
OPPORTUNISTIC ROUTING ALGORITHMS
IN DELAY TOLERANT NETWORKS

By

Eyuphan Bulut

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: COMPUTER SCIENCE

Approved by the
Examining Committee:

Prof. Boleslaw K. Szymanski, Thesis Adviser

Prof. Christopher Carothers, Member

Assoc. Prof. AlHussein Abouzeid , Member

Assoc. Prof. Biplab Sikdar , Member

Rensselaer Polytechnic Institute
Troy, New York

February, 2011
(For Graduation May 2011)

c© Copyright 2011

by

Eyuphan Bulut

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGMENT . xi

ABSTRACT . xii

1. INTRODUCTION . 1

1.1 Routing Problem in DTNs . 1

1.2 Our Contributions . 3

1.3 Thesis Structure . 5

2. RELATED WORK . 6

2.1 Classification based on knowledge available at nodes 6

2.2 Classification based on number of carriers of the message 7

2.3 Popular DTN Routing Algorithms . 8

3. MULTI-PERIOD SPRAY AND WAIT ROUTING 19

3.1 Two Period Case . 22

3.2 Three Period Case . 27

3.3 Increasing the Number of Periods by Recursive Partitioning 33

3.4 Acknowledgment of Delivery . 36

3.5 Simulation Model and Results . 38

3.6 Summary of Contributions . 49

4. ROUTING WITH ERASURE CODING OF MESSAGES 50

4.1 Overview of Erasure Coding and Problem Description 50

4.2 Message Distribution Schemes . 54

4.2.1 Source Spraying . 55

4.2.2 Binary Spraying . 55

4.2.3 Optimal (Fastest) Spraying 57

4.2.4 Cooperative Binary Spraying 58

4.3 Reducing Cost in Single Period . 61

iii

4.4 Reducing Cost in Multiple Periods 63

4.5 Simulation Model and Results . 65

4.6 Summary of Contributions . 68

5. EFFICIENT SINGLE-COPY BASED ROUTING WITH CORRELATED
NODE MOBILITY . 70

5.1 Conditional Intermeeting Time . 72

5.2 Analysis of Conditional Intermeeting Time 76

5.3 Proposed Algorithms . 79

5.3.1 Shortest Path based Routing 79

5.3.1.1 Overview . 79

5.3.1.2 Network Model . 81

5.3.1.3 Conditional Shortest Path Routing 82

5.3.2 Metric-based Forwarding Algorithms 87

5.3.2.1 Overview . 87

5.3.2.2 Proposed Revision 87

5.4 Performance Evaluation . 88

5.4.1 Algorithms in Comparison . 88

5.4.2 Data Sets . 90

5.4.2.1 Real DTN Traces . 90

5.4.2.2 Synthetic Mobility Traces 90

5.4.3 Performance Metrics . 91

5.4.4 Simulation Results . 91

5.4.4.1 Comparison of CSPR and SPR 92

5.4.4.2 Comparison of revised and original versions of metric-
based algorithms . 94

5.4.4.3 Effects of Simulation Parameters on Results 98

5.5 Summary of Contributions . 99

6. EXPLOITING SOCIAL RELATIONS FOR EFFICIENT DTN ROUTING 100

6.1 Impact of Social Structure on Spray and Wait Routing 102

6.1.1 Network Model and Assumptions 102

6.1.2 Challenges and Tradeoff of Efficient Routing 102

6.1.3 Analysis of Delivery . 104

6.1.4 Simulation Results . 109

6.2 Utilizing Friendship Relations for Efficient Routing in Mobile Social
Networks . 112

iv

6.2.1 Analysis of Node Relations . 112

6.2.2 Friendship Community Formation 115

6.2.2.1 Handling Indirect Relationships 116

6.2.2.2 Handling Periodic Variation in Node Relations . . . 119

6.2.3 Forwarding Algorithm . 123

6.2.4 Evaluations . 124

6.2.4.1 Data Sets . 124

6.2.4.2 Algorithms in Comparison and Performance Metrics 125

6.2.4.3 Simulation Results 125

6.2.5 Discussions and Future Work 129

6.2.5.1 Complexity of the Algorithm 129

6.2.5.2 The Effects of Number of Periods and Thresholds . . 130

6.2.5.3 Extension of the Algorithm 130

6.3 Summary of Contributions . 131

7. CONCLUSIONS AND DISCUSSIONS . 133

LITERATURE CITED . 137

v

LIST OF TABLES

2.1 Comparison of Algorithms . 17

3.1 Optimum Li copy counts that minimize the average number of copies
while preserving the desired probability of delivery. 40

3.2 Average number of copies used in single (1p), two-period (2p) and three-
period (3p) spraying algorithms with different acknowledgment types
and deadlines. 43

4.1 Notations . 51

4.2 Execution of different message copy distribution algorithms on the net-
work with node meeting times shown in Figure 4.3 59

4.3 Minimum average costs of single and two period erasure coding algo-
rithms at the time the message is delivered (Type II) and after all nodes
receive acknowledgment of the delivery (Type I). 68

6.1 Updated times (in seconds) of encounters in Figure 6.13 for two different
periods. The bold values in local times show the start and end times of
local encounters in corresponding period. 123

vi

LIST OF FIGURES

1.1 Snapshots of a delay tolerant network at four different times. 3

2.1 Two different classifications of routing algorithms proposed for delay
tolerant networks. 6

2.2 When two hosts (A and B) come into transmission range of one another,
they first exchange summary vectors, then the necessary packets for
transmission is decided and as final step these packets are transmitted
to each other [22]. 8

3.1 The cumulative distribution function of probability of meeting the ex-
pected delay in the Spray and Wait algorithm for different values of λ,
where λ1>λ2>λ3. 21

3.2 The cumulative distribution function of delivery time of a message when
spraying different number of copies in two different periods. 22

3.3 The cumulative distribution function with spraying different number of
copies in three different periods. 28

3.4 Recursive partitioning algorithm to define more periods of spraying and
further decrease the total cost of spraying. 32

3.5 The comparison of the average number of copies obtained via analysis
and simulation for the two-period case when random walk model is used. 41

3.6 The comparison of the average number of copies obtained via analysis
and simulation for the three-period case when random walk model is
used. 41

3.7 The comparison of the average number of copies obtained via analysis
and simulation for the two period case when random waypoint model
is used. 42

3.8 The comparison of the average number of copies obtained via analysis
and simulation for the three period case when random waypoint model
is used. 42

3.9 The comparison of the average delay for the single period and multiple-
period algorithms (random walk model). 45

3.10 The comparison of average end of spraying times in the single period
and multiple-period spraying algorithms (random walk model). 46

vii

3.11 The percentage of savings achieved by the proposed algorithms with
two different acknowledgment schemes (random waypoint model). . . . 46

3.12 The percentage of savings achieved by 2p-Type II algorithm with three
different pd values (random waypoint model). 46

3.13 The effect of number of nodes on the difference between the analysis
and simulations results. 47

3.14 The average number of copies used per message in the simulations of
real traces from RollerNet. 47

4.1 Comparison of replication based and erasure coding based routing. . . . 52

4.2 Comparison of delivery probabilities in erasure coding and replication
based routing. 53

4.3 Node meeting times in a sample network. Each line shows the time-
line of a node and the connections between time lines indicate meetings
between the corresponding nodes. 59

4.4 E[Ts] values based on analysis and simulation for different message dis-
tribution schemes. 60

4.5 E[Ts] from simulations of binary, cooperative binary and optimum spray-
ing algorithms. 61

4.6 Comparison of delivery probabilities in erasure coding based routing
with different parameters where (k,R)=(4,5) 62

4.7 Cumulative distribution function of delivery probability in two period
erasure coding routing. 65

4.8 Average costs incurred by the single period erasure coding routing when
the source and binary sprayings are used in message distribution. 67

4.9 Comparison of average costs per message achieved in single period repli-
cation based routing and erasure coding based routing with different
delivery rates. In both algorithms source spraying is used in message
distribution. 69

5.1 A physical cyclic MobiSpace with a common motion cycle of 12 time
units. 73

5.2 Example meeting times of node A with nodes B and C. Upper and
lower values are used to compute τA(B|C) and τA(C|B), respectively. . 76

5.3 C-Maps of popular nodes in three datasets. In figures, B represents the
id of the node already met and C represents the id of the node to be met. 80

viii

5.4 A sample DTN graph with four nodes and nine edges. 81

5.5 An example case where CSP can be different than SP. 82

5.6 Path 2 may have smaller conditional delay than path 1 even though
CSP from A to D is through B. 84

5.7 Graph transformation to solve CSP with 4 nodes where A is the source
and D is the destination. 85

5.8 A sample case showing how the conditional intermeeting time can be
bigger than standard intermeeting time. Here, while τB(C) = 6.83,
τB(C|A) = 8.33. This makes |CSP(A,C)| >|SP(A,C)|. 86

5.9 Comparison of SPR and CSPR: Message delivery ratio (a-d), Cost (e)
and Routing Efficiency (f) vs. time. 89

5.10 Comparison of metric-based forwarding algorithms using RollerNet traces 93

5.11 Comparison of metric-based forwarding algorithms using Cambridge
traces . 94

5.12 Comparison of metric-based forwarding algorithms using Haggle Project
traces . 95

5.13 Comparison of metric-based forwarding algorithms using Synthetic Data 96

5.14 Effects of parameters on simulations with synthetic data. 97

6.1 A sample social network structure with five communities. Each com-
munity has different inner and inter-community meeting rates. 101

6.2 Distribution of copies to source’s and destination’s communities. 105

6.3 Delivery probabilities when k = 5 and L = 10 108

6.4 Delivery probabilities when k = 3 and L = 15 109

6.5 Simulation vs. analysis showing the expected delivery time when k = 5
and L = 10 . 110

6.6 Simulation vs. analysis showing the expected delivery time when k = 3
and L = 15 . 110

6.7 Average delivery delay with different k values when L = 10 111

6.8 Average copy count used per message with different k values when L = 10112

6.9 Six different encounter histories between nodes i and j in the time
interval [0, T]. Shaded boxes show the encounter durations between
nodes. 113

ix

6.10 Encounter history between nodes i and j (upper diagram) and between
nodes j and k (lower diagram) in the same time interval [0, T]. 116

6.11 Encounter distributions of node 28 and 56 in MIT traces. 119

6.12 Encounter distributions of node 39 and 21 in Haggle traces. 119

6.13 Sample contact history between two nodes (upper) and the updated
contact history for three different periods (lower). 122

6.14 Comparison of algorithms using MIT traces 126

6.15 Comparison of algorithms using Haggle Project traces 128

6.16 Comparison of algorithms using Synthetic traces 129

6.17 Routing efficiency vs. buffer space . 130

6.18 Routing efficiency vs. message generation interval 131

x

ACKNOWLEDGMENT

This thesis is the end of my journey for obtaining a doctorate degree in Computer

Science. I can honestly state that it would not have been possible without the

support of many people.

First of all, I would like to indicate that it is my great fortune to have pursued

my Ph.D. studies under the guidance of such a great advisor, Professor Boleslaw

Szymanski. I would like to thank to him for his continuous support, encourage-

ment and invaluable concern throughout this research. Especially, his pleasant and

friendly personality and precise guidance made this graduate study more enjoyable.

At every step of my thesis, he guided me with his profound knowledge, insight and

wisdom. I would like to express my deep gratitude to him for being such a great

advisor.

I also would like to thank to Professor Christophers Carothers, Professor Al-

Hussein Abouzeid and Professor Biplab Sikdar for being members of my committee

and giving their insightful comments and suggestions through forming my thesis

work.

I also would like to thank to my colleagues, Sahin Cem Geyik and Zijian Wang,

for being such wonderful people to collaborate with. I appreciate their efforts in

helping me for solving several problems I faced through this thesis work. I should

also thank many other friends including Hilmi Yildirim, Jerry Xie and Lei Chen for

their friendship and sharing life with me through my graduate studies.

Finally, my deep gratitude goes to my parents and my wife. I am very grateful

to them for standing by me in everything I have done and giving me whatever they

can. They have always provided me continuous support, encouragement and their

love. I believe that nothing would be possible without the presence of them and the

peaceful family environment they provided me during my life. I dedicate this thesis

to them.

xi

ABSTRACT

Delay Tolerant Networks (DTNs), also called as intermittently connected mobile

networks, are wireless networks in which a fully connected path from source to

destination is unlikely to exist. Therefore, in these networks, message delivery relies

on opportunistic routing where nodes use store-carry-and-forward paradigm to route

the messages. However, effective forwarding based on a limited knowledge of contact

behavior of nodes is challenging.

In this thesis, we discuss several aspects of routing problem in DTNs and

present four novel algorithms for different DTN environments: (i) multi-period

multi-copy based Spray and Wait routing algorithm where the copies are distributed

to the nodes in different periods, (i) multi-period erasure coding based routing algo-

rithm where the optimal erasure coding parameters for different periods are selected

to minimize the cost, (iii) efficient single copy based routing algorithm where the

correlation between the mobility of nodes are utilized, and (iv) social structure-

aware routing algorithm where message exchanges between nodes are performed

considering the social relations of nodes. In all of these algorithms, our common

objective is to increase the message delivery ratio and decrease the average deliv-

ery delay while minimizing the routing cost (number of copies used per message or

number of forwardings of a single message between the nodes) under given circum-

stances. We also present simulation results (based on both real and synthetic DTN

traces) regarding the performance comparison of the proposed algorithms with the

state-of-the-art routing algorithms in DTNs.

xii

CHAPTER 1

INTRODUCTION

Delay Tolerant Networks (DTN), also referred to as Intermittently Connected Mobile

Networks, are wireless networks in which at any given time instance, the probability

that there is an end-to-end path from a source to destination is low. Since most of

the nodes in a DTN are mobile, the connectivity of the network is maintained by

nodes only when they come into the transmission ranges of each other. If a node

has a message copy but it is not connected to another node, it stores the message

until an appropriate communication opportunity arises.

There are many examples of such networks in real life. For example, in north

part of the Sweden [1], the communication between villages and the summer camps

of the Saami population is provided when the nodes get connected. The same

situation is also seen in rural villages of India and some other poor regions [2].

Other fields where this kind of communication scenarios may occur also include

satellite communication [3], wildlife tracking [4], military networks [5] and vehicular

ad hoc networks [6]. Moreover, such environments can exist even when a stable

infrastructure is destroyed by natural disaster or other effects. A more interesting

example of DTNs is the applications where sensors are attached to seals [7] and

whales [8] to collect large number of sensor readings from the oceans. In these

applications, the data collected by sensors on seals and whales is transferred to a

sink node using the transitive connectivity between the sensor nodes.

1.1 Routing Problem in DTNs

Although the connectivity of nodes is not constantly maintained, it is still

desirable to allow communication between nodes. Therefore, it is necessary to pro-

vide a routing protocol which tries to route packets throughout the times the link is

available among the nodes. But this can not be done by standard routing algorithms

which assume that the network is connected most of the time.

In a standard network, since the nodes are connected most of the time, the

1

2

routing protocol forwards the packets in a simple way. The cost of links between

nodes are mostly known or easily estimated so that the routing protocol computes

the best path to the destination in terms of cost and tries to send the packets

over this path. Furthermore, the packet is only sent to a single node because the

reliability of paths is assumed relatively high and mostly the packets are successfully

delivered. However, in DTN like networks, routing becomes challenging because the

nodes are mobile and connectivity is rarely maintained.

