;’s will

decrease by 2c¢. Hence to have enough pebbles left over, we need

i(pk+qk)—2(X’+a—p’) > 2(X — X') + 52" (m — 2). (2)

For (1) to hold, we need

L L

ook — Y e +2p > 2X" + 20, (3)
k=1 k=1

but
L L L L
Soe D> a+20 > P +d +D vk D
k=1 k=1 k=1 k=1

L
= pH+qg—2)
k=1

> ptq—2LV(G)]



Now if we put one pebble on each vertex of G, no movement can be done,
so we cannot move 2 pebbles to any vertex. In this case p + ¢ = 2|V(G)|.
Hence v > |V(G)|, and

L L
k=Y aw+20 > p+q—2Ly
k=1 k=1

> 2max(a,y) +2X + 2" (m — 2) — 2L~.

But X — X' > ~L, so (3) holds.
For (2), we need

L
Zpk—I—qk +2p' > 2X + 2a + 62" (m — 2),
but this follows from
L L
Zpk+qk +2p' > Zpk+qk )+p +4d =p+q,

so we are done. [ |

Theorem 2 If we have a graph G with a certain configuration of pebbles and
a vertex v of G and wish to move m pebbles to v, then there always exists an
acyclic orientation H for G such that m pebbles can still be moved to v in
H. Furthermore, if G is a tree, we can take H = G;; hence for all trees T
and vertices v of T, f(v,T) = f(v,T)).

Proof. Suppose we have a graph G with pebbles on its vertices, and
suppose we wish to move m pebbles to v. Take a sequence of directed edges,
(é1,...,€,), where pebbling along each e; in sequence moves m pebbles to v.
Now suppose we allow negative numbers of pebbles to reside on vertices, so
that pebbling along (z, y) is always possible, and subtracts 2 from the pebble
count on x and adds 1 to the pebble count on y. Then if, in (ey,...,¢€,), we
find an edge (x,y) followed by (y, z), or a cycle of directed edges, delete the
pair or cycle. After pebbling along (ey, ..., e,) the counts are all nonnegative
and at least m pebbles end up on v. Deleting pairs or cycles only increases
these counts, since a pair or cycle has the net effect of removing 1 pebble
from each of its vertices. After we have deleted all pairs and cycles present,



then, we are left with a sequence of edges (fi,..., f,) that puts m pebbles
on v when pebbled along, except that a pebble count on some vertex may be
temporarily negative. But since there are no cycles present, if we order the
vertices of G by v < w if there is an edge f; from v to w, and then take the
transitive closure, we obtain a partial order. Extend this to a linear order <
of V(G). Then if we reorder the f;’s such that (x,y) is placed before (z,w)
if © < z, no edge (y,z) can occur before an edge (z,y), since if it did we
would have y < 2 and z < y. Hence in this reordering of the f;’s, a vertex
y is only pebbled out of after all pebbling into it has been done; then there
are no problems with intermediate counts being negative, and if we pick our
orientation H to have F(H) = {(z,y)|z < y,{z,y} € E(G)}, we will be able
to move m pebbles to v in H.

If G is a tree, we can always choose to direct all edges towards v, for if
not, let (z,y) be an edge directed away from v. Then no pebbles can ever
pass from the subtree of G' rooted at y into the rest of G (which contains
v), so any pebbling steps along (z,y) can be omitted without decreasing the
number of pebbles arriving at v. Then if (z,y) is never pebbled, we might
as well direct it the other way. Repeating this, we can direct all edges in GG
towards v. |

If we have a digraph GG with pebbles on its vertices, we denote the number
of pebbles on a vertex v of G by N (v).

Theorem 3 Let G be a digraph and let S C V(G). Ifv e S and
> N (w)2~ 1) <, (4)

d(w,v)<oo, weS

then m pebbles cannot be moved to v by pebbling within S.

Proof. The left-hand side of (4) cannot increase when a pebbling move is
made within S, since when we move from vertex w to vertex w', d(w',v) >
d(w,v) — 1. But if m pebbles were on v, then the left-hand side of (4) would
be at least m, so we must not be able to move m pebbles to v. [

Theorem 4 Let U be a rooted tree and let v be the root of U. If the path-size
sequence of a mazimum path-partition for U is (aq,...,a,), then

flw,U)=> 2% —n+1.
i=1

7



Furthermore, U can be

(Z 2% — 41,292 4} 2“”) — pebbled. (5)

=1 1=2

Proof. Let {P,...,P,} be a maximum path-partition for U. The a,
edges in P; will touch a; + 1 vertices. Let (); C V(U) contain the a; of these
vertices furthest from v, and let v; be the vertex in (); furthest from v. The
(Q;’s are disjoint and do not contain v. Put 2% — 1 pebbles on v; for each
j. With this initial configuration of pebbles, we cannot move 2 pebbles from
Q); to the vertex of @); nearest the root (by Theorem 3), so we cannot move
pebbles out of any ();, and in particular, we cannot put a pebble on v, which
is not in any ();. Hence

n

f(v,U) > 2% —n.
i=1
Now in Theorem 1, set GG equal to the trivial graph. Then G can be (1,1,1)-
pebbled, so (U, v) can be

n n
(Z 20 —p4+1,21) 2% —n+ 1) — pebbled. (6)
i=1 i=1

In particular, f(v,U) is as desired. Now suppose we have put some pebbles
on U. Since for every w € V(U) there is only one pebbling move that can be
made out of w, the number of pebbles we will be able to move to v will not be
increased if we take a pebble of some vertex w and put 2 pebbles on one of w’s
children (since we will just move them back to w), and it clearly will not be
decreased. Now if ¢ > n, there are at least ¢ — n nonleaf vertices containing
at least one pebble; we can take one pebble off each of these vertices and put
2 pebbles on one of the children of each of these vertices without affecting

the number of pebbles we can move to v. But doing this increases p by ¢ — n,
and by (6), if

n
p>D 2% —n+1+2m 1),
i=1
we can move m pebbles to v. Hence if

p+qg>> 2% —n+1+2Mm—1)+n,
=1



we can also move m pebbles to v, so we can take
n n
2y = 2% —n+14+2%+n -1, ory=2"+» 24"
i=1 i=2
as desired. |
Theorem 5 IfTy,...,T, are (undirected) trees, then

f(Tox o x Ty) < f(Th) .. f(T).

