Solutions to Translation Puzzles pp212-213

I found it useful to translate b:(SSOb)=c (leaving c as a free variable) before I started to worry about the second quantifier. Proceeding directly, this says "There exists a number b such that two times b = c." Thinking about the meaning of this phrase, I arrive at "c is a multiple of 2", or simply "c is even". Then the entire expression becomes \sim " c: c is even and direct translation gives "It is not the case that every number c is even", or simply "Not all numbers are even". This is certainly true.

Starting again with b:(SSO-b)=c as "c is even", handling the negation as "It is not the case that c is even" or "c is odd", and then proceeding with the universal quantifier, I arrive at "Every number c is odd" or "All numbers are odd". This is false.

I'm most comfortable with \sim (**SSO-b**)= \mathbf{c} as " $\mathbf{2} \cdot \mathbf{b}$ 1 \mathbf{c} ". Then, working to the left, I see "There exists a \mathbf{b} such that $\mathbf{2} \cdot \mathbf{b}$ 1 \mathbf{c} " and I handle the second quantifier as "For every number \mathbf{c} there is a number \mathbf{b} such that $\mathbf{2} \cdot \mathbf{b}$ 1 \mathbf{c} " or "Given the number \mathbf{c} , I can find a number \mathbf{b} that forces the inequality $\mathbf{2} \cdot \mathbf{b}$ 1 \mathbf{c} ". This is true even when \mathbf{c} is even; for example, take \mathbf{b} to be 1 if \mathbf{c} is not 2, and take \mathbf{b} to be 2 if \mathbf{c} is 2.

I find it useful again to start on the left. I understand " \mathbf{c} : (SSO \mathbf{b})= \mathbf{c} as "For every number \mathbf{c} , $\mathbf{2}\mathbf{b}=\mathbf{c}$ ". Then the entire sentence becomes "It is not the case that there exists a number \mathbf{b} with the property that for every number \mathbf{c} , $\mathbf{2}\mathbf{b}=\mathbf{c}$ " or, if you like, "There is no single number \mathbf{b} for which the equation $\mathbf{2}\mathbf{b}=\mathbf{c}$ holds for every \mathbf{c} ". This is true.

This one's tough because of where the negation sits. My ear likes the negation expressed as "It's not true that $2 \cdot \mathbf{b} = \mathbf{c}$ holds for every \mathbf{c} ". This helps me to avoid the mistranslation "For every \mathbf{c} , $2 \cdot \mathbf{b}$ 1 \mathbf{c} ".

Well, it is almost certainly true that the statement "2-**b**=**c** holds for every **c**" is false, so that our ~" **c**: (**SS0**-**b**)=**c** is almost certainly true, no matter what **b** we choose to work with.

Let me be specific. "There exists a number **b** such that the statement " $2 \cdot b = c$ holds for every **c**" is not true". With **b=10**, for example, the equality $2 \cdot b = c$ only holds for **c=20** and not for every **c**.

In fact, you can make a stronger true statement: " \mathbf{b} : ~" \mathbf{c} : (SSO \mathbf{b})= \mathbf{c} , because for any \mathbf{b} you choose, $\mathbf{2}$ · \mathbf{b} = \mathbf{c} will only hold for one value of \mathbf{c} and not for every \mathbf{c} .

While the last expression had us working with "it is not the case that equality holds for every \mathbf{c} ", this one has us consider "it is the case that inequality holds for every \mathbf{c} ". Thus the statement is "There exists a number \mathbf{b} such that no matter what number \mathbf{c} you choose $\mathbf{2}\cdot\mathbf{b}$ \mathbf{b} \mathbf{c} ". This is false: given $\mathbf{b}=\mathbf{10}$, for example, choose $\mathbf{c}=\mathbf{20}$ causing the inequality to fail.