The transient network connectivity needs to be of primary concern in the

design of routing algorithms for DTNs. Therefore, routing of the packets is based

on store-carry-and-forward paradigm. That is, when a node receives a message but

if there is no path to the destination or even a connection to any other node, the

message should be buffered in this current node and the upcoming opportunities

to meet other nodes should be waited. Moreover, even a node meets with another

node, it should carefully decide on whether to forward its message to that node.

It is obvious that to forward a message to multiple nodes increases the delivery

probability of a message. However, this may not be the right choice because it can

cause a huge messaging overhead in the network which then causes redundant energy

and resource consumption. On the other hand, sending a copy of the message to a

few number of nodes uses the network resources efficiently but the message delivery

probability becomes lower and the delivery delay gets longer. Consequently, it is

clearly seen that there is a tradeoff between the message delivery ratio and the

energy consumption and delivery delay in the network. Hence, while designing a

routing protocol for delay tolerant networks, the important considerations must be

(i) the number of copies that are distributed to the network for each message, and

(ii) the selection of nodes to which the message is replicated or forwarded.

Consider the sample delay tolerant network illustrated in Figure 1.1. It presents

four different snapshots of the network showing connectivity between nodes at four

different times. Assume node A has a message destined to node G. Looking at the

snapshots, we can easily observe that delivery of the message could be achieved by

node B at T4 if node A forwards the message to node B at time T1. However, the

key point here is how node A will know that node B will meet the destination node

3

A B

C

E

F G

I

J

D

H

A

B

C

E

F G

I J

D

H

A

B

C
E

F
G

I

J

D

H

A

B

C

E

F G

I

J

D

H

at T1 at T2

at T4at T3

Figure 1.1: Snapshots of a delay tolerant network at four different times.

before it meets the destination. What makes routing challenging in a DTN is to be

able to make better decisions at contact times of nodes using only local information

available at nodes.

In this thesis, we study the routing problem in delay tolerant networks and

provide different solutions. In each, we use different routing techniques and work

on different DTN scenarios, however our common main objective is to minimize the

routing cost1 while achieving high delivery rate by the delivery deadline.

1.2 Our Contributions

In this thesis, we propose new opportunistic routing algorithms for Delay Tol-

erant Networks. We analyze the DTN routing problem for different DTN environ-

ments (i.e. homogeneous networks, heterogeneous networks, social networks) and

by using different approaches (each chapter of the thesis focus on one approach) we

provide different routing algorithms to decrease the routing cost of the messages in

1We define routing cost as the number of copies used per message in multi-copy based algorithms
and as the number of forwardings of a message in single-copy based routing algorithms.

4

delay tolerant networks. The basic features and novelties of the proposed routing

algorithms are the following:

• We propose multi-period spray and wait routing algorithm where we distribute

limited and predefined number of message copies at different spraying periods

and wait for the delivery of any of them between spraying durations. As the

spraying times (periods) start and the message delivery does not happen yet,

we spray additional copies of the message to increase the probability of its

delivery. As a result of this efficient copying strategy in multiple periods, we

get the advantage of early delivery and achieve the same or a higher delivery

rate by the deadline while using fewer average number of copies per message

than the single period spray and wait algorithm where all copies of the message

are distributed at the beginning of the routing.

• We use erasure coding technique to increase the reliability and to further

decrease the cost of routing. For a given desired delivery rate and deadline for

delivery, we find the optimum parameters to obtain the smallest cost both in

single period and two period erasure coding based routing. We also analyze

the effects of message distribution algorithms on the cost of routing both in

replication based (i.e. spray and wait) and erasure coding based algorithms.

• We analyze real DTN traces and detect the correlations between the move-

ments of different nodes using a new metric called conditional intermeeting

time. We then use the correlations between the meetings of a node with other

nodes for making the existing single-copy based routing algorithms more cost

efficient.

• We analyze the social relations in mobile social networks (which are special

kind of delay tolerant networks where the nodes are human-carried devices)

and describe how we can improve the performance of DTN routing by extract-

ing and using social network related concepts. First, we analyze the impact

of the grouping behavior of nodes in a social network and propose a variant of

spray and wait routing protocol for community based social networks where

the message copies are distributed considering the community structure of the

5

network. Second, we propose a new social network metric (inspired from the

friendship relations between people) to extract the message contact oppor-

tunities between nodes more accurately. We analyze both direct and indirect

relations between nodes and form temporal friendship communities at different

time frames for nodes to be used in routing decisions.

1.3 Thesis Structure

In Chapter 2, we start with summarizing the related work in literature. We

give different classifications of previously proposed routing algorithms for DTNs and

talk about the main properties of some popular algorithms. Chapter 3 presents the

details of the proposed multi-period spray and wait routing. It includes both ana-

lytical and simulation results in which we demonstrate that the proposed algorithm

overcomes original (single-period) spray and wait routing algorithm. In Chapter 4,

we present a cost effective erasure coding based routing algorithm. There, we present

both the single and multi-period erasure coding based algorithms and their results.

Additionally, we also demonstrate a comprehensive comparison of multi-copy and

erasure coding based algorithms. We show the effect of message distribution al-

gorithms on the cost of routing algorithms. Chapter 5 looks the routing problem

from a different perspective. We focus on the correlation between the movements

of nodes in a DTN and utilize the correlation between the meetings of a node with

other nodes in making the existing single copy based routing algorithms more effi-

cient. In Chapter 6, we study the routing problem in a special kind of DTNs, mobile

social networks, and present two different ways of using social network properties of

these networks in designing better routing algorithms. We first discuss the impact

of community structure on spray and wait routing algorithm. Then, we propose a

friendship based routing algorithm in which we use a new social network metric to

detect the direct and indirect relations between nodes more accurately and use these

extracted social relations between nodes to make better routing decisions. Finally,

the thesis ends with conclusions and discussions in Chapter 7.

CHAPTER 2

RELATED WORK

It has been almost a decade since the initiating talk [9] of Kevin Fall about delay

tolerant networks. The primary focus of researchers studying on DTNs has been

routing problem. Many studies have been performed on how to handle the sporadic

connectivity between the nodes of a DTN and provide a successful and efficient de-

livery of messages to the destination. Different classifications of these algorithms can

be made. In Figure 2.1, we show two different classifications of routing algorithms

proposed for delay tolerant networks.

2.1 Classification based on knowledge available at nodes

The first classification of routing algorithms is decided according to the broad-

ness of the knowledge of the network available at nodes. In some studies [82], it is

assumed that each node in the network has exact knowledge of (past and future)

node trajectories, or node meeting times and durations. Therefore, the messages are

routed over predetermined paths (sequence of nodes) deterministically. But these

algorithms which assume the existence of oracles giving future information are unre-

alistic because the intermittent connectivity between the mobile nodes in delay tol-

erant networks does not allow nodes to have such information. On the other hand,

there are also significant number of studies (such as Epidemic [22], Prophet [25],

Deterministic Non-deterministic
(Complete knowledge about

information of nodes)
 future meetings and position

Knowledge

(Opportunistic)

Selective Random
(Prediction based or Probabilistic)

Single Multiple

Number of Carriers

Replication based Erasure coding based

Flooding Quota based

Figure 2.1: Two different classifications of routing algorithms proposed
for delay tolerant networks.

6

7

Spray and Wait [37]) assuming zero knowledge about the aforementioned features

of the nodes. These algorithms either forward the messages randomly or use the

meeting history of nodes (which can be obtained locally through encounters with

other nodes) and forward the messages over different paths in a nondeterministic

manner.

2.2 Classification based on number of carriers of the mes-

sage

We can also classify the routing algorithms in terms of the number of carriers

of the message during routing. In some algorithms (such as Prophet [25], SCAR [91],

MaxProp [36] and [95]) there exists only one node carrying the message at all times.

In these algorithms, the messages are forwarded to nodes which have higher chance

to meet the destination. One other common method used in routing algorithms

for delay tolerant networks is using multiple carriers of the message. In the first

type of these algorithms, a number of copies of the same message is generated and

distributed to multiple nodes so that the delivery probability of the message is

increased. Among these algorithms, while some of them distribute limited number

of copies ([35], [37]) to other nodes in the network, some others [22] provide flooding

like dissemination of the message copies. Different than replication based algorithms,

some algorithms [26] use erasure coding technique for efficient routing of messages.

They first process and convert a message of k data blocks into a large set of Φ blocks

such that the original message can be constructed from a subset of Φ blocks. Then

each of these encoded blocks are distributed to the other nodes in the network and

the delivery of sufficient number of blocks is expected to reconstruct the original

message.

After looking the routing algorithms for delay tolerant networks from a general

perspective, next, we will give the details of some of the popular algorithms in this

area.

8

Figure 2.2: When two hosts (A and B) come into transmission range of
one another, they first exchange summary vectors, then the
necessary packets for transmission is decided and as final step
these packets are transmitted to each other [22].

2.3 Popular DTN Routing Algorithms

The pioneering algorithm in the field of multi-copy based (multiple nodes

carrying the replications of the same message) routing for delay tolerant networks

is Epidemic Routing [22] which is published by Vahdat and Becker. This field has

attracted considerable attention with the introduction of this work and other routing

algorithms are developed as a counter algorithm to Epidemic Routing. Epidemic

Routing protocol basically relies on the epidemic like algorithms [11, 12]. In these

algorithms, when the nodes in the network get contact with each other, a pair-wise

information exchange between nodes happens so that the message is delivered to

the destination eventually. However, if there is no path currently available to the

destination, the messages are buffered. In each node meeting, first a summary vector

which holds the index of all messages in a node is transferred to the other node.

Then, having the other nodes’ summary vector, each node learns the message IDs

which are not available in its own buffer and requests the transfer of these messages

from the other node. To be able to do this, each message is assigned a unique

message ID.

Figure 2.2 illustrates this message exchange procedure in Epidemic Routing

protocol which starts whenever two hosts come into the range of one another. Here,

we will go through the details of the procedure from host A’s point of view. The same

process is also applied for host B. As a first step, A transmits its summary vector,

9

SVA (a compact representation of all the messages being buffered at A) to B. Next, B

performs a logical AND operation between the negation of its summary vector, ¬SVB

(represents the messages that it needs) and SVA. By this way, host B determines

the set difference between the messages buffered at A and the messages buffered

at B. Then, it transmits a vector requesting these messages from A. As a final

step, host A transmits these requested messages to host B. This message exchange

procedure is always applied when two hosts come into contact with each other. As

a result, if the buffer space at hosts and the time at contact times are sufficient,

the messages are eventually delivered to the destination hosts through this pair-wise

message exchanges. Here, one can easily notice that Epidemic Routing provides the

fastest spread of copies in the network which of course yields the optimum delivery

time.

One of the first studies that address the weakness of epidemic routing is Proba-

bilistic ROuting Protocol using History of Encounters and Transitivity (Prophet) [25].

The idea presented in that study basically depends on the following observation.

Lindgren et al. believe that the movement of nodes in a typical mobile ad hoc net-

work is not random as it is mostly assumed to be. Moreover, they claim that the

nodes move in a predictable fashion based on repeating behavioral patterns such

that if a node has visited a location several times before, it is likely that it will visit

that location again. Depending on this observation, the authors propose a proba-

bilistic routing model in which the delivery rate of messages is aimed to be improved

while keeping buffer usage and communication overhead at a low level.

The Prophet algorithm operates in a similar way as Epidemic Routing does.

When two nodes meet, they exchange summary vectors as it is in Epidemic routing,

but in this case an additional piece of data called delivery predictability information

is also exchanged between the nodes. Here the delivery predictability information is

a probabilistic metric established by the authors of the paper and defined by P(a,b)

∈ [0, 1], at every node A for each known destination B. It indicates how likely it is

that the node A will be able to deliver a message to that destination B.

When this exchanging process is done between nodes, then according to these

summary vectors, the messages that will be requested from the other node is de-

10

cided considering the forwarding strategy. The basic difference of Prophet than

Epidemic Routing is its forwarding strategy. When two nodes meet, Prophet allows

the transfer of a message to the other node only if the delivery predictability of the

destination of the message is higher at the other node.

In Prophet, a three step calculation of the delivery predictabilities of nodes is

presented.

• Since the idea of the paper inspired by non-random mobility of nodes which

also provides different meeting popularities to different nodes, the authors

would like to favor the nodes who are most encountered among the others

for the delivery of messages. Therefore, to reflect this property in the delivery

probability metric of a node, P(a,b) is updated whenever a node is encountered,

so that nodes that are often encountered have a high delivery predictability.

This calculation is shown below, where Pinit ∈ [0, 1] is an initialization con-

stant.

P(a,b) = P(a,b)old
+ (1− P(a,b)old

)× Pinit

• On the other hand, if a pair of nodes does not encounter each other in a

while, due to the same reasoning, they are less likely to be good forwarders

of messages to each other. Therefore, the authors add an aging mechanisms

to the delivery predictability values of the nodes. The equation below shows

the simple aging equation of a node in which γ ∈ [0, 1) represents the aging

constant, and k is the number of time units that have elapsed since the last

time the metric was aged. The time unit used in the formulation can differ,

and should be defined based on the application and the expected delays in the

targeted network.

P(a,b) = P(a,b)old
× γk

• It is obvious that if node A frequently encounters node B, and node B fre-

quently encounters node C, then node C probably is a good node to forward

11

messages destined for node A. To make use of this transitive property, au-

thors include this in the updating process of the delivery predictability. Here

β ∈ [0, 1] is the scaling constant that decides how large impact the transitivity

should have on the delivery predictability.

P(a,c) = P(a,c)old
+ (1− P(a,c)old

)× P(a,b) × P(b,c) × β

Once the P(a,b) values of each node is continuously updated according to the

above equations, then the rest of the algorithm works as follows. When two nodes

meet, a message is transferred to the other node if the P(a,b) value of the destination

of the message is higher at the other node.

In [35], Harras et al. study the impact of controlled message flooding schemes

over sparse mobile networks on message delay and network resource consumptions.

Like Prophet, they use probabilistic modeling for message forwarding and add some

additional schemes on top of the probabilistic model. These schemes include time-

to-live (TTL), kill time value and passive cure.

In [31], Li et al. propose an efficient store-and-forward based scheme called

Adaptive Multi-Copy Routing (AMR), for packet delivery in Intermittently Con-

nected Mobile Ad Hoc Networks (ICMANs). The novelty of their idea is, instead of

using a source-defined replication factor, in this scheme each individual intermediate

relay node decides whether to replicate a message or not independently. In other

words, the number of copies of the message that will be distributed to the network

is not decided at the beginning by the source node, instead it is decided by each

individual node according to the current network conditions and the end-to-end de-

lay target, the upper limit of desired delay for the delivery of the message. By this

way, the approach becomes replication-factor-free and more cost-efficient than the

copying schemes in which the replication factor is defined at the beginning by the

source node.

Jones et al. present a practical routing protocol for delay tolerant networks in

[83]. The idea used in the proposed algorithm is an adapted version of shortest path

routing protocol in traditional networks such that while deciding the path some new

12

metrics are used. In this approach, one single copy of the message is generated and

forwarded towards the destination using the predicted topology information which

is obtained with the help of many algorithm maintenance messages distributed to

the network. The authors use the same DTN model presented by Jain et al. in [82].

This work can also be considered as the extension of [82] by different authors. The

network is assumed to be an undirected graph where the nodes are connected by

bidirectional links called contacts. In other words, the edges of the graph represent

the opportunity for nodes to exchange their data. The cost of the nodes is estimated

by a new metric called minimum estimated expected delay (MEED). This is actually

similar to the metric minimum estimated delay (MED) used in [82]. In MED, the

expected waiting time is computed using the information of future contact schedule.