Proof.  We will show that for all v; € V(7}),

f(or, . o), T, < oox Ty ) < f(u, T7,)) - flon, Ty, ) (7)

This will imply the desired result, since by Theorem 2, f(v,T)) = f(v,T),
if T is a tree and v is a vertex of 7. Theorem 1 tells us that for a digraph
G and a vertex w of G, if (G, w) can be («, a, &)-pebbled, then for a rooted
tree U with root v, (U x G, (v,w)) can be (X, 2% «, X)-pebbled, where

X=a 2% -m+1),
7=1

and (by,...,b,) is the path-size sequence of a maximum path-partition for
U. Then X > 2%, so (U x G, (v,w)) can be (X, X, X)-pebbled, and by
Theorem 4, X = af(v,U). Then, since the trivial graph can be (1,1,1)-
pebbled, we can induce to find that for rooted trees Uq,...,U, with roots
Viy ooy Uny ((01,...0,0,),Up X ... x Up,) can be (Y,Y,Y)-pebbled, where

Y = f(0,Uy) ... F(vn, U).

This implies (7), so we are done. |

3 Exact pebbling numbers.

Let P} be the digraph with V/(P?) = {p1,...,pn} and E(P¥) = {(p1,p2), -, (Pn_1,Pn) }.

Theorem 6 Let U be a rooted tree and let v be the root of U. If the path-size
sequence of a mazimum path-partition for U is (aq,...,a,), then

F((0,pm), U x Py) = 27140 4 (- 1) Y2571 137209 — (0 1), (§)

j=2 7j=2



Proof. Setting G = U and U = P! in Theorem 1, and using (5), we find
that the left-hand side of (8) is no bigger than the right-hand side. For the
other direction, let @); and v; be as in Theorem 4. Put 2% — 1 pebbles on
(vj,p1) and 2%~ pebbles on (vj,px), where j = 2,...,n and k = 2,...,m.
Also, put 2m~1*a1 — 1 pebbles on (v, p;). Then we claim that no pebble can
be moved out of Q; x P}, j =2,...,n, and that in () U{v}) x P}, no pebble
can be moved to (v, p;,). This will imply that in (8), the left-hand side is at
least as big as the right-hand side. Suppose a pebble could be moved out of
Q; x P} for some j > 1. Then we would have to move two pebbles to some
(wj, pk), where w; is the vertex of (); nearest to v and k£ € {1,...,m}. But

Z ./\/’(x)gfd(%(w]',pk))

zer xXPr, d(z,(w] ,pk))<00

k—2
= (2% — 1)2*(%*1)*(’6*1) + Z 9aj—lo—(a;—1)~1
1=0

k—2
< 272 N ot =2,
=0

so by Theorem 3, this movement cannot be made. Hence no pebbles can be
moved out of @; x P} . Similarly, in (@, U {v}) x P}, Theorem 3 prevents a
pebble from being moved to (v,p,), so we cannot move a pebble to (v, p,),
and we are done.

Theorem 7 Let G be a graph of order m with diameter . Then for n >
3(2% — 1)m,
f(K, x G)=mn.

Proof. Let G be a graph of order m with diameter A, and let n > 3(2° —
1)m. For all graphs H, f(H) > |V(H)|, so it is clear that f(K, x G) > mn.
Suppose there are at least mn pebbles on the vertices of K,, x G. We will
show that we can move a pebble to any (y,v) € V(K, x G). If w € V(G)

exists with N
Z {MJ > 2A7 (9)
IGV(KW,) 2

10



we will be able to move 22 pebbles to (y, w) and hence at least 1 pebble to
(y,v). Hence we can assume that for all w,

eV (Ky) 2

However, if (9) does not hold, there can be at most 22 —1 2’s with N (z, w) >
2, 50

3 N(m,;u)—ll

| a zeV(Ky), N(z,w)>2

> N(z,w) <2(2% — 1) + (2% — 1) = 3(2% — 1).
€V (Kn), N(z,w)>2
Then
> N(z,w) < 3(2% = 1)m,
(z,w)eEV(K,XG), N(z,w)>2

so at least mn —3(22 —1)m vertices of K,, x G have exactly 1 pebble on them,
and at most 3(22 — 1)m do not. But n > 3(2% — 1)m, so there must be some
x € V(K,) such that every N'(xz,w) = 1. Then since there are at least mn
pebbles on K, x G, if there is not already a pebble on (y, v), there must be
at least 2 pebbles on some vertex, (Z,w) say. Then we can move a pebble to

(z,w), and pebbling from (z,w;) to (x,wy), ..., (z,w,1) to (z,w,), where
(W = wy,...,wy = v) is a path in G, we get 2 pebbles on (z,v), so we can
move a pebble to (y,v), as desired. [

Lemma 8 If we have put pebbles on the vertices of P in such a way that
ZN(M)T(“*Z’) > 1,
i=1

then we can pebble p,.

Proof. By the same argument as in Theorem 4, whether or not we can
pebble p,, will be unchanged if we take a pebble off p; and put two pebbles
on p;_i. Doing this repeatedly, we get

ZN(Pi)QFI
i=1

pebbles on p;. But by hypothesis, this number is at least 2" !, so we can
clearly pebble p,; hence we are done. |

Let P, be the graph with V/(P,,) = {p1,...,pm} and E(P,,) = {{p1, p2}, -

11

o APm—1.Pm}}



Lemma 9 For all vertices © of K,,, m > 3, we have
f((pA+1, .I‘), P2+1 X Km) S 2A+1 +2m —5 (10)

for all sufficiently large A.

Proof.  Let V(K,,) = {z = zo,...,25 1}. We induce on A. Suppose
f((pa, o), PX x K,,) <22 + 7. Then we will prove that, if A is sufficiently
large, f((pat1, o), PAsq X Kp) < 287+ max(r — 1,2m — 5). This will give
(10) for (even larger) sufficiently large values of A.

Let f((pa, o), P x K,,) < 22+7, and let there be pebbles on the vertices
of PX 4 X Ky,. Let Sy = {pa,...,pat1} x Ky, S¢ = {1} x K. Let py be
the total number of pebbles in Sy, p; be the total number in S;, and define
Gz, qp similarly. Then if

Py + Z2A+T,

Pt — Gt
2
we can first move (p; — ¢;)/2 pebbles into S, and then pebble (pai1,2g) in

Sp. Hence we can assume that

Dt + q
2

28T L max(r —1,2m — 5) — 2% —r
> 281

Y

so py 4+ q; > 2°%1 — 2 and hence p, + ¢, > 227! Let

a=q + @, B =p— q, v =Dy — Q-

Then ¢, < mso 3 =p; — q > 25T — 2m. Also,

a+B+y=p+p>2°" 4 2m —5. (11)
Let
A+1
Q=Y N(pyz)2" "
k=1

Then we will show that we can move pebbles until () > 22, at which point we
will be able to pebble (pat1,20), by Lemma 8. Let T; = PX_; x {;}. Then
pebbling from S; into Ty, we can get at least (3/2 pebbles in Tj. Pebbling

12



from S, we can get at least /2 pebbles in Ty, and since none of them are on
(p1, o), this increases () by at least y. For each j =0,...,m — 1, let «; be
the number of vertices in PX ; x {z;} with an odd number of pebbles, and
let 3; be 2 [N (p1,2;)/2]. Then @ starts out with a value of at least 2%0 — 1.
Hence after this pebbling, we have

Q> §+’y+2‘10—1.

Now (3 is even, so let B = 241! — 20, where § < m. Then 2% — Q <
6 — v — (2% — 1), so if we do not already have @ > 22, we must have
e{l,...,m}andy € {0,...,0—1}. From (11), @ > 2m — 54260 —~. Now
we have a; pebbles left in T} for j = 1,...,m — 1, with at most one pebble
on each vertex. Our strategy for increasing () will be to redirect some of the
pebbles in S; that were counted in 3 to pebble other T}’s instead of Tj, so
that if we spend z pebbles from [ in this manner, we can increase () by more
than the z/2 we would have originally.

Consider a T} that has a; = £ > 3 and pebbles on (pg,,z;),. . ..(Dr,, %;),
where R} < Ry < ... < Rj. Now if we move 2f%~1 — 9fka-1 _  ~_ 9Fi-1
pebbles onto (p1, z;) at the start, pebbling down 7}, we can move one pebble
to (pr,,z;), and then one pebble to (pg,,xo). This increases ) by 27!
and uses 2% — 28— 281 pehbles from 3. Hence it increases () from
the original estimate by 2171 + . 4 2%1~1 =V, say, and uses 2% — 2V
pebbles from 3. Now if ¥; > m, we have enough pebbles in 3 to do this,
since 3 > 227" —2m, and furthermore, increasing () by m raises it above 22,
so we are done. If Y; < m, then we can move 2fk-171 — 2Rk—2=1 _ 21—l
pebbles onto (py, x;) at the start, pebble down 7} as before, and then pebble
from (pg,_,.;) to (pg,_,, o). This increases @ from the original estimate
b

' ofi—2=l pofiml>ok=8 4 490 =9k

and uses no more than 2Y; < 2m pebbles from 3. Then if

SN 1) >0y — (20— 1) (12)
J#0

we will be done for A large enough so that 24+t — 2m > 2m(m — 1). This
is because the only positive contributions to the left-hand side of (12) come
from Tj’s with «; > 3. Then either some Y; > m and we will be done, or

13



all Y; < m, so we will be able to increase () by at least the left-hand side of
(12), since 3 > 2m(m — 1), and we will be done. But

SER )01 2 Y- 2) o
770 j#0
= a— (2m - 2)
> 2m—5+20—v—(2m—2)
= 20 —7v—3,

o (12) will hold for 6 > 3.

Suppose § = 1. Then v = 0. If og > 1, we already have Q > 2. If
ag = 0, then, since m >3, a > 2m —5+20 —v=2m —3 > m — 1. Hence
there must be some «a; > 2. Let a; > 2, and let there be pebbles at (py, ;)
and (p;, z;), where k > [. Now let us move 2*~1 — 2!=1 pebbles onto (py, z;)
at the start. Then pebbling down 7}, we can move a pebble to (pg, ). This
increases (Q by 2¢~! and uses 2¥ — 2! pebbles from 3, and since 3 = 241! — 2,
(3 is large enough to do this. Then we have increased ) by 2/~ > 1 from its
original estimate, so we are done.