However, MEED uses the observed contact history. In other words, the connection

and disconnection times of each contact is recorded over a sliding history window.

Here, the size of the window is a tuning parameter of the algorithm and can be

changed independently at each node. If the window size is large, this makes the

metric durable against the perturbations caused by random changes. But, the metric

also shows slow reaction to permanent changes. On the other hand, a small window

size makes the metric sensitive to random fluctuations but can help in easily adapting

the permanent changes.

One of the significant works in this field is MaxProp [36]. Burgess et al. from

University of Massachusetts, Amherst propose an effective routing protocol for delay

tolerant networks based on prioritizing both the schedule of packets transmitted to

other nodes and the schedule of packets that will be deleted from the buffer. In

MaxProp, not only a new routing protocol for delay tolerant networks is proposed

but also the construction of a real life DTN test-bed is discussed which is then used

for the evaluation of proposed scheme. MaxProp has also a convenient design for

scenarios in which either the transfer duration or buffer space available in the nodes

is limited. The order of packets in which the packets will be deleted in case of full

buffers and the order in which the packets are transmitted to other nodes in case of

node meetings are addressed by MaxProp by ranking the packets according to some

criteria.

13

MaxProp lets each node keep the track of probability of meeting with other

nodes. Denoting the probability that node i will be connected to node j as the next

step with f i
j , all f i

j ’s are assigned 1/(|s| − 1) at the beginning, where s denotes the

number of nodes in the network. In each meeting of node i with node j, the value of

f i
j is incremented by 1. But to preserve the total probability value of 1, all f i

j values

are then normalized. By this way, the nodes who see each other less frequently,

have lower values of f i
j . Moreover, MaxProp also enables nodes to exchange their

f i
j values in contact times.

Once a node has the values of delivery likelihood for other nodes, then it

calculates the cost of each possible path, c(i, i + 1, . . . , d), to destination up to n

(defined by protocol) hops long using the following formula:

c(i, i + 1, ..., d) =
d−1
∑

x=i

[1− (fx
x+1)]

After the cost of all possible paths are calculated, the path with the lowest

cost is selected to be the cost of reaching destination.

The study presented in [47] by Spyropoulos et al. is another significant work

in the area of routing protocols for delay tolerant networks. In that study, authors

work on proposing algorithm which can perform fewer transmissions than flooding

based routing schemes and deliver a message faster than existing single and multi-

copy schemes while achieving optimal delays and higher delivery ratios. For this

purpose, there are two different routing algorithms proposed:

1. Spray and Wait: In this algorithm, authors tries to combine the efficiency of

flooding based algorithms and the simplicity of direct transmission. There are

two phases:

• Spray phase: In this phase, a limited number of copies (L) of a message is

spread over the network by the source and some other nodes which later

receives a copy of the message. Here, there are two important questions:

how many copies of the message will be spread and how will these copies

be spread to other nodes in the network?

14

• Wait phase: After the spreading of all copies of the message is done and

the destination is not encountered by a node with a copy of the mes-

sage in the spraying phase, then each of these nodes carrying a message

copy tries to deliver its own copy to destination via direct transmission

independently.

2. Spray and Focus: This algorithm is designed to eliminate some deficiencies

of Spray and Wait algorithm in some network environments. In Spray and

Wait algorithm, once all the copies of the message is spread to some nodes

and wait phase is started, but if the mobility of each node is restricted to a

small local area, then it may not be possible to deliver one of the copies to the

destination. Therefore, authors also propose a different version of the Spray

and Wait algorithm. There are also two phases in this algorithm:

• Spray phase: This phase is actually same with the spray phase of the first

algorithm. For every message originating at the source node, L message

copies are spread to all L different nodes.

• Focus phase: Once the spraying phase is done, then nodes start to roam

around to find the destination. But different than the wait phase of the

first algorithm, in this phase, each copy in a single node is tried to be

routed to a closed node via a single-copy utility based scheme [46]. That

is, if UX(Y) denotes the utility of node X for destination Y , then a node

having a copy of the message destined to node D, forwards its copy to a

new node B in its range, if and only if UB(D) > UA(D) + Uth. Here, Uth

denotes the utility threshold parameter of the algorithm.

On the other hand, to make the routing in DTNs more reliable, some re-

searchers proposed routing algorithms based on erasure coding technique. One of

the first studies utilizing the erasure coding approach is [26]. In that study, Wang

et al. present the advantages (robustness to failures etc.) of erasure coding based

routing over the replication based routing. In [27], the split of erasure coded blocks

over multiple delivery paths (contact nodes) to optimize the probability of success-

ful message delivery is studied. A similar approach focusing on the distribution of

15

encoded blocks among the nodes is presented in [28] by Liao et al. They propose an

estimation based erasure coding routing depending on a realistic assumption that

the nodes in the network are not identical. As an extension of this work, in [29],

authors also utilizes the information on a node’s available resources (buffer space,

remaining energy level etc.) in the evaluation of the node’s capability to successfully

deliver the message. In [30], a hybrid routing algorithm combining the strengths

of replication based and erasure coding based routing is proposed. In addition to

encoding of each message into large amount of small blocks, these blocks are also

replicated to increase the delivery rate.

In [32], Liu et al. propose to use a new long term metric called expected

minimum delay (EMD). This is the expected time that an optimal forwarding scheme

takes to deliver a message from a source to a destination at a specific time in a

network with cyclic and uncertain connectivity. However, in that study each contact

time of a node is assumed to be formed from the contact history with an assumption

that it will not change later. Consequently, the use of a state diagram which includes

a different state for each contact of each node is proposed. However, this creates a

huge state diagram when the node meetings have a huge common round duration.

Other than the above studies, a few of the previous works focused on the rout-

ing problem in (mobile) social networks, which are special kind of delay tolerant

networks in which the nodes are human carried devices. Since the contacts (i.e.

message exchange opportunities) between these mobile devices depend on the social

relations between the people carrying these devices, researchers tried to utilize social

network concepts (community detection, similarity, betweenness etc.) to understand

the contact patterns between nodes to develop better routing algorithms. In a social

network, there might be communities formed by nodes which meet each other more

frequently than the nodes outside the their communities. Clearly such community

formation affects the routing decisions that nodes need to make when they meet

other nodes. Considering a possible partitioning of nodes into communities in social

networks, there are some algorithms proposed to make the routing of messages more

efficient in such networks. In [56], Daly et al. use both the betweenness and the sim-

ilarity metric to increase the performance of routing. When two nodes contact, they

16

calculate the utility function comprised of these two metrics for each destination,

then the node having higher utility value for the message’s destination is given the

message. In BubbleRap [48], each node is assumed to have two rankings: global and

local. While the former denotes the popularity (i.e. connectivity) of the node in the

entire society, the latter denotes its popularity within its own community. Messages

are forwarded to nodes having higher global ranking until a node in the destination’s

community is found. Then, the messages are forwarded to nodes having higher local

ranking. By this way, first the probability of finding the destination’s community is

increased. Then, after the message reaches the destination’s community, the prob-

ability of meeting the destination is increased, so that the shortest delivery delay

is attempted. In [49], a publish/subscribe communication in which many-to-many

communication paradigm is also addressed as an extension to end-to-end style which

is usually assumed in DTNs. Then, using the centrality values of nodes, an effec-

tive multi-point communication and efficient routing is enabled. In LocalCom [76],

a community-based epidemic forwarding scheme is introduced. First, the commu-

nity structure of the network is detected using local information of nodes. Then,

the message is forwarded to each community through gateways. Additionally, in

some other studies, several interesting properties of social networks are considered.

In [77], irregular deviations from the habitual activities of nodes are addressed and it

is shown that the worst-case performance of routing can be improved by scattering

multiple copies of a message in the network such that even deviant (less frequently

encountered) nodes will be close to at least one of these copies. In [78], the effect of

socially selfish behavior of nodes on routing is studied.

In the design of DTN routing protocols, there are also some important issues

that need to be considered to make a fair comparison between the proposed algo-

rithms. In Table 2.1, we show the comparison of some of the discussed algorithms in

terms of the assumptions made, number of copies used and the criteria used while

forwarding the messages. The table also shows the comparison of simulation model

used in each of these studies. When we look at this table, we observe that each of

these algorithms has some advantages and disadvantages over the others. Therefore,

the right algorithm for the routing of messages in a delay tolerant network should

17

Table 2.1: Comparison of Algorithms

Algorithm Assumptions SimulationModel

Number Decision Drawbacks Delivery Buffer Bandwidth Simulator Mobility

of copies based on Ack Size Capacity Model

Epidemic

Routing [22]

Unlimited Flooding High resource (band-

width, buffer) usage

Not men-

tioned

Limited Not men-

tioned

ns-2 RWP

Prophet [25] Single Probability obtained

from previous meetings

High message overhead Not men-

tioned

Limited Not men-

tioned

Own RWP

Controlled

Flooding [35]

Unlimited Node willingness (prob-

ability)

Relatively high message

overhead

Yes Not men-

tioned

Not men-

tioned

GloMoSim RWP

Adaptive

Routing [31]

Limited Estimation based on

hop count from source

and contact duration

Continues spreading af-

ter message delivery

Not men-

tioned

Sufficient Sufficient ns-2 RWP

Practical

Routing [83]

Single Best path found ac-

cording to the previous

meetings of nodes

1) Loops may occur 2)

High transmission over-

head due to routing ta-

ble maintenance

Not men-

tioned

Limited Limited Own Real trace

MaxProp [36] Single Previous node meetings

and updated route esti-

mation

High processing cost in

large scale networks

Yes Unlimited

(own) Lim-

ited (other)

Limited Own Real data

Spray and

Wait [47]

Limited (L) Randomness Random decision mak-

ing

Not men-

tioned

Sufficient Sufficient Own RWP, RD,

RW

SimBet [68] Single Similarity & Between-

ness

Binary and stable social

relation representation

Not men-

tioned

Sufficient Sufficient Trace

driven

Real trace

18

be chosen considering the availability of resources (i.e. bandwidth, buffer) in the

network and the main goal (i.e. high delivery rate, low delivery delay) that is desired

to be achieved.

In this chapter, we tried to summarize the properties of the state-of-art routing

algorithms for DTNs. Interested readers can also look at some surveys such as [18]

and [60] for more extensive research on the related work in literature.

CHAPTER 3

MULTI-PERIOD SPRAY AND WAIT ROUTING

This chapter describes our multi-period spray and wait based routing algorithm [50,

51, 52]. Below, we first list the assumptions of our model and then describe our

routing algorithm in detail. Moreover, we also present the analysis of the proposed

algorithm with its variants.

We assume that there are M nodes moving on a
√

N x
√

N 2D torus according

to the random direction mobility model. Each node has a transmission range R and

all nodes are identical. The meeting times of nodes are assumed to be independent

and identically distributed (IID) exponential random variables. Furthermore, we

also assume that the buffer space in a node is unlimited (this assumption is not

crucial since the presented algorithm uses the predefined number of copies with

the maximum number comparable to the single period spraying algorithm). We

also assume that the communication between nodes is perfectly separable, that

is, any communicating pair of nodes do not interfere with any other simultaneous

communication. To be consistent with previous research, by L we denote the number

of copies that each message distributes to the network.

In Spray and Wait algorithm [47], the delivery of a message can happen both

in spray and wait phases. The probability of message delivery at or before time

t when there are L copies of the message in the network is pd = 1 − e−αLt, where

α = 1/EM is the inverse of the expected intermeeting time between two consecutive

encounters of any pair of nodes. During waiting phase, since L is constant, pd grows

with the same L value. However, since the number of copies increases during the

spraying phase, pd function changes each time a new copy is distributed to other

nodes.

To simplify the analysis of message delivery probability, we assume that M

>> L which is often true in DTNs and which we enforce by limiting permissible

values of L. Moreover, for DTNs to be of practical use, the delivery probability pd

must be close to 1, so we assume also that pd ≥= 0.9. We will show below that

19

20

from these two assumptions it follows that the formula pd = 1 − e−αLt is a good

approximation of the delivery probability at time t = td.

At the ith encounter with another node, the spraying node delivers the message

to the destination with probability 1/(M − i), so the total probability that the

message is delivered during spraying is between L/M and L/(M − L), and since

M >> L, L/M is a good approximation of this probability. Binary spraying uses

log(L) steps, each with average time about EM/M (in kth step, 2k−1 nodes sprays

a message copy to 2k−1 other nodes), so the total spraying delay is log(L)EM/M .

The approximated formula achieves the same delivery probability at the earlier time

EM/M , and from that time on, it matches the behavior of the algorithm perfectly.

Hence, the average difference between times at which algorithm and formula achieve

the same delivery probability is d = (log(L) − 1)EM/M . Thus, the relative error

e(pd) of using the approximate formula for pd is:

e(pd) =
(1− e−αL(td−d))− (1− e−αLtd)

1− e−αL(td−d)

= 1− (1 + e−αL(td−d))(1− e−αLtd)

(1− e−2αL(td−d))

≈ −(1− pd)(log(L)− 1)
L

M

Since pd ≥ 0.9, for L <2048 (so much beyond the range of useful values of L), the

relative error of approximation is smaller than L/M which is a small fraction for

M >> L.

Figure 3.1 shows the cumulative distribution function (cdf) of the delivery

probability in a single period spray and wait algorithm for different L values. Clearly,

when L increases, the mean value (1/λ = EM/L) of exponential cdf decreases and

the expected delay together with the time needed to reach the desired delivery

probability shrinks.

Our main contribution is to introduce and analyze the multi-period spraying

algorithm and to show under what condition it is more effective than the single

period spraying. In our algorithm, spraying of message copies is defined by the

urgency of meeting the desired delivery probability by the given delivery deadline.

21

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

x (time)
cd

f o
f e

xp
ec

te
d

de
la

y

λ1
λ2
λ3

Figure 3.1: The cumulative distribution function of probability of meet-
ing the expected delay in the Spray and Wait algorithm for
different values of λ, where λ1>λ2>λ3.

More precisely, the algorithm starts with spraying fewer message copies than the

minimum L needed by the single spraying algorithm, and then waits for a certain

period of time to see if the message is delivered. When the delivery does not happen,

the algorithm sprays some additional copies of a message and again waits for the

delivery. This process repeats until either the message is delivered2 or the delivery

deadline passes. Hence, as the time remaining to the delivery deadline decreases

and delivery has not yet happened the number of nodes carrying the message copy

increases.

Figure 3.2 summarizes what our algorithm is designed to achieve. In this

specific version of the algorithm, we allow two different spraying phases. The first

one starts without delay and the second one starts at time xd. The main objective

of the algorithm is to attempt delivery with small number of copies and use the

large number of copies only when this attempt is unsuccessful. With proper setting,

the average number of copies sprayed in the network until the delivery time can be

lower than in the case of spraying all messages without delay, while the delivery rate

by the deadline remains the same.

To analyze the performance of our algorithm analytically, we need to derive

two formulas; one for the average number of copies used by the algorithm, and the

2At the end of Section 3.4, we explain how the delivered messages are acknowledged to other
nodes.

22

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

x(time)
cd

f

cdf for catching the delay

← x
d

x
s
 →

λ0
λ1
λ1+λ2
λ2

Figure 3.2: The cumulative distribution function of delivery time of a
message when spraying different number of copies in two dif-
ferent periods.

second one for the cumulative distribution of the probability of meeting the delivery

deadline with the increasing number of copies (and therefore with the increasing λ

values).