Suppose § = 2. Then if v = 1 and ay > 1, we are done, and if oy > 2,
we are also done. Suppose either v = 1 and g = 0 or v = 0 and oy = 1.
Then o — g > 2m — 2. If there is some «; > 3, then the left-hand side of
(12) will be at least 1, so we will be done. Otherwise, we must have o = 2
for all j # 0. Then if 8, > 22, Q will be at least 22, so we will be done.
Otherwise  — By > 2% — 4, so there is j # 0 with 3; > (2% —4)/(m — 1).
In particular, if A is large enough, 3; > 2. Then if there are pebbles in Tj
at (pk, ;) and (pi, z;), where k > [, moving 2¢~' — 2/=1 pebbles onto (py, z;)
takes at most 2% — 2! — 2 pebbles from 3, since we save 2 pebbles due to the
2 pebbles already on (p,z;) (unless 28 — 2! < 4, in which case k = 2 and
I = 1, so that it takes just 1 pebble from $3;.) In any case, § = 247! — 4, s0
we have enough pebbles to proceed as in the # = 1 case, and we can increase
Q@ by at least 1 from its original estimate, so we are done.

Finally, suppose # = 2 and v = ag = 0. Then a — ay > 2m — 1. If there
is some j with a; > 4, or j and k& with o; > 3 and oy, > 3, then the left-hand
side of (12) will be at least 2 so we will be done. Otherwise, we must have
a; = 3 for some j and «; = 2 for all other 7 # 0. Then if there are pebbles in
T; at (pg, z;), (pi, 7;), and (p,, x;), where k > [ > r, moving 2¢~1 —2/-1 271
pebbles onto (p;, ;) will use only 2¥ — 2! — 27 pebbles from §; but this is no
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larger than 22%! — 6, so 3 is large enough to do this. Then this increases @
by 2/=1 +27=! > 3 from its original estimate, so we are done. |

Lemma 10 Let G be a connected graph and let v be a vertex of G. Then
there is an integer K (v, G) such that for all A,

f((pat1,v), Pry x Q) < 9Ath (A+1)K(v,G),

where h = maxyecv(q) d(w,v).

Proof. Let T be a spanning tree of G which preserves distances from

v. Then if (aq,...,a,) is a path-size sequence of a maximum path-partition

for T', a1 = h, so applying Theorem 6 to Tf x PX_,, we can set K(v,G) =
n,2% —n 4 1. |

Lemma 11 Let G be a connected graph with diameter h. Then for all suf-
ficiently large A,

f(Pat1 x G) = max(f((pat1, w), Pat1 x G)), (13)

weR

where @) is the set of vertices w of G such that there exists a vertex v of G
with d(v, w) = h.

Proof. Choose vertices v and w of G such that d(v,w) = h. If we
put 247" — 1 pebbles on (p;,v), Theorem 3 shows that we cannot move
a pebble to (payi,w). Hence the right-hand side of (13) is at least 22+
Let K = max,cv(q) K(w,G), and let A be big enough so that A-I+h >
21 + (A + 2)K. Now let j € {2,...,A}, and fix v € V(G). We will
show that f((pj,v), Pay1 X G) < 28Fh If we set S; = {p1,...,p;j} x G
and Sy = {pj,...,pat1} X G, Lemma 10 implies that if there are at least
207 1%h4 K (v, G) pebbles on S;, we can pebble (p;, ), and if there are at least
28417+ h 4 (A42—j) K (v, G) pebbles on Sy, we can also pebble (p;, ¥). Hence
to pebble (p;, z) it will do to have at least 27~ 'Th 281 -7+h + (A4 2) K (v, G)
pebbles on G. But for j € {2,..., A},

j—1+h A+1—j+h h A—1+h
2.7 1+ +2 +1 7+ §2+1+2 1+’

so we only need to have 2"l 4 2871%h (A 4 2)K (v, G) pebbles on G,
and this quantity is no larger than 22" by our assumption on A. Now
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f((p1,v), Pay1 X G) = f((pas1,v), Pas1 X G) for all v € V(G). Together
with the above, this shows that

f(Pas1 x G) = max f((pat1,w), Pat1 x G).
weV(Q)
Now let v € V(G) have no w € V(G) such that d(w,v) = h. Then we must
have d(w,v) < h — 1 for all w € V(G), so by Lemma 10,

f((pA-l—la U), PA-I—I X G) < 2A+h71 + (A + 1)K(U7 G):
and this is also no larger than 24+ Hence we have (13), as desired. |

Theorem 12 For all m > 3 and sufficiently large A,

f(Pasi x Kp) = 2% +2m — 5.
Proof.
(<):  This follows from Lemmas 9 and 11.

(>):  We will show that f(Pay x K,,) > 28+ +2m — 5 for all A > 1.
Let V(K,,) = {z0,..., Zm_1}. Put 2271 — 3 pebbles on (p;, ), 1 pebble on
(p1,zj) for j =1,...,m—1, and 1 pebble on (pay1,z;) for j=2,...,.m—1.
This gives a total of 22%! + 2m — 6 pebbles. We will show that with this
starting configuration of pebbles, we cannot pebble (pai1,21). Suppose we
did, in fact, have some sequence of moves that pebbled (pay1,z;1). Consider
the first pebbling move we make into {pa, 1} X K,,. If this move is onto
(pat1, %), where 1 < j < m — 1, then 2 pebbles were on (pa,z;) prior to
this move. Otherwise the move is to (pat1,%o), but putting a pebble on
(pas1,zo) does not enable us to do any pebbling from the bottom row, so
there must be some succeeding move into the bottom row. If the next move
into the bottom row is onto (pa+1,;), where 1 < j < m —1, then 2 pebbles
were on (pa,x;) just before this move, and there would still have been at
least 2 pebbles on (pa, z;) prior to this move if we did not make the move to
(pas1, o). Otherwise the move must be to (pa1, o), so if we omit the first
move to (pa+1, o), we must have at least 4 pebbles on (pa,xg) before this
move. This shows that by pebbling only in {p1,...,pa} X K,,, we can either
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move 2 pebbles to (pa,;), for some j € {1,...,m — 1}, or move 4 pebbles
to (pa, o). But if we set

A
Q’i — 22]71./\/‘(])]73?2), i:O,...,m—l, and
7j=1
m—1
Qi —1 1{@0?
- 0) + =
Q@ = X max(Sy 0+ g [

we would then have Q > 2471 — % Now since @); does not increase when we
pebble from some (z;, p;) to (z;,pj_1) or (x;, pj+1), @ does not increase either.
But if we pebble from (x;, p;) to (xx, p;), where i, k > 0, then for some r > 0,
Q; will decrease by 2r and @y will increase by r; then max((Q; —1)/2,0) will
decrease by at least (2r — 1)/2 and max((Qr — 1)/2,0) will increase by at
most 7/2, so the net change in () is no larger than (1—r)/2 < 0. If we pebble
from (zg,p;) to (x;,p;), i > 0, and @y decreases by 2r while (); increases by
r, then (1/2) [(Qo — 1)/2] will decrease by r/2 and max((Q; — 1)/2,0) will
increase by at most 7/2, so ) does not increase. Finally, if we pebble from
(wi,pj) to (xo,p;), i@ > 0, and @; decreases by 2r while )y increases by r,
then (1/2) [(Qo — 1)/2] will increase by at most /2 while max((Q; —1)/2,0)
will decrease by at least (2r — 1)/2, so the net change in @ is no larger than
(1—7)/2 < 0. So @ never increases; but the initial value of @ is only 247! —1,
so we have a contradiction, as desired. |

Lemma 13 Suppose there are pebbles on PX_ ;X P,11, and let N (p1, pj) = €,
and Zf:ﬁl 20N (pi,p;) = w; for j =1,...,r + 1. Suppose €, + ...+ ¢ +
€ry1/2 > 2277 — Q, where Q@ < 2571 — 271 As well as the usual pebbling
operations, suppose that we either have that

1. We can take 28 — R pebbles off (p1,p;) and put 1 pebble on (pry1,m),
for some fixed | and k with 1 <1 <7r,1 <k <A, where R— @ > 2",
or

2. For each j = 1,...,7r, we can take P; < S = 2871 pebbles off
(p1,p;) and distribute these pebbles on column j into a configuration
with ZlA:il 22.71./\/'(])2',])]-) = Rj; where wr+1+Z§:1(wj+Rj—Pj) Z 2A+T.

Then we can pebble (pay1, Pry1), and furthermore, if in 1. we have ¢ >
28 — R, or if in 2. we have some €; > Pj, then we can pebble (pat1, Pri1)
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performing the special operation in 1. at the beginning of our pebbling, or
performing the special operation in 2. on Px., x{p,} at the beginning of our
pebbling.

Proof.  First, move |€,,1/2] pebbles onto (p1,p,) from (p1,pr11). Then
we have €; + ... + ¢, > 281" — (). Now we have 2 cases corresponding to 1.
and 2. in the statement of the lemma.

Case 1.: Foreach j =1,...,r, we do the following, in order:

Step (1). If j = [, expend 2¥ — R pebbles from (py, p;) to put a pebble on
(Prs1, 21)-

Step (2). If j > [, expend 2* pebbles from (p;,p;) to move a pebble to
(Pr+41,p;). This gives 2 pebbles on (pgi1,p;), so move a pebble to

(pk+1apj+1)-
Step (3). Pebble everything possible from (py,p;) to (p1,pj+1)-

Let ; be the number of pebbles on (py, p;) before step (1). Let

0, i<l
v; =13 21— R j=1
2k >l

Then for steps (1)-(3) to be possible, we need to have v; > v; for j =1,...,r,
and we will have

i

%~ Vi
Vi+1 = { - 5 ]J €t 2 5 T €41
j=1,...,r. Then since 7, = €1, we have
J o J—1 o
Y; 2 Z 61‘27(]72) — Z(?)Z‘ + 1)27(]7”.

i=1 i=1
Now if €j41 + ...+ ¢, > 28FH=0U+D "there are at least 22+!77=0U+1) pebbles
in PX., X {Pj+1:---,Pr41}, s0 we can pebble (paji,prqq) within P, X
{pj+1,.-.,pr1}, by Theorem 6. Hence we can assume that

61+...+6j22A+T—Q—2A+r7j

18



except that
€L +...+e >28" Q)

SO
j . . . .
26127(]72) Z 27(]71)(2A+T o Q . 2A+r7](1 . 6]'7"))
=1

where § is the Kronecker delta function. Then to satisfy v; > v; for j =
l,...,r, we need to have

]71
9-(i-1)(98+r _ () _ 9d+ri( “070 oy,
z:l
but
]71 . . . .
Swi+1)270 4y = 27+ 42700 4 (28— R)2 G
=1
42k 1)
< 142K - Rl
Then

R27UD Q270D > (R-Q)27UD >9r0U-D > 1,

so it will do to have

2A+1"*(]’71) Z 2k+1 _|_ 2A+T*(2jfl)(1 _ 6]'7“),
or, since k < A, it will do to show that
2A+r7(j71) 2 2A+1 + 2A+r7(2j71)(1 - 6]1") (14)

If j = r, this reduces to 28%! > 28+1 Otherwise, A +1 < A +7 — (j — 1)
and A+7r—(2j—1) < A+7r—(j—1), so (14) holds, as desired. Hence we
can always perform the pebbling program outlined. After doing it, we will
have 7,1 pebbles on (p1, pr41), but

r+1 r

Yrt1 2 Zez (r+1—1) 72(7)i+1)27(r+17i)
=1
22(%Hf@—u+ﬂ—erHn
> 2242 (R—-Q)—1—2*
> 28 _ 9k
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But we also have a pebble on (pgi1,pr41), S0 by Lemma 8, we can pebble
(Pat1, Pry1), as desired. Also, from above, it is clear that if ¢ > 2¥ — R, we
can perform operation 1. first, as desired.