In our scheme, the term period refers to the time duration from the beginning

of one spraying phase to the beginning of the next spraying phase. There may

be multiple spraying phases and the corresponding periods between them, each of

different length. In the next section, we start with the analysis of the two period

case to find the optimal period length and the corresponding copy counts for each

period. Then, in the following sections we analyze the three and multiple period

cases.

3.1 Two Period Case

If there are two periods until the message delivery deadline, the questions that

need to be answered are “when to finish the first period and start the second one”

and “how many copies should be allowed in each”. In other words, what should be

the value of xd in Figure 3.2 to minimize the average number of copies used by the

algorithm? and how many copies should be sprayed in each period?

Let’s assume that the single period spray and wait algorithm uses L copies

(including the copy in the source node) of a message to achieve the probability

pd ≈ 1 of its delivery by the deadline td. Let’s further assume that the Two Period

23

Spraying algorithm sprays L1 copies to the network at the beginning of execution

and additional L2−L1 copies at time xd, the beginning of the second period. Then,

the cumulative distribution function of the probability of delivering the message at

or before time x is:

cdf(x) =

1− e−αL1x if x ≤ xd

1− e−αL2(x−xs) if x > xd

where, α = 1
EM

is the inverse of the expected inter-meeting time between two con-

secutive encounters of any pair of nodes and xs is the delay with which the spraying

with L2 copies would need to start to match the performance of our algorithm in the

second period (See Figure 3.2). The value of the xs can be found from the equality

of respective cdf functions at time xd:

1− e−αL1xd = 1− e−αL2(xd−xs)

xs = xd
L2 − L1

L2

The expected delivery rate when L copies are used in the single period spray

and wait algorithm is by definition pd = 1− e−αLtd ≈ 1. Our objective is to match

this delivery rate by decreasing the average number of copies below L. Hence, by

the delivery deadline, td, the following inequality must be satisfied:

1− e−αL2(td−xs) ≥ 1− e−αLtd

L2

(

td − xd + xd
L1

L2

)

≥ Ltd

We can use this inequality to bound xd as xd ≤ td
L2−L
L2−L1

. As xd gets larger, the

average copy count gets lower when L1 and L2 values are same. Since our algorithm

aims at decreasing the average copy count while maintaining the delivery rate of the

single period spraying algorithm, then the optimal xd must be the largest possible

and therefore:

xd = td
L2 − L

L2 − L1

24

We want to minimize the average number of copies, c2(L1, L2) defined as:

c2(L1, L2) = L1(1− e−αL1xd) + L2e
−αL1xd

= L1 + (L2 − L1)e
−αL1xd

Note that if the message is not delivered in the first period, then the cost becomes

L2 copies. Substituting xd in the above, we get:

c2(L1, L2) = L1 + (L2 − L1)e
−αL1td

L2−L

L2−L1

Taking derivative of dc2
dL2

, we obtain:

dc2

dL2

=
(

1− αL1td + αL1td
L2 − L

L2 − L1

)

e
−αL1td

L2−L

L2−L1

We are only interested in the sign of this derivative, so we can ignore always positive

factor e
−αL1td

L2−L

L2−L1 . For the same reason we can also multiply the result by always

positive factor L2 − L1. As we consider only values L2 > L1, then we obtain:

sgn

(

dc2

dL2

)

= sgn (L2 − L1 − αL1td(L− L1))

We conclude that sign of derivative changes only once, at:

L∗
2 = L1 + αL1td(L− L1) > L1

and it changes from negative to positive so the cost function has the unique minimum

at this point. Hence, L∗
2 − L1 = αL1td(L− L1) and therefore:

c∗2(L1) = L1[1 + αtd(L− L1)e
−αL1td+1]

Again, by taking the derivative of c∗2 in regard of L1, and comparing it to zero, we

can obtain the optimum value of L1. Let z = αtdL1 − 1 and A = αtdL, then:

c∗2(z)αtd = 1 + z + (A− 1 + (A− 2)z − z2)e−z

25

Setting f(z) = c∗2(z)αtd we get

f(z) = 1 + z + (A− 1 + (A− 2)z − z2)e−z

Taking derivative of this function in regard of z, we obtain:

f ′(z) = 1 + e−z(−1− Az + z2)

Then, by multiplying by an always positive factor ez we obtain:

g(z) = f ′(z)ez = ez + z2 − Az − 1

We notice that because the number and types of extreme points of a function

are defined by the number of zeros and the derivative signs near these zeros, functions

g(z) and c∗2(L1) have the same number and types of extreme points related by

equation ze = αtdL1e − 1.

The first zero of function g(z) is at z = 0, and it corresponds to maximum

when A > 1, because near zero, g(z) ≈ 1 + z − Az − 1 = −z(A − 1), so it is

positive for z < 0 and negative for z > 0. If A < 1, then of course the point

z = 0 is at the minimum, and it corresponds to L2 = L which means that the

one-time spraying is optimal in such a case. For A = 1, the point z = 0 is neither,

but then the derivative is non-negative for z > 0. So, again one-time spraying is

optimal. However, the condition that A > 1 is satisfied in realistic applications

because pd = 1 − e−A > e−1
e
≈ 63%. Usually, the reasonable values for pd are in

high 90’s percents which means that the introduced algorithm will perform better

when reasonable delivery rate by the deadline is required.

More formally, for 0 < 4z < min(A− 1, 24/7) we have:

ez =
∞
∑

i=0

zi

i!
< 1 + z +

z2

2
+

z3

6

∞
∑

i=0

(

z

4

)i

= 1 + z +
z2

2
+

2z3

12− 3z
< 1 + z + z2,

and 2z2 −Az < −z, so g(z) < 1 + z − z − 1 = 0. Similarly, for −1 < z < 0 we have

26

ez > 1 + z, so g(z) > 1 + z + z2 − Az − 1 = z(z − (A − 1)) > 0. This also means

that there is at least one more zero point, as g(z) is a continuous function, negative

in close positive neighborhood of 0 and positive in +∞. Moreover, considering the

equality of two functions:

ez + z2 − 1 = Az

Algorithm 1 FindOptimalsInTwoPeriods(L, α,td)

1: opt cost = L; opt cts = [L,L]
2: for each 0 < L1 < L do
3: L2floor = max(L + 1, L1 + ⌊αL1td(L− L1)⌋)
4: for L2 = L2floor, L2floor + 1 do
5: if c2(L1, L2) <opt cost then
6: opt cost = c2(L1, L2); opt cts = [L1, L2]
7: end if
8: end for
9: end for

10: return opt cts

We notice that ez + z2 + 1 is a convex function which have at most two in-

tersection points with any straight line, including the line Az. Hence, ez + z2 + 1

and Az intersect at z = 0 and, for A > 1, exactly once more, at the point cor-

responding to the minimum, which is the point of interest to us here. Indeed, let

zopt > 0 denote the nearest to 0 intersection point of these two functions. From

the convex property of the first function it follows that to the right of zopt, the first

function is always above the straight line Az. Hence, these two functions cannot

intersect for z > zopt. Furthermore, it must be that zopt < A as for z ≥ A we have

ez + z2 − 1 > 1 + A + Az − 1 > Az, so the cost function is already growing.

We conclude that there is a unique optimum point at zopt > 0, if and only if

A > 1, or in other words, if and only if the required delivery rate by the deadline is

greater than 1− 1
e
, or succinctly, pd > 1− 1

e
≈ 63%, a very reasonable condition for

practical solutions. This point can be found in ⌈log A⌉ steps by bisecting the interval

(0, A) until we get the range of the solution within two consecutive integers. Then,

we can use the floor and ceiling of the approximation to find integer solution that

27

we are interested in. Complexity of this algorithm is low, O(log A), and because

A = − ln(1−pd), A is the natural logarithm of the inverse of the miss (non-delivery)

rate of messages delivery by the end of the deadline. Hence the complexity is the

polylogarithmic function of the inverse of delivery miss rate.

We can also find the optimal values of L1 and L2 by a simpler method, which

generalizes nicely to cases with more periods, so we will present it here. From the

equation defining c2(L1, L2), it is clear that the average number of copies sprayed

by our algorithm is larger than L1, so for our algorithm to be able to decrease

the average number copies below L, L1 must be smaller than L. As a result, the

following boundaries for L1 must hold:

0 < L1 < L

Since the possible values for all L1 variables are integers, we can use enumeration

method as explained in Algorithm 1 and obtain the optimal values relatively quickly,

in O(L) steps. With constant values of EM and td, this is a logarithmic function

of the inverse of delivery miss rate, so growing faster than complexity of finding a

solution via the derivative of the cost function.

3.2 Three Period Case

In this section, we assume that there are three spray and wait periods until

the delivery deadline. This time, we need to find two different boundary points

which separate these three periods. Let xd1 and xd2 denote these boundary points.

While the former stands at the boundary between the first and the second periods,

the latter marks the boundary between the second and the third periods. The

cumulative distribution function of the probability of delivering the message by the

time x is:

cdf(x) =

1− e−αL1x [0, xd1]

1− e−αL2(x−xs2) (xd1 , xd2]

1− e−αL3(x−xs3) (xd2 , x]

28

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(time)

cd
f

cdf for catching the delay

λ0
λ1
λ1+λ2
λ1+λ2+λ3

Figure 3.3: The cumulative distribution function with spraying different
number of copies in three different periods.

where xs2 and xs3 are the delays with which the second (L2) and the third (L3)

spraying would have to start to equal the cdf of our algorithm over the second and

third spraying periods, respectively. As before, using the equality of the functions

at times xd1 and xd2 , we can obtain the values of xs2 and xs3 :

1− e−αL1xd1 = 1− e−αL2(xd1
−xs2)

xs2 = xd1

L2 − L1

L2

and analogously:

1− e−αL2(xd2
−xs2) = 1− e−αL3(xd2

−xs3)

xs3 = xd2

L3 − L2

L3

+ xd1

L2 − L1

L3

.

Figure 3.3 illustrates our approach with three periods. Similar to the two

period case, we want to achieve the same or higher delivery rate pd at the given

deadline td while minimizing the average number of copies used. That is, we need

to satisfy the following inequality:

1− e−αLtd ≤ 1− e−αL3(td−xs3)

Ltd ≤ L3(td − xs3)

xd2(L3 − L2) + xd1(L2 − L1) ≤ td(L3 − L)

29

Using this inequality, we can eliminate xd2 because as xd2 gets larger, the

average copy count gets smaller when all other parameters L1, L2, L3, xd1 are kept

constant. Therefore, replacing the above inequality with an equation, we obtain:

xd2 =
td(L3 − L)− xd1(L2 − L1)

L3 − L2

Algorithm 2 FindOptimalsInThreePeriods(L)

1: opt cost = L; opt cts = (L,L,L)
2: for each 0 < L1 < L do
3: L2Bound

(L1) = ⌈L1 + (L− L1)e
αL1td⌉

4: for each L1 < L2 ≤ L2Bound
(L1) do

5: if L2 ≥ L and c∗2(L1, L2) < opt cost then
6: opt cost = c∗2(L1, L2)
7: opt cts = (L1,L2,L2)
8: end if
9: if L1 < (L2 + 1)e−αL2td(L2+1−L) then

10: L3opt
= max(L,L2)+1

11: if c∗3(L1, L2, L3opt
) < opt cost then

12: opt cost = c∗3(L1, L2, L3opt
)

13: opt cts = (L1,L2,L3opt
)

14: end if
15: else
16: R1 = L1 + (L2 − L1)ln(L1) + αL2td(L− L1)
17: R2 = R− (L2 − L1)ln(R)
18: L3opt

= Find optimum L3 by bisecting in [R2, R1]
19: if c∗3(L1, L2, L3opt

) < opt cost then
20: opt cost = c∗3(L1, L2, L3opt

)
21: opt cts = (L1,L2,L3opt

)
22: end if
23: end if
24: end for
25: end for
26: return opt cts

Furthermore, the average copy count used in this three period spraying can be

defined as:

c3(L1, L2, L3, xd1) = L1 + (L2 − L1)e
−αL1xd1

+(L3 − L2)e
−αL2(xd2

−xs2)

30

When we substitute xs2 and xd2 in c3(L1, L2, L3, xd1) and take the derivative

dc3
dxd1

, we obtain:

dc3

dxd1

= −α(L2 − L1)L3e
−αL1xd1

(

L1

L3

− e
−

αL2(td(L3−L)−xd1
(L3−L1))

(L3−L2)

)

After ignoring the always positive factors, the sign of the derivative becomes:

sgn

(

dc3

dxd1

)

= −sgn

(

L1 − L3e
−

αL2(td(L3−L)−xd1
(L3−L1))

(L3−L2)

)

We see that if L1 < L3e
−αL2td(L3−L)

(L3−L2) , the sign is always positive (note that

xd1 ≥ 0 by definition), that is the cost function is always growing with increasing

L3. Therefore, minimum cost is obtained at xd1 = 0. Otherwise, we notice that the

sign of the derivative changes from negative to positive only once at:

xd1 =
αtdL2(L3 − L) + ln(L1/L3)(L3 − L2)

αL2(L3 − L1)
(3.1)

For both cases, we obtained the optimum values of xd1 . Then, we can easily obtain

formula c∗3(L1, L2, L3) by substituting xd1 with these optimum values in correspond-

ing conditions. Since L1 < L < L3 and L1 ≤ L2 ≤ L3 and all these values are

integers, by enumeration explained in Algorithm 2, we can simply find the copy

counts (L1, L2, L3) that gives the minimum copy count for a given L.

However, to use enumeration, we need to establish bounds on both L2 and L3.

Using inequality xd1<td that must be satisfied for the second period to start before

the deadline for message delivery, we can calculate the upper bound for L2, denoted

as L2Bound
(L1), as follows:

L > c∗3 > L1 + (L2 − L1)e
−αL1td

L2 < L1 + (L− L1)e
αL1td = L2Bound

(L1)

Now, we have the ranges for L1 and L2. So, for a given (L1,L2), we will try

to obtain the optimum L3 value that makes the cost function minimum. When we

31

take the derivative dc3
dL3

, we obtain:

dc3

dL3

=

(

1 +
αL2(td(L2 − L)− xd1(L2 − L1))

(L3 − L2)

)

em

where m =
−αL2td(L3 − L)

(L3 − L2)
+ xd1

αL3(L2 − L1)

(L3 − L2)

Since, we are interested in the sign of the derivative, we can ignore the always

positive factor. Then, we have:

sgn

(

dc3

dL3

)

= sgn

(

1 +
αL2(td(L2 − L)− xd1(L2 − L1))

(L3 − L2)

)

As we consider the values L3 > L2, we conclude that the sign of the derivative

changes from negative to positive only once at:

L∗
3 = L2[1 + α(xd1(L2 − L1)− td(L2 − L))]

When we substitute xd1 in this equation with the optimum xd1 in Eq.3.1, we

have the following equation:

L3 + (L2 − L1)ln(L3) = L1 + (L2 − L1)ln(L1) + αL2td(L− L1)

Since to find the value of L3opt
in the above function is not so easy, we can

instead find a range for L3opt
then by bisecting within the range we can reach the

optimum integer value of L3. It is obvious that L3opt
satisfies the following:

L3opt
< L1 + (L2 − L1)ln(L1) + αL2td(L− L1) = R1

On the other hand, L3opt
is also bigger than R1 − (L2 − L1)ln(R1) because

L3opt
= R1 − (L2 − L1)ln(L3opt

) > R1 − (L2 − L1)ln(R1) = R2

Therefore, L3opt
lies within the range [R2, R1]. Since as L3 increases, the value of

L3 + (L2 − L1)ln(L3) increases, we can find this integer optimum value of L3 by

32

bisecting in this range. One can easily see that the complexity of this bisecting

search is O(log2(L2)).