Case 2.: Foreach j=1,...,r, we do the following, in order:

Step (1). Take P; pebbles off (p;, p;) and redistribute them.

Step (2). Pebble from (p2,p;) to (p2,pjs1), - (Pat1,ps) tO (Pay1, Pjt1)
so that there is no more than one pebble left on each of (ps,p;), ...,
(PA+1;P;’)-

Step (3). Suppose there are pebbles left on (pg,,p;),. . ..(Pr,,P;), where 1 <
Ry < ... < Ry. Then remove pebbles from (p;,p;) and pebble down
PX ., x {p,} until there are two pebbles on (pg,,p;) and no pebbles on

(anpj)a' . -a(kaq,pj). This takes

oftk=1 _gRka—1 _  _ gRi—l < 94
pebbles.
Step (4). Pebble from (pg,,p;) to (Pr,.Pj+1).

Step (5). Pebble everything possible from (py, p;) to (p1,pj41)-

Let 7; be as before. Then for steps (1)-(3) to be possible, the criterion is the
same as in case 1., except that we have v; = 2% + S for j = 1,...,7. Hence
we need, for j =1,...,r,

1

J

27U=(284r _Q — 281 = §;,)) > S (v +1)2707 4y

(]

=1
1—270" D)4 (2-270-1)(22 4 9)

—_— =

so it will do to have
A== 9=l 5 ) > 2 U Q414 (227U )28 128,
Then

1420 DQ 428 <2877 4287 41— 9or 1o Ul <98l
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so we need to have

2A+T*(jfl) _ 2A+T*(2jfl)(1 _ 6]r) Z 2A+1-

But this is (14) in case 1., which has already been proven. Hence we can
carry out our pebbling procedure.

Now in our pebbling procedure, step (1) increases w; by R; — P;, and
steps (2)-(5) have the net effect of increasing w;;, by at least (w; — 1)/2,
since we leave behind at most 1 pebble on (p1,p,;) and no pebbles on any
other (p;,p;). Let w; be the initial value of w;. Then after completing our
procedure, we have

Wy > W + D27 (w; + Ry — Py — 1)
7j=1
2 27T(Z(’U7j + Rj — P]) + 1T)T+1) — (1 — 27T)

7=1
> 27728 (127 =2 -(1-27)

but since w,,; is an integer, we have w,,; > 2%, and by Lemma 8, we can
pebble (pat1,pri1), as desired; also, if some €; > P;, we can clearly perform
operation 2. on Px,; x {p;} at first, as desired. |

A tree T is a caterpillar if there exists a path P in T such that no vertex
in T has distance greater than 1 from P. A maximum-length path in a
caterpillar T is a backbone for T'. The backbone of T is unique, up to a choice
of initial and final vertex, so all backbones for 7" have the same number of
vertices. The vertices not in a backbone are called legs; there can be no
legs adjacent to the end-vertices of a backbone, for then the backbone would
not have maximum length. Note that this implies that a caterpillar with a
backbone of 2 vertices must be just Ps.

Lemma 14 Let C be a caterpillar with m legs and a backbone B with r + 2
vertices. Then for all end-vertices x of B and sufficiently large A, we have

A+ 2
f((pA-l-le);Pz_'_l X C) S 2A+T+1 + ’V—_'_—‘ m.

2
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Proof. LetV(B) = {z,19,21,...,2,41 =2} and E(B) = {{z, 19,21}, {x1, 22},
{zg, 23}, ..., {x;,x,11}}. Let the legs of C be x,13, ..., Tmirio. Ifr =0,

we must have C' = P,, so our result follows from Theorem 6. Otherwise let

r > 1. We induct on A as in the proof of Lemma 9. Define r, Sy, Si, ps, P,

Qe @y, @, B, 7, o, B, and T}, for j = 1,...,m+r+2, as in Lemma 9, substi-
tuting the graph C for the graph K,,,. Then we have ¢, < |V(C)| = m+r+2
and as in Lemma 9, we can assume that 3 > 227"+ — 2(m + r + 2). Also,

A+2
a+B+y=p +p,>2° 4 {72 lm
Let
r+1 A+1 )
X=> > Npjz)2 "
i=1 j=1
Then at the start, X is at least
r+1 r+1
D Bi+2%—=1) > (i + Bi),
i=1 i=1
and pebbling into U/ [T, = T, say, gives
r+1 m-+r-+2 ﬁ
X > i+ 5) + -+
=1 1=r+2 2

Now if ¢; = N (py, x;) after this pebbling, j = 1,..., 7+ 1, we have

m-+r+2 61

r T
€rr1 2> Brgt, o> Bi+ 5
i—1 i—1

i=r-+2

SO €1 4. . .6 +eg /2> /2> 28T — (m4r+2), so if we set Q = m+r+2,
and A is big enough so that ) < 227! — 277! the first hypothesis of Lemma
13 will be satisfied. Then

r+1
28+ _ X §2A+T§'yzai.
i=1

If X > 2% Lemma 13 says that we are done already (using condition 2.
and setting all Pj=R;=0). Otherwise, our strategy for pebbling (pa+1, Z,+1)
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will be to find pebbling moves out of and back into 7', and alternate moves
to take before the initial pebbling into 7', such that either condition 1. or
condition 2. of Lemma 13 is satisfied. Satisfying condition 2. of Lemma 13
will involve increasing X to at least 2877,

Let j € {r+2,....m+r+2}, and let k = a;. Also let x; be adjacent to
x; in C, where t € {1,...,r}, and let there be pebbles left in T} at (pg,, z;),
ooy (PRys;), where Ry < Ry < ... < Ry. Then for [ € {1,... k — 1} with
Ry 1 = R, + 1, suppose that we move

ofti=t _glia—l _  _gli—l

pebbles onto (py, z;). Then we can move one pebble to (pg,+1, ;) and then
one pebble to (pg,11,2:), increasing X by 2. We did this at the cost of

decreasing [3; by
oft _ofi-v . of

Y

so we have a net increase to X of 2f-14_ . .+2%1 Suppose that & > (A+2)/2.
Then if B, > A —r —m — 1, we must have

A+2 A
i —(A—i—l)—i—(A—r—m—l)ZE—T—m—l.

I>k—(A+1-R)>

Hence for big enough A, 2/ — 2 > @ + 2", and since
oft _ofiu ol < of (9l 4 9)
= 2% 2V —2),

condition 1. of Lemma 13 is satisfied and we are done. Otherwise R; <
A — 7 —m —1. Then we have to move at most 24 """1 <2571 /(1m 4 1)
pebbles from f3;, and by doing this we can increase X by

2fin 4 2f >y 42t =22

Let y be maximal with R,+1 = R, ;. Then there can be at most [ (A +1 — R,1)/2]
I’s with Ry > R4, so

A+1-R
@+U+M——7fiﬂJ

and since R, >y,



so y > 2k — A — 2, and we can increase X by at least max (22272 — 2 (),
under the assumption that k£ > (A +2)/2. But if £ < (A + 2)/2, then this
is vacuously true, so for all j € {r+2,...,m+r+2}, we can increase X by

at least
max(22% 472 — 2 0). (15)

If there is j € {r +2,...,m +r + 2} with a; < 1, let w be such a j.
Otherwise let o; > 2 for j =+ 2,...,m +r + 2. We wish to show that
for some w € {r+2,...,m+r + 2}, we can increase X by at least o, — 1.
Fix j € {r+2,...,m+r+2}, and suppose z; is adjacent to z, in C', where
g € {1,...,r}. Let o; = k. Then if there are pebbles at (pg,,z;), ...,
(Pry,x;), where Ry < ... < Ry, and if, for some [ € {2,..., k},

By >2f-t Rl oRiml(p g,

we can pebble down 7; and move a pebble to (pg,, ;) and then pebble
(pr,;z,). This increases X by 27! as compared to the increase we would
obtain otherwise of

ofi=2 _  _ofem2 _oRim2( 5 1,
so there is a net increase in X of
ofi=2 L qpofer?ofi2() sy > 204 41 =201 L
Since 2¢7' > k, we have [log, k] +1 < k, so let [ = [log, k] + 1. Then
R<(A+1)—(k—1)=A+2—k+ [log, k]

and if
/6] Z 2A+17k+]—10g2 k-] Z 2lel

we can increase X by at least 271 — 1 >k — 1.
Now if

B; < 28+ et logs oj forallje{r+2,...,m+r+2}

we have
m-+r+2 m-+r+2
Z B < 28+ Z 9—a;j+[log aﬂ)_
j=r+2 j=r+2
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Now for integer x > 1, [log, x| < (z + 1)/2. Hence

m+r—+42 3 m4r-+42
doop <28 Y 27w,
Jj=r+42 Jj=r+2

Now from (15), if some «; has

22082 _ 9> m4r 42
we will be done, since we will be able to increase X above 22" and apply

Lemma 13. But then for j =r +2,...,m +r + 2, we can assume that

22(1j7A72 < m_|_7,,+47

so for all 7,
A+2+logy(m—+7r+4)
Q; 9 .
Now
m+r+2 A 9 r+1
Sooa; > 28t 4 {L-‘mZalﬁ'y
Jj=r+2 2 i=1
A+2
> {TJFW m+ 2257 — X).

Hence if X < 22%7, we must have Z;’Q;Tf o > [%1 m. For sufficiently
large A, then,

A+2+10g2(m+r+4)> <m<A+2>
— g 2 3

8+ —1
- 2
SO (@19, .., Qmary2) is majorized by

A+ 2+ logy(m + 1+ 4) A+ 2+ logy(m + r +4)
> >

(27 Y7

),

where Y > 6. Hence

m—+r—+2
Z 2704]‘/2 S 271 + 27Y/2 + (m _ 1)27(A+2+10g2(m+r+4))/4
j=r+2

—1 ) 2~ (A+2+1logy(m-+r+4))/4

IN
|
_I_
3

IN

for sufficiently large A,
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so then

r+1 m—+r+2
B = B > B
j=1 j=r+2
0.99
2 2A+T+1 — 2(m+7“—|-2) — 2A+%W
> 28%7 10.01-24T — 2(m + 1+ 2), since r > 1
> 9ATfT for sufficiently large A.