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

x (time)

cd
f

cdf for catching the delay

← Xd11

← Xd1

← Xd12

λ0
λ1+λ2
λ3+λ4+λ5+λ6

Figure 3.4: Recursive partitioning algorithm to define more periods of
spraying and further decrease the total cost of spraying.

In Algorithm 2, for each (L1,L2) pair, we first find the optimum L3 minimizing

the cost function then we compare it with the current optimum cost. Here note that,

if L1 < L3e
−αL2td(L3−L)

(L3−L2) , then c∗3(L1, L2, L3) is obtained by using the optimum xd1 = 0.

Otherwise c∗3(L1, L2, L3) is computed using the optimum xd1 value given in Eq.3.1.

To assess complexity of Algorithm 2, we observe that L2Bound
(L1) can be ap-

proximated as follows:

L2 < L1 + (L− L1)e
αL1td < L1 + max

x∈(1,L−1)
(xe−αtdx)eαLtd ≤ L +

1

eαtd(1− pd)
,

because function f(x) = xe−αtdx has derivative (1− αtdx)e−αtdx and therefore max-

imum at x = 1
αtd

. Hence, the complexity is:

L−1
∑

L1=1

L1+ 1
eαtd(1−pd)
∑

L2=L1+1

O(log2(L2))

In conclusion, the complexity of enumeration in this case is O
(

−Llog2(eαtd(1−pd))
eαtd(1−pd)

)

so

it is inversely proportional to non-delivery probability times logarithm of the inverse

of non-delivery probability.

33

3.3 Increasing the Number of Periods by Recursive Parti-

tioning

In this section, we show that by applying recursive partitioning of each period,

more spraying periods can be created in such a way that the total cost of spraying

can be decreased even more. An example is given in Figure 3.4. From Two Period

Case section, we know how to achieve the optimum partitioning of the entire time

interval from the start to the delivery deadline into two periods. However, it is also

possible to partition each of these two periods individually to decrease the cost of

spraying even further. Although this may not be the optimal partitioning in the

resulting number of periods, it still decreases the spraying cost.

If we want to have three periods until the message delivery deadline, we can

either partition the first period (with parameter λ1) or the second period (with λ2)

and select the one which achieves the lower cost. In other words, we need to select

either (λ3, λ4, λ2) or (λ1, λ5, λ6) as the exponential factors in the corresponding

three exponential functions. Furthermore, after obtaining the three period spraying,

we can run the same algorithm to find a lower cost spraying with four periods.

However, we need to partition each period carefully considering the boundaries of

possible Li values.

Algorithm 3 IncreasePartitions(k,xd[],L[])

1: min cost = current copy cost with k periods
2: for each 1≤i≤k do
3: [x′

d,L
′] = PartitionIntoTwo(i,xd[],L[])

4: c = Cost(k + 1,x′
d,L

′)
5: if c<min cost then
6: p = [x′

d,L
′]

7: min cost = c
8: end if
9: end for

10: return p

Assume that we currently have k periods of spraying. Let Li denote the copy

count after spraying in ith period and xdi
denote the end time of that period. Then,

the cumulative distribution function of the probability of delivering the message by

34

Algorithm 4 PartitionIntoTwo(i,xd[],L[])

1: f1 = cdf(xi−1)
2: f2 = cdf(xi)
3: min cost = Li(f2-f1) //current cost of period
4: for each Li−1 < L−

i < Li do
5: for each L−

i < L+
i < Li+1 do

6: Compute xsplit using Eq.3
7: Compute xs− using Eq.2
8: internal cost = L−

i (f2-f1)+L+
i (f3-f2)

9: if internal cost<min cost then
10: min cost = internal cost
11: xopt = xsplit

12: [L−
opt, L

+
opt] = [L−

i , L+
i]

13: end if
14: end for
15: end for
16: x′

d[] = [xd1 ,...,xdi−1
,xopt,xdi

,...,xk]
17: L′[] = [L1,...,Li−1,L

−
opt,L

+
opt,Li+1,...,Lk]

18: return [x′
d,L

′]

the time x becomes:

cdf(x) =

1− e−αL1(x−xs1) [0, xd1]

1− e−αL2(x−xs2) (xd1 , xd2]

...

1− e−αLk(x−xsk
) (xdk−1

, x]

where xsi
is the delay with which spraying with Li copies would have to start

to equal the cdf of our algorithm over the ith spraying period, so of course xs1 = 0

and for i > 1, we have:

xsi
=

i−1
∑

j=1

xdj

Lj+1 − Lj

Li

(3.2)

This expression is easy to derive from the following simple iterative definition

of xsi
for i > 1 resulting from the equality of the respective exponential functions

35

at point xdi−1
:

xsi
=

xsi−1
Li−1 + xdi−1

(Li − Li−1)

Li

We want to increase the number of periods to k + 1 while decreasing the total cost

for spraying with the same delivery rate at the delivery deadline. Algorithms 8 and 9

summarize the steps to achieve this goal.

Basically, we partition each period into two periods, one by one, to find the

new cost for the current partitioning. Then, from these possible partitions, we select

the one that achieves the lowest cost. For each period i, we need to find new number

of copies L−
i , L+

i to assign to each of the two newly created periods into which the

original period is split. The delivery rate at the end of the both periods needs to

stay unchanged but the average cost should be smaller than the original average

cost of period i.

For each period being split, except the last one, there are the following bounds

on those two numbers:

Li−1 < L−
i < L+

i < Li+1

We can also find an upper bound for the last period, which we will denote for

convenience as Lk+1. Let xsplit denote the boundary point in which the second inner

period starts (i.e, the start of period for spraying additional L+
i -L−

i copies). The

value of xsplit can be found from the equality of the probability of message delivery

by the ends of the original and the split periods:

1− e−αLi(xdi
−xsi

) = 1− e−αL+
i

(xdi
−x

s+)

Li(xdi
− xsi

) = L+
i (xdi

− xs+)

Substituting xsi
and xs+ by the formula in Eq. 3.2, which clearly s− and s+ must

also obey, we obtain:

xsplit =
xdi

(L+
i − Li) + xdi−1

(Li − L−
i)

L+
i − L−

i

(3.3)

36

For the last period k, we need to find an upper bound for the values of L+
k with

given L−
k . The cost of this last period in terms of average number of copies used

is slightly different than the cost of other periods. Let pk denote the probability of

message delivery before the period k starts. Similarly, let psplit denote probability of

message delivery before the second added period starts. Of course, pk ≤ psplit ≤ pd,

where pd denotes the probability of delivery of the message by the deadline td. The

cost of the original period k can be simply written as:

Costk = (1− pk)Lk

whereas the cost of the split period k is:

Costksplit = (1− pk)L
−
k + (1− psplit)(L

+
k − L−

k)

≥ (1− pk)L
−
k + (1− pd)(L

+
k − L−

k)

Since we want Costk > Costksplit, then the following inequality must hold:

(1− pk)L
−
k + (1− pd)(L

+
k − L−

k) < (1− pk)Lk

which yields the following upper bound for feasible values of L+
k :

L+
k < L−

k + (Lk − L−
k)

1− pk

1− pd

= Lk+1

Algorithm 8 shows how the optimal partitioning of a single period 0 < i < k+1

is found. For convenience, we denote L0 = 0. For each pair of number (L−
i , L+

i)

such that Li−1 ≤ L−
i < L+

i ≤ Li+1, the cost of spraying is found and optimal pair

which gives the minimum cost is selected. Clearly, the complexity of this algorithm

is O (L2).

3.4 Acknowledgment of Delivery

The descriptions of the most of the published routing protocols for delay tol-

erant networks do not contain details of how the nodes in the network learn about

37

the delivery of a message to the destination to avoid spraying after the message

delivery. Yet, this is a crucial issue in our algorithm because it directly affects the

cost of copying of messages. If a message is delivered to destination, but a specific

node is not notified about the delivery, this node will continue spraying the message,

increasing the average cost of copying.

We study two types of acknowledgments for notifying the nodes about the

delivery of the messages.

TYPE I: When destination receives a message, it first creates an acknowl-

edgment for that message and sends it to other nodes within its range, which is

assumed to be same for all the nodes in this case. Then, using epidemic routing,

this acknowledgment is spread to all other nodes whenever there is a contact be-

tween a node carrying the acknowledgment and a node without it. Note that, since

the acknowledgment packets are much smaller than data messages, the cost of this

acknowledgment epidemic routing is small compared to the cost of routing the data

packets. More costly is the delay with which all nodes in the network learn about

the delivery of the message. During this delay, there may be useless spraying of the

already delivered message increasing the total cost of copying.

TYPE II: In this type of acknowledgment, we assume that the destination

uses one time broadcast over the more powerful radio than the other nodes (the

assumption often satisfied in practice) so the broadcast reaches all the nodes in the

network. Like in the previous case, the acknowledgment message is short, so its

broadcast is inexpensive. However, to make the scheme more efficient, we use the

following epidemiology inspired idea.

We considered an environment in which at different times, individuals infected

by different pathogens. Each pathogen has an incubation period during which the

infected individual is not contagious. After the incubation period, the sick individual

is contiguous and able to infect others. We assume that there are effective vaccines

for all pathogens and we want to vaccinate the entire population with the proper

mix of vaccines in the most efficient way. The best way to achieve this goal is to

wait until the closest end of an incubation period of any infected individual and to

apply the vaccines for all observed infections to the entire population at that time.

38

Such delayed vaccination campaign allows emergence of new infections, possibly with

new types of pathogens, before letting sick individuals infect others. This approach

minimizes the number of necessary vaccination campaigns, each with all vaccines

necessary to stop already started epidemics.

Inspired by this idea, we use the following efficient acknowledgment scheme. As

the destination receives messages, it waits until the closest period change time (xd) of

any of the received message approaches. At that time, the destination broadcasts an

acknowledgment of all so far received messages. Hence, the destination broadcasts

acknowledgments relatively infrequently, proportionally to a substantial fraction of

the td, which is assumed large. Even though acknowledgments of some messages are

delayed, spraying of any received messages after the delivery time are suppressed.

It is clear that the second case results in better performance of delayed spraying

than the first one. However, it may require higher energy consumption. In simula-

tions, we compare the performances of both types of acknowledgment by showing

how they affect the results of our algorithm.

3.5 Simulation Model and Results

To evaluate our multi-period algorithm, we have developed a discrete event-

driven simulator in Java. We performed extensive simulations with different param-

eters that may affect the performance of the proposed algorithm.

First of all, we compare the results of simulations with the analytical results

that we have obtained in previous sections. Moreover, we also look at the effects of

two different mobility models on the results.

We deployed M=100 mobile nodes (including the sink) onto a torus of size

300 m by 300 m. All nodes (except the sink that has high range of acknowledgment

broadcast in TYPE II case) are assumed to be identical and their transmission range

is set at R = 10 m (note that these parameters generate a sparse delay tolerant

network which is the most common case in practice). The movements of nodes are

decided according to two different mobility models [44]:

1. Random Walk Model:

The speed of a node is randomly selected from the range [4, 13]m/s and its

39

direction is also randomly chosen. Then, each node goes in the selected random

direction with the selected speed until the epoch lasts. Each epoch’s duration

is again randomly selected from the range [8, 15]s.

2. Random Waypoint Model:

First, a new destination inside the network area is chosen randomly. Then the

node moves towards that destination with a randomly selected speed from the

range [4, 13]m/s.

When nodes move according to the above models with given parameters, the

value of EM in the former and latter becomes 480s and 350s respectively (we both

computed these values from the given parameters and validated the results by sim-

ulations).

Assuming3 that the desired pd by the given deadline td is 0.99, first we have

found the optimum copy counts for both two period (2p) and three period (3p) cases

using Algorithm 1 and Algorithm 2. Table 1 shows the values of these optimum Li’s

for different td values as well as the minimum L value that achieves the desired pd in

single period (1p) spray and wait algorithm. Clearly, as the deadline decreases, Lmin

(minimum L achieving pd by td) in 1p increases because more copies are needed to

meet the desired pd by the deadline. Such an increase is also observed for Li values

used in both 2p and 3p algorithms. It is also important to remark that the optimum

Li values are different for random walk and random waypoint models because the

EM values generated in these two different settings are different. Although we

mentioned previously that our algorithms are designed for the environments in which

the deadline is not so tight with respect to EM value, in the simulations we also

test our algorithms with tight deadlines (such as 200s and 250s)4 to see how they

perform in these cases. Moreover, for the optimum Li values of three periods, we also

ran Algorithm 8 and Algorithm 9 over the result that we obtained with Algorithm 1

and observed that the results closely match the optimum Li values that we obtained

3We have selected a high desired delivery probability because it is the most likely case in real
applications. However, we also look at the effects of different pd values in later simulations.

4These values can surely be considered as tight deadlines because note that direct delivery
(L=1) in single spraying can achieve pd=0.99 at 2210s and 1610s in the given random walk and
random waypoint models, respectively.

40

using Algorithm 2.

Random Walk Random Waypoint
td Lmin in 1p 2p Opt Li’s 3p Opt Li’s Lmin in 1p 2p Opt Li’s 3p Opt Li’s
200 12 7,22 6,12,27 9 5,16 4,8,20
250 9 5,15 5,9,19 7 4,13 3,6,15
300 8 5,14 4,8,18 6 3,11 3,6,14
400 6 4,11 3,6,14 5 3,10 2,4,12
500 5 3,9 2,4,11 4 2,8 2,4,10
600 4 2,7 2,4,9 3 2,5 1,2,6
700 4 2,8 2,4,10 3 2,6 1,2,7
800 3 2,5 1,2,6 2 2,7 1,3,10
900 3 2,6 1,2,7 2 1,4 1,2,5

Table 3.1: Optimum Li copy counts that minimize the average number
of copies while preserving the desired probability of delivery.

We started by computing xd1, xd2 and the optimum Li values from theory.

Then we performed simulations to find the average copy count used per message

when these computed values are used. We have generated messages from randomly

selected nodes to the sink node whose initial location was also chosen randomly.

Furthermore, we used binary spraying while distributing the allowed copy counts in

each period. All results are the average of 2000 runs.

In Figure 3.5 and Figure 3.6, we show the average copy counts obtained when

the optimum Li values are used in 2p and 3p versions of our algorithm and when

the predefined random walk model is used. Our analysis defines the cost function as

the average copy counts used per message at the exact delivery time and computes

the optimum Li values which minimize this cost function. Hence, to compare theory

with simulations, we obtained the average copy counts in simulations using Type

II acknowledgments. However, we also include the average copy counts obtained in

simulations when Type I acknowledgment is used. From the results in both figures,

we observe that analysis results are very close to Type II results but as the deadline

gets tight, they become an upper bound for Type II results. This is because for the

smaller values of td, the number of copies sprayed to the network increases (optimum

Li values in 2p and 3p are large due to large Lmin in 1p) so that spraying period

41

takes longer. Besides this also increases the difference betweeen the average copy

counts needed when Type I and Type II acknowledgments are used because as Li

values gets larger, more nodes carrying message copies need to be acknowledged

about the delivery when Type I acknowledgment is used.

200 250 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8

9

10

Av
er

ag
e

Nu
m

be
r o

f C
op

ie
s

Delivery deadline (t
d
)

2p−Theory
2p−Sim (Type II)
2p−Sim (Type I)

Figure 3.5: The comparison of the average number of copies obtained via
analysis and simulation for the two-period case when random
walk model is used.