Then by Lemma 13 with condition 2. and P; = R; = 0 for all j, we are done.
Hence we can assume that some j = w, say, has 3; > 2A+1I—aj+logz aj1 - Now
decreasing 3; by x is equivalent, for the purposes of Lemma 13, to decreasing
B, by /2, so if

1
3 (2 — =2t o (1 =gy, )) < 2 —(Q 4+ 20),

we can invoke condition 1. of Lemma 13, along with the fact that we can
perform the special operation first. Otherwise,

pfi=2 ol _oli=2(1 g,y >2ft (mr 424 27),
S0
(m+r+2)+2" > 2f2 4 oMy o] 45
L ror Ro—1 _ oRi—1
> 5(2 AL (T
and if A is large enough, 227771 > (m + 7 + 2+ 2")(m + 1), so the cost to

B, will not exceed 2°7""1/(m + 1).
Now we show that we can increase X by a total of

(aw—l)—l—Q( mi” aj)—Qm {%W

j=r+2, jAw

If Aisodd, [(A+2)/2] = (A+3)/2, and

m+r+2 m+r+2
Z maX(QQ(Ij*A*Q o 27 0) Z Z (22(1j7A72 o 2)
Jj=r+2, jAw J=r+2, jtw
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m-+r+42

> ) (20;-A-3)
J=rH2, jFw
m—+r+2 A 3
C(E )t
J=rH2, jAw

as desired. If Aliseven, [(A +2)/2] = (A+2)/2. For even z, max(2*—2,0) >
T, SO

m-+r+42 m-+r+42

> max(2°¥ 47?7 -2,0) > > (20— A—2)
j=r+2, jAw j=r+2, j#w

m—+r—+2 A 2

= 2 ( Z oz]-) — 2mT+,
j=r+2, 7w
as desired.
Now _
m—r A—l—?
Z OAJZ [T-‘m—I—Q(QAH—X)—aw
J=r+2, jAw

so we can increase X by at least
4257 — X) —qyy — 1.

But if 227" — X < a,, — 1, we can increase X by a,, — 1, making X > 24+
so we are done. Otherwise we can assume ay,, — 1 < 28%" — X so a, + 1 <
3(24%7 — X)), and we can increase X by at least 221" — X. Furthermore, if we
do not satisfy condition 1. of Lemma 13, we can do so at a cost of Y; pebbles
from f,,, ..., Y41 pebbles from f3,, ... where each a; is in {1,...,r} and all
Y; < 227771/(m + 1). Hence condition 2. of Lemma 13 is then satisfied, so
we are done.

Theorem 15 Let C be a caterpillar with m legs and a backbone with r + 2
vertices. Then for all sufficiently large A,

f(Pag1 x C) =28+ 4 [ﬁw m.

2

Proof.
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(<):  C has diameter 7 + 1, and vertices v and w of C have d(v,w) =r+1
iff v and w are distinct end-vertices of some backbone. Hence Lemma 14
tells us that for every vertex v of C' such that a vertex w of C exists with
d(w,v) =71+ 1,

A+2W
— | m.

f((pay1,v), Pajy x C) < 28F 1 4 { .

We can then apply Lemma 11 to get the desired result.

(>):  We will show that f(Pay; x C) > 2877+ 4 [%1 m for all A > 0.
Let B be a backbone of C, V(B) = {x1,...,%,41,%r12}, and E(B) =
1,20}, o {xri1, 250} }. Let the legs of C' be x,43,.. . Tyyryo. Put
258471 — 1 pebbles on (p1, 71), and 1 pebble on (p;, z;) fori =r+3,...,m+
r+2and j=1,2,4,...,2[(A+1)/2]. Then there are

A+1 A+ 2
2A+T+1 - 1_|_m ({%J 4 1) — 2A+T+1 . 1_|_ ’VT_F—‘ m

pebbles on Pa,; x C. We will show that we cannot pebble (pay1,,12). Let

A+1

Qi = > 2N (pj, i), ie{l,...,m+r+2},
j=1
r+2

Q = > 27'Q:

=1

Then @ starts out equal to 224"+ —1_and if there was a pebble on (pa1, T,42),
Q would be at least 22171, But () does not increase when we pebble within
Prnyy x B. We need to show that it does not increase at other times ei-
ther. Fix i € {r +3,...,m +r + 2}, and let z; be adjacent to x,, where
q € {1,...,r+2}. Now if we consider all the pebbling moves from Pa 1 x{z,}
into Pay1 X {z;}, they must decrease ), by 2r and increase (); by r, for some
r > 0. But if we increase ); by r, where

P< 29T (14248 4. 4297, j >0,

we will not be able to move a pebble to (pgj+o, ©;) afterwards. This is because
(p2j+2, %i)s -+ (Pat1, ;) each start with at most 1 pebble, and hence we
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can make no pebbling moves out of (paji2,%;),. . .,(Pat1, ;) until we pebble
(p2j+2, x;), which will put 2 pebbles on (pgj42, ;). Hence if we could pebble
(p2j+2, xi), by Theorem 3, we would have

2j+2
> N(pr,wi) 22294,
k=1
but
2j+2
S N(proxi) <r+1+248+... +2% <2.2%H
k=1
so this is impossible. But if we cannot pebble (pyji0,2;), then in moving
pebbles out of Payy % {z;}, we can only move out of (p1,z;),...,(p2j+1,2:),
so we can decrease Q; by at most r +1+2+8+...+ 2% and increase Q,
by at most (r +1+2+8+...+ 2% 1)/2. Then the net change in Q, is no
bigger than

r4+14+2+8+...+2%1 3r  1+2+48+...+2%1
—2r + = ——+ .
2 2 2
Now let j > 0 be minimal with r < 2%7!' — (1 +2+ 8+ ...+ 2%"'). Then
if 7 =0, we have r < 1, so r = 0 and we clearly do not increase (),, since we
can move no pebbles out of Pay; X {z;}. Otherwise,

r>257 (1424 84... 42979,

SO

3 1 ‘
—§+§(1+2+8+...+2QH)

3, 5 . 1 ‘
—5(221’1—(1+2+8+...+221’3))+§(1+2+8+...+223’1)

= 2(14+2+8+...+2%3) 291
= 24 44164...+2%2 251 <,

IN

so (), cannot suffer a net increase after all pebbling out of Payy x {z;} is
done. Considering all ¢ and ¢, this means that the total value of ) can never
increase, so we are done. |
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