200 250 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8

9

10

11

Av
er

ag
e

Nu
m

be
r o

f C
op

ie
s

Delivery deadline (t
d
)

3p−Theory
3p−Sim (Type II)
3p−Sim (Type I)

Figure 3.6: The comparison of the average number of copies obtained
via analysis and simulation for the three-period case when
random walk model is used.

We also compared the results when random waypoint mobility model is used.

Figure 3.7 and Figure 3.8 show the comparison of average copy counts obtained in

simulations with those computed analytically. The conclusions are similar to those

made above for the random walk model, even though Lmin values are different from

42

those used in the random walk model since the settings in this model generates an

EM of 350s. This shows that our analysis holds for different mobility models. It

only relies on the EM , the average intermeeting time between nodes for the applied

mobility model.

To compare the performance of the proposed algorithms with the single pe-

riod (1p) spraying algorithm (which is a special case of our algorithm), we first

compare the average number of copies used in both algorithms when different types

of acknowledgment mechanisms are used.

200 250 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8

Av
er

ag
e

Nu
m

be
r o

f C
op

ie
s

Delivery deadline (t
d
)

2p−Theory
2p−Sim (Type II)
2p−Sim (Type I)

Figure 3.7: The comparison of the average number of copies obtained via
analysis and simulation for the two period case when random
waypoint model is used.

200 250 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8

Av
er

ag
e

Nu
m

be
r o

f C
op

ie
s

Delivery deadline (t
d
)

3p−Theory
3p−Sim (Type II)
3p−Sim (Type I)

Figure 3.8: The comparison of the average number of copies obtained
via analysis and simulation for the three period case when
random waypoint model is used.

43

Type I Type II
td Lmin 1p 2p 3p 1p 2p 3p

200 12 11.61 9.89 10.12 10.92 8.77 8.51
250 9 8.79 7.50 7.44 8.52 6.88 6.65
300 8 7.80 6.28 6.28 7.58 5.94 5.62
400 6 5.87 4.78 4.55 5.78 4.64 4.28
500 5 4.91 3.84 3.72 4.86 3.73 3.54
600 4 3.96 3.18 3.02 3.93 3.10 2.85
700 4 3.96 2.89 2.74 3.93 2.83 2.66
800 3 2.97 2.33 2.31 2.95 2.31 2.24
900 3 2.97 2.24 2.09 2.96 2.23 2.07

Table 3.2: Average number of copies used in single (1p), two-period (2p)
and three-period (3p) spraying algorithms with different ac-
knowledgment types and deadlines.

In Table 3.2, we present the average copy counts used in three compared

algorithms when random walk model is used (we did not include the results when

random waypoint model is used because they are similar to the results presented

here). From the table, we observe that in both acknowledgment types, 3p algorithm

uses fewer copies on average than either 2p or 1p spraying algorithm does. However,

when Type I acknowledgment is used, the saving in the number of copies obtained

by 3p algorithm decreases. Moreover, in some cases (td = 200s), its performance

becomes worse than 2p algorithm. This is because when the deadline gets tight,

the number of copies that are sprayed to the network increases so that the number

of nodes carrying the message copies increases and the duration of epidemic like

acknowledgment is longer. Consequently, more redundant copies are sprayed by the

nodes having message copies before they are informed about the delivery. Moreover,

we also notice that using the proposed algorithms even with Type I acknowledgment

results in lower average copies used than when using the single period spraying

algorithm with Type II acknowledgment. It should also be noted that in single

period spraying algorithm with L copy count, the average number of message copies

sprayed to the network is less than L. This is simply because even in single period

spraying which does all spraying at the beginning, there is non-zero chance that the

message will be delivered before all copies are made.

44

To further compare the performance of the proposed algorithms with the single

period spraying algorithm, we have measured some additional metrics. Figure 3.9

and Figure 3.10 show the comparison of average message delivery delay and the

average time of spraying completion5 (time by which the last copy is sprayed) in

these algorithms, respectively. Inspecting these two graphs, we observe that the

proposed 2p and 3p algorithms incur higher average delay than 1p algorithm but

they achieve the same delivery probability6 before the deadline compared to the 1p

spraying algorithm. Moreover, since the proposed algorithms postpone the spraying

of all copies to later times, they finish spraying later than the single period spray and

wait algorithm does. This results in lower memory usage averaged over execution

time of our algorithm when compared with such usage incurred by the single period

spraying algorithm.

We also computed the percentage of the savings achieved in the number of

copy counts with the proposed multi-period algorithms. Figure 3.11 charts the

fraction (L-Lavg)/L with the given td. Here, L is the average copy count used

in single period spraying and Lavg is the average copy count achieved in the multi-

period spraying algorithm. This time, we present the results when random waypoint

model is used (the results with random walk model are similar). From the results

shown in Figure 3.11, we observe that 3p algorithm provides higher savings than 2p

algorithm. Moreover, it is clear that the savings with Type II acknowledgment are

higher than the savings with Type I acknowledgment in both 2p and 3p algorithms.

The difference between the savings of Type I and Type II acknowledgments gets

smaller as the deadline increases. This is because larger td decreases the number of

copy counts sprayed to the network, resulting in acknowledgments reaching all nodes

5The values in Figure 3.10 are computed over cases in which the message is delivered after all
potential copies are sprayed.

6In simulations, we assume that collisions or collision avoidance do not impact message delivery.
Indeed, they can only force meeting nodes to communicate sequentially, delaying some pairwise
node communications. Yet, the average required communication time (about 0.1s with 1Mb/s
bandwidth and 100Kb packets) is small compared to the average meeting time of two nodes (1.72s
in random walk setting). Moreover, meeting of four or more nodes is very unlikely (below 1% in
our setting). Thus, it is unlikely (below 0.05% in our setting), that a communication delay due to
collision or collision avoidance will exceed meeting time, justifying our assumption. As expected,
in simulations, all three algorithms achieve the desired pd by the deadline (for the sake of brevity,
the relevant plot is omitted here).

45

carrying message copies earlier. On the other hand, we also observe fluctuations

even in the savings of a single algorithm with different delivery deadlines. This is

because for some consecutive td values (i.e., td = 600s, 700s, 800s), Lmin value in 1p

algorithm which achieves the desired pd is the same (i.e. Lmin = 3) while Li values in

multi-period algorithms are different. In these cases, multi-period algorithms take

the advantage of spraying in multiple periods and delay the spraying further when

the deadline is larger (for example in 2p algorithm, when td =600s, then xd1 =400s

and the optimum (L1, L2) = (2,5) but when td = 700s, then xd1 = 525s and the

optimum (L1, L2) = (2,6)). Hence, multi-period algorithms can provide more saving

over single period algorithm in such cases.

200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

Delivery deadline (t
d
)

A
ve

ra
ge

 d
el

ay

1 period
2 periods
3 periods
Deadline

Figure 3.9: The comparison of the average delay for the single period and
multiple-period algorithms (random walk model).

We also looked at the effects of the desired pd on savings achieved by the

proposed algorithms. As an example, we plotted the percentage of savings obtained

in 2p-Type II algorithm with three different pd values in Figure 3.12. Here, we

performed simulations in a different way to show also the flat behavior of percentage

of savings with respect to L (instead of td). With the given L and pd values, we first

found the minimum td value that achieves the given pd (in random waypoint model)

and then obtained the savings provided by 2p-Type II algorithm (when optimum Li

values are used) at that td value while maintaining the given pd.

From Figure 3.12, we first observe that the savings are almost the same when

plotted according to the L values, where td is the minimum time that spraying of

L copies achieves the given pd (proving this property analytically is the subject of

46

200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

Delivery deadline (t
d
)

A
ve

ra
ge

 ti
m

e
of

 E
nd

 o
f S

pr
ay

in
g

1 period
2 periods
3 periods

Figure 3.10: The comparison of average end of spraying times in the sin-
gle period and multiple-period spraying algorithms (random
walk model).

200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Delivery deadline (t
d
)

P
er

ce
nt

ag
e

of
 S

av
in

g

3p−Type II
3p−Type I
2p−Type II
2p−Type I

Figure 3.11: The percentage of savings achieved by the proposed algo-
rithms with two different acknowledgment schemes (random
waypoint model).

3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

L

P
er

ce
nt

ag
e

of
 S

av
in

g

p
d
 = 0.99

p
d
 = 0.97

p
d
 = 0.95

Figure 3.12: The percentage of savings achieved by 2p-Type II algorithm
with three different pd values (random waypoint model).

47

100 150 200 250 300
5.2

5.4

5.6

5.8

6

6.2

6.4

Number of nodes (M)
A

ve
ra

ge
 N

um
be

r o
f C

op
ie

s

2p−Theory
2p−Sim(Type II)
2p−Sim(Type I)

Figure 3.13: The effect of number of nodes on the difference between the
analysis and simulations results.

5 6 7 8 9 10 11 12
0

2

4

6

8

10

L

A
ve

ra
ge

 N
um

be
r o

f C
op

ie
s

1 period
2 periods

Figure 3.14: The average number of copies used per message in the sim-
ulations of real traces from RollerNet.

our future work). Additionaly, we observe that as the given pd value decreases,

the savings provided by multi-period algorithm decreases. This is because as pd

decreases, minimum td value achieving pd with the given L decreases and the cdf

of delivery probability gets more vertical around the td value. Because of these two

reasons, the chance of saving in multi-period algorithm decreases with lower values

of the desired pd.

In the above simulations, we always assumed a constant number of nodes

(M=100) in the network. However, the value of M affects the performance of the

algorithm as well. For example, in Figure 3.13 we plot the simulation and analysis

results in random walk model for 2p algorithm with three different M values (where

48

pd = 0.99). It is clear that as M increases the difference between 2p-Sim (Type II)

and analysis gets smaller. This is the result of fast spraying with increasing M7.

Moreover, the difference between 2p-Sim (Type I) and 2p-Sim (Type II) results

decreases because larger M values enable faster acknowledgment process.

In addition to the evaluation of the proposed protocol with random mobility

models, we have also looked at its performance on real DTN traces. From the

several data sets released so far, we have selected RollerNet [45] traces thanks to its

easy usability (for example, all the meetings between nodes are mutually recorded).

RollerNet traces include the opportunistic sightings of Bluetooth devices by groups

of rollerbladers carrying iMotes in the roller tours in CityplaceParis. Since the

nodes are not identical, the generated intermeeting times between pairs of nodes vary

significantly. Although our protocol is not designed for networks with heterogeneous

intermeeting times between nodes, we simply applied our multi-period spraying idea

using the results from our analysis and left the design of an algorithm specifically

for heterogeneous networks as a future work.

The RollerNet traces starts at 1156084064s and ends at 1156094040s. In each

10s starting from the beginning (until the time after which the last message will

not have enough time to be delivered), we have generated a message from a random

source to a random destination in the network. In single period routing, for each L

(number of copies allowed), we found the delivery times of each message and also

the time (we call it discovered td) at which 99% (pd) of all messages are delivered

since their generations at the source nodes. Then, we ran the two period routing

on the same traces with the same set of messages. In the first period, we allowed

the spraying of L/2 copies (which is the most frequent case according to the results

of our analysis). In the second period we tried different copy counts and found the

necessary copy count that achieves the same delivery rate of all messages by the

discovered td. Since the intermeeting times between nodes and also the delivery

times of messages are different from each other, we computed the start of second

period individually for each message. That is, for each message, we used its delivery

time in the single period routing with L messages as the message’s own td and

7It should be noted that EM does not change with increasing M. Only the rate of meeting with
new nodes increases, which results in the fast spraying of messages.

49

computed xd accordingly. In Figure 3.14, we show the average copy counts used per

message in 1p and 2p spraying algorithms. Clearly, multi-period spraying idea can

reduce the average copy count used in real DTN traces even when the frequencies

of node meetings show heterogeneous behavior. The savings in this case are in the

range of 6%-8%. However, we believe that a more careful design of multi-period

idea can increase the savings even further. The design of a multi-period spraying

based routing algorithm for heterogeneous networks will be the subject of our future

work.

3.6 Summary of Contributions

In this chapter, we introduced a general multi-period spraying algorithm for

DTNs which distributes the message copies depending on the remaining time to

delivery deadline. Then, using formal analysis and simulations, we evaluated its

performance. We first showed analytically how to partition time until deadline in

a single period spraying algorithm into two and three separate periods, each period

consisting of spraying phase followed by the wait phase. Then, we presented a

generalization of this approach to a larger number of periods to reduce the cost even

further. Finally, we discussed the results of simulations of our algorithm confirming

that the average number of copies used by our algorithm is smaller than the average

number of copies used by the single period spraying algorithm, while its delivery

rate by the deadline matches the performance of the latter.

In the future work, we will investigate how more realistic radio links and

mobility models affect our algorithm. Moreover, we also plan to update the proposed

protocol for networks in which node meeting behavior varies between nodes.

CHAPTER 4

ROUTING WITH ERASURE CODING OF MESSAGES

In this chapter, we first overview erasure coding technique with comparison to repli-

cation based routing and formulate the problem in the context of deadline driven

routing in DTNs. Then, we describe several message distribution schemes and an-

alyze their performance in terms of message delivery delay and the total delivery

cost. Finally, we present two different complementary techniques that can decrease

the cost of routing in DTNs [53].

For easy description, we give a list of symbols and their meanings used in the

rest of the chapter in Table 4.1.

4.1 Overview of Erasure Coding and Problem Description

Erasure coding (EC(k,R)) [26] is a coding scheme which processes and converts

a message of k data blocks into a large set of Φ blocks such that the original message

can be constructed from a subset of Φ blocks. Here, Φ is usually set as a multiple of

k and R = Φ/k is called replication factor of erasure coding. Under optimal erasure

coding, k blocks are sufficient to construct the original message. But, because of

the fact that optimal coding is expensive in terms of CPU and memory usage, near

optimal erasure coding is used requiring k+ǫ blocks to recover the original message.

In [43], the average value of ǫ is reported as k/20 for Tornado codes. Therefore,

following the previous studies, for simplicity we ignore ǫ.

There are various erasure coding algorithms including Reed-Solomon coding

and Tornado coding. These algorithms differ in terms of encoding/decoding effi-

ciency, replication factor R and minimum number of code blocks needed to recover

the original message. Due to its simplicity and linear time complexity, we use Tor-

nado codes in our scheme. The erasure/decoding complexity in Tornado coding is

proportional to Φ ln(1/(ǫ− 1))P where P is the length of encoded packets.

We illustrate the basic principles of replication and erasure coding based rout-

ing in Figure 4.1. In a replication based routing with limited copying allowed, L

50

51

Table 4.1: Notations

Symbol Definition

L Number of copies of a message
M Average size of a message (bytes)
k Number of equal size blocks that a message

is split into (kmax is upper bound for k)
R Replication factor used in erasure coding of

a message
Φ k × R, total number of blocks generated in

erasure coding based routing
Φi Total number of messages distributed to the

network by the end of ith period (Li is used
for same value in replication based routing)

Ropt Optimum value of R in single period case
R∗ Replication factor used in multi-period case
td Message delivery deadline (time units)

P (x) Probability of delivery at time x
dr Desired delivery rate
τ Total cost of delivery of a message

1/λ Average inter-meeting time of nodes
Ts End of distributing all messages

EC(k,R) Erasure coding with parameters k and R
α The percent of kR messages that are dis-

tributed in the first period of EC(k,R)

message copies are distributed to L distinct nodes in the network and the delivery of

just one copy is needed in the destination node. In an erasure coding based routing,

a message is divided into k blocks, transformed into Φ > k blocks of which any k

blocks are sufficient for the destination node to reconstruct the original message.

The most important advantage of erasure coding over replication based routing is

that erasure coding algorithms strengthen the robustness of the network against fail-

ures (in other words, it increases reliability). That is, the more packets are spread

to the network, the higher is the probability of message delivery to the destination,

regardless of the rate of message failures.

In both algorithms, the delivery of the messages depends on the spread of many

original or encoded copies of the message over the network. Therefore, any reduction

52

Figure 4.1: Comparison of replication based and erasure coding based
routing.

of number of these copies without diverging from the goals (i.e. maintaining the

desired delivery rate by the deadline) prolongs the network lifetime and enables the

network to operate longer. Consider Figure 4.1 where the ideas of replication based

routing and erasure coding based routing algorithms are illustrated. When R and

L are equal, the cost (τ) is same in both techniques8. However, as it is seen in

Figure 4.2, the cumulative distribution function (cdf) of delivery probability will

be different. In erasure coding based routing, the message spraying duration takes

more time because more messages are transferred to more relay nodes. Therefore,

the delivery probability increases slowly in early times. Besides, once the spraying is

finished, since k of the messages are expected to be delivered to the destination, the

delivery probability still continues at lower rates for some time. However, when the

expected delivery time for messages gets closer, k messages are easily and quickly

gathered because of high number of messages spread to the network. Consequently,

worst case delivery rate for the erasure coding is better than for the replication

8Here, note that when there are L copies given to L relay nodes, there will be L + 1 copies of
the message in the network including the one at the source node. The cost of message distribution
is O(ML), but including the delivery of one of them to the destination, the overall cost of delivery
is O(M(L + 1)) (or ≈ O(M(R + 1)) in erasure coding based routing with replication factor of R).

53

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time
C

df
 o

f d
el

iv
er

y
pr

ob
ab

ili
ty

→Better worst case

delivery probability

Delivery deadline →

T
s

↓

T
s←

EC(k,R)−BS
EC(k,R)−SS
Replication(L)

Figure 4.2: Comparison of delivery probabilities in erasure coding and
replication based routing.

based routing.

In Figure 4.2, we also demonstrate the effect of different message distribu-

tion algorithms on the cdf of message delivery probability. When only source node

is eligible to distribute data blocks to other nodes in the network (Source Spray-

ing (SS)), the distribution period takes longer than distributing them with binary

spraying (BS) [47]. Consequently, spraying ends (Ts) quite late, delaying the start

of the gathering of k messages at the destination. We conclude that even the same

number of messages are used, different delivery probabilities may be resulted due

to the different message distribution schemes. In the next section, we present some

message distribution schemes and discuss their effects on the delivery time and cost.

Considering all these aspects of erasure coding and replication based routing

in the context of deadline driven routing, we formulate our problem as follows:

Assume that source node n0 has a message of M bytes that needs to be deliv-

ered to the destination node d before the delivery deadline td with a desired delivery

rate of dr. What is the minimum cost of routing this message and which config-

uration achieves this? Formally, given td and dr minimize τ subject to constraint

P (td) ≥ dr.

54

4.2 Message Distribution Schemes

Distribution of messages is an important process that directly affects the per-

formance of routing. Since the messages are copies of each other in replication based

routing but they are encoded blocks with different contents in erasure coding algo-

rithms, the cost of the distribution of the messages to other nodes in the network

is different in these two cases. To the best of our knowledge, no previous work had

analyzed the performance of these two routing approaches (in combination with dif-

ferent message distribution algorithms) in terms of both the delivery delay and the

transmission cost. When the number of messages to be distributed in the network

is high, as in the case of erasure coding algorithms, the distribution algorithm may

have high impact on the performance. The faster the copies are distributed, the

earlier the delivery process starts with full strength and the higher is the probability

of message delivery by the deadline.

In [47], Spyropoulos et al. give the details of two different message copy

distribution methods: Source Spraying and Binary Spraying. The authors proved

that when node movements are independent and identically distributed (IID) ran-

dom variables, binary spraying minimizes the expected time until all copies are

distributed. However, we think that even when the node movements are IID and

node meetings are exponentially distributed with a common mean value, message

copies can be distributed faster than by binary spraying. Below we list four dif-

ferent spraying schemes and discuss their merits. The first two are the methods

previously introduced in [47] and the latter two are the new spraying methods that

we introduced here.

Assume that we have a network consisting of N nodes and the time passing

between two consecutive encounters of a pair of nodes (n1,n2) is exponentially dis-

tributed with mean EM = 1/λ. Furthermore, assume that a source node n0 has L

(or Φ) messages and want to distribute them to other relay nodes in the network.

There are several ways of achieving this task.

55

4.2.1 Source Spraying

The simplest way of distributing these messages is to have the source node

copy the message to the first L − 1 distinct nodes it encounters. Obviously, to be

able to distribute all messages, source node needs to wait for meeting L − 1 other

nodes in the network. Therefore, the expected time to finish the distribution (Ts)

is:

E[Ts] =
L−1
∑

i=1

EM

N − i
= EM(HN−1 −HN−L),

where Hn is the nth harmonic number. If there are already i nodes having a message

in the network, then the expected time of n0 meeting with a node without a message

is EM/(N−i). The cost of source spraying in replication based routing with L copies

is O(ML). On the other hand, in erasure coding based routing with Φ = R × k

encoded blocks in total, the cost is O(MΦ
k

) = O(MR). Both algorithms have equal

cost when R = L. Here and also in the analysis of other spraying algorithms, we

ignore the cost of checking whether the encountered node has the message. This

cost is very small compared to the cost of transferring long messages.

4.2.2 Binary Spraying

This method takes the advantage of the speedup that parallel processing can

deliver. When a node n1 carrying messages encounters another node n2 without a

message, it gives ⌊L
2
⌋ of the messages to node n2 and keeps the remaining ⌈L

2
⌉ for

itself. This process continues until only at most one message remains in each node.

When L is a power of two, a good approximation of E[Ts] is:

E[Ts] = EM
log(L)−1
∑

j=0

E[Y (j,N)]

where Y (j,N) is defined for j ≥ 0, N > 2j+1 as follows. Consider the binary tree

representing node meetings. The nodes of the (j+1)th level get messages from upper

level nodes on the average after EM
N−i

, i = 2j, . . . 2j+1 − 1 time units, respectively.

The time by which the last node gets the message defines E[Ts] eventually. We

56

have 2j nodes receiving message at the same level. Let X1, . . . X2j represent the

exponential random variables of these nodes’ message receiving times with rates

1
N−2j , . . . 1

N−2j+1+1
, respectively and let Y (j,N) = max{X1,. . . X2j}. By expanding

F (x) = P (Y ≤ x) =
∏2j−1

i=0 (1 − e−(N−2j−i)x) and computing9
∫∞
x=0(1 − F (x))dx, we

get:

E[Y (j,N)] =
2j
∑

t=1

∑

<i1...it>∈U(2j ,t)

(−1)t−1

∑t
m=1 N − 2j − im

,

where U(z, t) for 1 ≤ t ≤ z is a set of t-tuples defined as U(z, t) = {< i1, , . . . it >

| 0 ≤ i1 < . . . < it < z}. Then, the value of E[Ts] is the summation of E[Y (j,N)]s

for all levels10. In the above formula, we ignored the cases in which a node that

reached the current level early sprays the message to two nodes at the next level.

Such cases happen with small probability, so have little impact on the result. We

also assume that the last node in the current level will spray the last message, which

again is the most likely outcome.

The cost in binary spraying is different in replication based routing and era-

sure coding based routing. In the former, only copies of the original message are

generated, so a node with a right to make L copies do not need to give ⌊L
2
⌋ of them

to the first node it meets. Instead it can give only one copy to this encountered node

together with the right to make ⌊L
2
⌋ − 1 more copies in the same manner. Conse-

quently, the cost is kept at O(ML). But in erasure coding based routing, the source

node generates Φ encoded packets with different contents, so the same update in

the message transfer process between nodes can not be applied. Hence, the cost of

distributing Φ messages (τ(Φ)) in erasure coding based routing via binary spraying

is:

τ(Φ) = 2τ(Φ/2) + (M/k)(Φ/2), where τ(1) = 0

τ(Φ) =
MΦ log Φ

2k
= O(MR log(kR))

9Clearly, the following integral is the same as
∫

∞

x=−∞
xF ′(x)dx for a non-negative random

variable Y. For large N and small j we have E[Y (j,N)] ≈ EM
2j (HN−2j −HN−2j+1)H2j .

10Hence, asymptotically, this average is proportional to ln(L) log(L) while the average for source
spraying is proportional to L.

57

If a node has Φ messages, it transfers half of them to the first node it meets

with cost (M/k)(Φ/2) then each of these nodes continues distribution of their own

messages independently, incurring the cost τ(Φ/2).

4.2.3 Optimal (Fastest) Spraying

Although binary spraying achieves optimal spraying on average [47], the actual

fastest distribution of messages in any case can be obtained by message exchange in

the first L− 1 meetings of two nodes, one of which has the message while the other

does not. Formally, let N1(t) and N0(t) denote the set of nodes with message and

without message at time t, respectively. Furthermore, let rij(t) be the remaining

time to the first meetings of nodes i and j at time t and let ti be the time at which

the ith message is given to ith node in the network. The fastest distribution of all

messages results when ti values satisfy the following equation:

ti = ti−1 + min{rij(ti−1)},

where i ∈ N1(ti−1) and j ∈ N0(ti−1)

N1(ti) = N1(ti−1) ∪ {j}

N0(ti) = N0(ti−1)− {j},

where j = arg min{rij(ti−1)}

Note that t0 = 0 since a message (i.e. first one) will be kept in the source node

n0. Similarly, the expected time of distribution of all messages can be computed as:

E[Ts] =
L−1
∑

i=1

EM

i(N − i)

The expected time until the meeting of any of the i nodes possessing messages

with any of the nodes having no message is EM
i(N−i)

. As a result, the total time needed

to distribute all messages can be calculated by summing times EM
i(N−i)

for all i’s from

1 to L− 1.

The cost of optimal spraying is also different for replication based routing and

erasure coding based routing. In the first one, at most one copy of the message is

58

transferred between nodes each time there is a meeting of two nodes. Therefore,

the cost is O(ML). However, in the second case (in which messages are different),

the structure of the node meeting tree defines the cost. The lowest possible cost

of copying (O(MR)) happens if only the source node meets other nodes in the

network. The worst case, (O(MkR2)), happens if the node meeting tree in the

optimal spraying reduces to a line (i.e., first the source n0 meets a node n1 and

transfers Φ − 1 encoded blocks each of which is M/k bytes, then n1 meets n2 and

transfers Φ− 2 messages, and so on).

As a result, in optimal spraying, although the minimum E[Ts] can be obtained

easily, the cost can vary according to the node meeting schedule. Moreover, in

optimal spraying, each node needs to know meeting times of all other nodes. Yet

delay tolerant networks have mobile nodes moving independently. Hence, nodes

cannot obtain such a knowledge most of the time. Therefore, the optimal spraying

approach is inappropriate in this setting. Still, the resulting time is a useful lower

bound for the duration of spraying stage.

4.2.4 Cooperative Binary Spraying

In this method, the messages are distributed in the same manner as in binary

spraying except that when two nodes with messages meet each other, they equalize

their message loads. In other words, if a node ni with Li messages meets another

node nj with Lj messages, the message load in each node is updated as follows:

β = Li + Lj, Li = ⌈β
2
⌉ and Lj = ⌊β

2
⌋

The advantage of cooperative spraying algorithm11 over the original binary

spraying method is the former’s ability to deal with irregular patterns of node meet-

ings. If a node n1 (with many rights to copy a message) does not meet with nodes

without a message for a long time (longer than expected), the rights to copy that it

holds are unused, so that time of spraying Ts increases because of late distribution

of some messages. Clearly, the other nodes can not be aware of this unexpected

11Here, we give an intuitive analysis of cooperative binary spraying showing its superiority over
binary spraying leaving the more formal analysis as future work.

59

Figure 4.3: Node meeting times in a sample network. Each line shows
the time-line of a node and the connections between time
lines indicate meetings between the corresponding nodes.

Table 4.2: Execution of different message copy distribution algorithms
on the network with node meeting times shown in Figure 4.3

Algorithm N1(Ts) Ts

Source n0, n1, n2, n5, n7, n8 83
Binary n0, n1, n2, n3, n5, n7 70

Optimal n0, n1, n2, n3, n4, n5 50
Co-Binary n0, n1, n2, n3, n5, n6 62

situation of slow distribution. However, if any of the nodes already holding some

messages meet with node n1 holding more messages, it can help node n1 in the dis-

tribution of its messages. As a result, the speed of binary spraying can be increased

with such help, yielding smaller E[Ts] than the one achieved in binary spraying. Such

help incurs no cost in replication based routing but requires additional copying in

erasure coding based routing.

To explain the differences of these spraying strategies, we will show the ex-

ecution of each strategy on a sample network shown in Figure 4.3. In the figure,

each node is accompanied with a time line showing meetings with other nodes. For

example, source node n0 meets node n1 at time 5 and node n2 at time 19. The

table 4.2 shows the result of executing each scheme on this sample network when

there are L = 6 copies at the source node in a replication based routing. In source

spraying, source waits to meet five other nodes to distribute all copies. In binary

spraying, first source gives three of the copies to node n1 and both the node n1 and

n0 distribute two more copies in parallel (while n0 gives one copy to node n5 and

60

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

Number of messages distributed (L)
E

[T
s]

Source−Sim
Source−Analysis
Binary−Sim
Binary−Analysis
Optimum−Sim
Optimum−Analysis

Figure 4.4: E[Ts] values based on analysis and simulation for different
message distribution schemes.

n7, node n1 gives one copy to n2 and n3). In cooperative binary spraying algorithm,

node n2 helps node n0 in the distribution of copies. When they meet at time 19,

node n2 has just one copy for itself (not eligible for distributing copies to others)

and node n0 has three copies. According to the rule of cooperative binary spraying,

they share copy loads equally so that they both have two copies. Then node n2 and

n0 give one more copy to node n6 and n5, respectively. As a result, the total dis-

tribution time (Ts) is shortened by the help from other nodes. In optimal spraying,

the first five meetings between the nodes having copy and the nodes without copy

are (n0, n1), (n1, n2), (n1, n3), (n3, n4), (n0, n5) in chronological order. Therefore,

the possible minimum Ts value is achieved.

We also validated the analysis results obtained above by simulations. We de-

ployed 100 identical nodes with transmission range 10 m on a 300 m by 300 m

torus. The nodes move according to the random direction mobility model [44] in

which a node moves with random speed for an epoch and then randomly changes

its direction and speed. In the simulation, we set the average speed to 8.5 m/s and

average epoch duration to 11.5 s. With these settings the average inter-meeting time

is EM = 480. Figure 4.4 shows the comparison of analysis and simulation results of

E[Ts] values for different message spraying algorithms with different number of mes-

sage counts. Clearly, there is a good match between simulation and analysis results.

In Figure 4.5, we compare E[Ts] values obtained in the simulations when binary,

cooperative binary and optimum spraying approaches are used. The graph confirms

61

5 10 15 20 25 30
0

10

20

30

40

50

60

Number of messages distributed (L)
E

[T
s]

Binary−Sim
CoBinary−Sim
Optimum−Sim

Figure 4.5: E[Ts] from simulations of binary, cooperative binary and op-
timum spraying algorithms.

the advantage of cooperative binary spraying over the original binary spraying. It

gets more pronounced as the number of messages to distribute increases.

4.3 Reducing Cost in Single Period

As shown in the previous section, using different message distribution schemes

incurs different costs, yields different spraying times and impacts the delivery time

differently. For example, in Figure 4.1, if R in erasure coding algorithm is equal to L

in replication based routing and the source spraying is used, the cost is same for both

algorithms. Yet, as shown in Figure 4.2, erasure coding reaches high delivery rate

earlier than replication based routing. Moreover, we observe in the same figure that

by using binary spraying in erasure coding routing, we can shorten Ts and increase

the delivery probability even in early times. Unfortunately, using binary spraying

increases the cost of erasure coding routing. Therefore using binary spraying, we

are trading delivery probability for the cost. In an erasure coding routing with

parameters k and R, if the source spraying is used, the cost is MR bytes. The same

cost is also paid in binary spraying of erasure coded messages with R′ satisfying

R′ log(kR′) ≤ 2R. Clearly, R′ must be smaller than R. But using kR′ messages

even with quick message distribution with binary spraying cannot provide the same

delivery rate as is achieved by distributing more messages (kR) with source spraying.

As a result, a careful selection of message distribution scheme needs to be made to

62

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time
C

df
 o

f d
el

iv
er

y
pr

ob
ab

ili
ty

Delivery deadline →

EC(k,R)
EC(k−2,R)
EC(k,R−2)
Replication

Figure 4.6: Comparison of delivery probabilities in erasure coding based
routing with different parameters where (k,R)=(4,5)

reduce the cost.

Moreover, when source spraying is used, the cost can be reduced by selecting

right parameters. Consider the graphs in Figure 4.6. They show the cdf of delivery

probabilities of three erasure coding based algorithms with different parameters

and one replication based routing with L = R. For example, if td for messages

is 330 time units and dr is 98%, we can achieve the dr at td in all of these four

algorithms. However, among these four algorithms, the cost is same (O(MR))

except EC(k,R − 2) (cost in this case is M(R − 2)). It should be noted that

changing k does not change the cost, it only affects the slope of the curve, and

therefore the delivery rate.

Let p(x) denote the cdf of a single node’s meeting with the destination at time

x after it is given an encoded message. To simplify analysis, we assume that the

relay nodes in the network get encoded messages around the same times (at least

if measured using td as a unit). This assumption is justified if the total number

of encoded packets to distribute is not too large and binary spraying is used for

message distribution (this is often the case in practice). Then, the probability that

there are already k messages gathered at the destination node at time x becomes:

P (x, Φ) =
Φ
∑

i=k

(

Φ

i

)

p(x)i(1− p(x))Φ−i

It should be noted that the erasure coding based routing reduces to the replication

63

based routing when k = 1.

Assuming that td and the desired delivery rate (dr) at td are given, we can

determine the optimum parameters minimizing the cost while achieving dr at td

using the following relation:

(k,R) = min{τ |P (td, Φ) ≥ dr}

The value of k can change from 1 to infinity, in theory. However, when this value is

large, many small blocks are created (in some cases exceeding the total number of

nodes in the network) incurring high processing cost and low bandwidth utilization.

Therefore, we assume an upper bound (kmax) for k. Once, we know p(x), kmax, dr

and td, we can find the parameters that minimize the cost of spraying using the

above inequality by enumeration of all possible k’s.

4.4 Reducing Cost in Multiple Periods

The cost of erasure coding algorithms can further be reduced with the multi-

period approach that we used in previous chapter. Instead of distributing all mes-

sages at the beginning (single period), we spray only some of them at time 0 and

wait for the delivery of sufficient number of messages at the destination. If the de-

livery has not happened yet until a certain time (xd), we distribute more messages

to the network so that we increase the probability of delivery. The question is, ‘can

we reduce the average cost while maintaining dr at td?’

In Figure 4.7, we illustrate the goal we want to achieve in two periods with plot

EC(k,R∗, α). Assume that in single period case, the optimum parameters are k and

Ropt. In erasure coding routing with two periods, source node generates Φ2 = kR∗

(complexity of encoding is linear) encoded messages at the beginning and allows

the distribution of only Φ1 = αkR∗ of them (0 < α < 1) in the first period. Then

with the beginning of second period (after time xd), the remaining messages are

distributed so that the probability of gathering of k messages at the destination is

increased.

In the first period of two period erasure coding routing, the cdf is P(x,Φ1).

64

But in the second period, we need to combine the independent delivery probabilities

of first period messages and second period messages which are distributed to the

network with a delay of xd time units. The delivery probability in the second period

at time x is:

P (x, Φ1, Φ2) =
∑Φ2

i=k

(

∑l2
j=l1

P ′(x, j, Φ1)P
′(x-xd, i-j, Φ2-Φ1)

)

where P ′(x, j, Φ1) =
(

Φ1

j

)

p(x)j(1− p(x))Φ1−j

l1 = min{i, Φ1} and l2 = max{0, i− Φ2 + Φ1}

The goal is, for a given Φ, to find a (Φ1,Φ2) pair that lowers the average cost

while maintaining the dr by td. First of all, to be able to catch the delivery rate of

single period, the following inequalities must be satisfied:

R∗ > Ropt

P (td, Φ1, Φ2) ≥ P (td, Φ)

Moreover, to lower the average cost compared to the cost in a single period, the

following inequalities must be satisfied as well:

P (xd, Φ1)Φ1 + (1− P (xd, Φ1))Φ2 ≤ Φ

Φ2 − Φ

Φ2 − Φ1

≤ P (xd, Φ)

In the design of a two period erasure coding routing, the selection of the

message distribution scheme is also important. Since we need a fast distribution of

the first period messages, at first glance it seems better to use binary spraying in

the first period. However, binary spraying has a bigger cost than source spraying.

Therefore, it is better to use source spraying. Similar conclusion is also valid for

the second period. Moreover, using source spraying in the second period has also

an extra benefit in terms of transmission cost. As soon as the second period starts

at time xd, source node starts distributing remaining messages at a slower rate than

binary spraying. With each message distributed to a relay node, the probability

of gathering of k encoded packets at the deadline increases. In the mean time,

65

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time
C

df
 o

f d
el

iv
er

y
pr

ob
ab

ili
ty

t
d →

x
d

↑ EC(k,R
opt

)

EC(k,R*,α)
Replication(L)

Figure 4.7: Cumulative distribution function of delivery probability in
two period erasure coding routing.

if the message is delivered (k encoded packets have arrived destination) and the

source node receives acknowledgment of this delivery, then the source node stops

distributing remaining messages, so the average cost can further be reduced.

4.5 Simulation Model and Results

We used the same Java based simulator (details of which are given in previ-

ous chapter) to evaluate the performance of proposed cost reduction schemes. We

randomly deployed 100 mobile identical nodes (including the sink) on a 300 m ×
300 m torus. The nodes move according to random direction mobility model12 [44].

Each node selects a random direction ([0, 2π]) and a random speed in the range of

[4, 13]m/s then goes in that direction during a randomly selected epoch of duration

in the range of [8, 15]s. When the epoch ends, the same process runs again and

new direction, speed and epoch duration are selected. The transmission range of

the nodes is set at R = 10 m, yielding EM = 480.

Since our goal is to reduce cost, we modeled the simulation environment in

such a way as to eliminate the effects of the other parameters. We assume that the

buffer space in each node is large enough to avoid any buffer overflows. We also

assume a high bandwidth that allows the transmission of all messages during each

12Although we used only random direction mobility model in our simulations here, other mobility
models such as random waypoint and random walk can be used yielding similar results. Also, with
community based models, the advantage of cooperative binary spraying can be more pronounced
since the node inter-meeting times are unequal.

66

node meeting. All messages are assumed to have an average size of M = 100 Kbytes.

Each message is generated at a randomly selected source node and then addressed to

the sink node whose initial location is also chosen randomly. After all the messages

are distributed, the destination waits until it receives sufficient number of messages.

It is also important to remark that if one of the nodes carrying a message (or

messages) meets the destination during the spraying period, it transfers all of its

messages to the destination. Therefore, some messages can be directly transferred

to the destination without being given to relay nodes, thus yielding a saving in

total message transfer cost. For the simulations here, we set dr = 99%, which is

a reasonable delivery rate for real scenarios. The presented simulation results are

averaged over 1000 different runs.

We first present results regarding the right spraying algorithm selection. Fig-

ure 4.8 shows the average costs per message achieved with different deadlines when

source spraying and binary spraying are used13. In both algorithms, assuming that

the same k value is used, we first found R values achieving the same delivery rate

by the deadline (Note that erasure coding algorithm with binary spraying (EC-BS)

uses a smaller R value than it is used in the erasure coding algorithm with source

spraying (EC-SS) to achieve the same delivery rate by the deadline) and computed

the cost when these R values are used. As the results show, EC-BS generates higher

cost than EC-SS even though it uses smaller R value. This result demonstrates

again the advantage of source spraying over binary spraying (when the contents of

distributed messages are different as in erasure coding based routing).

Next, we look at the performance of multi-period spraying approach in erasure

coding based routing. Since, the contents of erasure coded messages are different

than each other, we use source spraying while distributing messages in multi-period

approach. Also, we present results using two different types of acknowledgments for

delivered messages (see previous chapter for details of acknowledgment mechanisms).

Table 6.1 shows the minimum costs incurred by EC-1p (suffix “xp” denotes

13We did not give results for cooperative binary spraying because the superiority of cooperative
binary spraying over binary spraying does not provide benefits in random direction mobility model.
However, in our future work we will do simulations with heterogeneous mobility models where we
believe that the benefit of cooperative binary spraying will be more pronounced.

67

200 250 300 350 400 450 500 550
2

4

6

8

10

12

14

Delivery deadline (t
d
)

A
ve

ra
ge

 c
os

t p
er

 m
es

sa
ge

 (
M

 b
yt

es
) EC−1p−SS

EC−1p−BS

Figure 4.8: Average costs incurred by the single period erasure coding
routing when the source and binary sprayings are used in
message distribution.

x-period version of EC routing) and EC-2p algorithms with the aforementioned two

different types of acknowledgments. In both algorithms, we found the optimal pa-

rameters which provide minimum average costs using the formula from the previous

section. In EC-2p algorithm, we used kmax = 5.

First of all, even though we did not show it here for the sake of brevity, in both

algorithms the desired delivery rate is achieved by the given deadlines. Yet, their

costs are different. For all td values shown, as it is expected, the cost of an algorithm

when Type I acknowledgment is used is higher than the cost of the same algorithm

when Type II acknowledgment is used. This is simply because of the extra time

needed in Type I acknowledgment to inform the source node about the delivery

with epidemic like acknowledgment. During this extra time, the source node will

still continue distributing the remaining encoded messages it has, increasing the

algorithm cost. Moreover, for almost all td values, the cost of EC-2p algorithm

is smaller than the cost of EC-1p regardless of the type of acknowledgment used.

This clearly shows the superiority of EC-2p over EC-1p algorithm. We also observe

that as the deadline gets tight (decreases), the improvement achieved (percentage

of reduced cost with respect to EC-1p algorithm) by EC-2p algorithm decreases.

This is because with shorter deadline, more encoded blocks are generated. Hence,

the time to distribute all encoded blocks and also the time needed to inform source

node in Type I acknowledgment increases. Consequently, in some cases (td=200s),

68

the cost of EC-2p algorithm becomes higher than the cost of EC-1p algorithm. Still,

in most of the cases, EC-2p performs better than EC-1p algorithm does. It should

also be noted that for the same td values, the cost difference between Type I and

Type II acknowledgments in EC-2p is larger than it is in EC-1p algorithm. This is

because in Type I acknowledgment, more blocks must report reaching destination

in EC-2p algorithm than in EC-1p algorithm.

td Cost of EC-1p-SS (Kbytes) Cost of EC-2p-SS(Kbytes)

sec Opt(R,k) Type I Type II Opt(R∗,α, xd) Type I Type II
600 (3,2) 343 342 (5, 0.4, 410) 323 319
500 (3,3) 357 356 (5, 0.4, 345) 299 295
400 (4,3) 445 443 (6, 0.5, 270) 412 398
300 (5,3) 536 532 (7, 0.5, 200) 515 495
250 (5,5) 525 517 (8, 0.5, 185) 538 510

Table 4.3: Minimum average costs of single and two period erasure cod-
ing algorithms at the time the message is delivered (Type II)
and after all nodes receive acknowledgment of the delivery
(Type I).

To see the effect of delivery rates on the average cost, we also simulated the

algorithms with different dr values. We selected higher dr values (≥ 75%) since it

is a reasonable design concern of real delay tolerant networks. Figure 4.9 shows

the average costs obtained in single period replication based routing and single

period erasure coding based routing algorithms when source spraying is used. In

these simulations we set td = 256. The graph demonstrates that with low delivery

rates, Rep-1p algorithm performs well. However, for higher delivery rates, EC-1p is

better than Rep-1p. This also confirms the ability of erasure coding based routing

algorithms to improve the delivery rate at later times (better worst case delivery).

4.6 Summary of Contributions

In this chapter, we studied the erasure coding based routing problem in DTNs.

Assuming that we are given a desired delivery rate by the given deadline, we dis-

cussed the most cost efficient ways of achieving this goal. We first analyzed different

message distribution schemes and discussed their effects on message delivery ratio

69

80 85 90 95 100
2

3

4

5

6

7

8

Delivery ratio (d
r
) at t

d
 = 256

A
ve

ra
ge

 c
os

t p
er

 m
es

sa
ge

 (
M

 b
yt

es
)

Rep−1p
EC−1p

Figure 4.9: Comparison of average costs per message achieved in single
period replication based routing and erasure coding based
routing with different delivery rates. In both algorithms
source spraying is used in message distribution.

and cost. We demonstrated that even though source spraying is the slowest message

distribution scheme among others, it is the best strategy to be used in erasure coding

based routing since it provides the lowest cost. We also applied multi-period idea to

erasure coding based routing and showed that we can decrease the cost even further

than the cost of single period erasure coding based routing while still achieving the

desired delivery rate by the deadline.

CHAPTER 5

EFFICIENT SINGLE-COPY BASED ROUTING WITH

CORRELATED NODE MOBILITY

Delay tolerant networks consist of mobile agents that contact intermittently. How-

ever, the intermittent connectivity rate between different pairs of nodes in a network

may be different due to the heterogeneity in real networks. Therefore, recent studies

on DTN routing have focused on the analysis of real mobility traces (human [62, 63],

vehicular [20] etc.) and utilized extracted characteristics of the mobile objects in the

design of forwarding algorithms for DTNs. Reviewing these designs and analysis,

we have made the following observations:

• The pairwise intermeeting times between nodes usually follow a log-normal

distribution [59, 45]. Hence they are not memoryless14. This makes future

contacts of nodes dependent on their past.

• Most of the previous routing protocols that make the forwarding decisions at

the time of node meetings use a metric (encounter frequency [25], time elapsed

since last encounter [64]-[66], social similarity [68, 48] etc.) computed from the

pairwise relations of nodes with the destination node only. They do not use

any information about their meetings with each other while computing their

delivery metrics and meetings of nodes are usually assumed independent from

each other.

• The mobility of many real objects are non-deterministic but periodic [32]. For

example, in a cyclic MobiSpace [81], if two nodes were frequently in contact at

a particular time in previous cycles, then they are likely to meet around the

same time in the next cycle.

The above three observations motivated us to do the research on the correlation

between the node meetings for designing more efficient routing algorithms. Hence,

14Assume that X is the random variable representing the intermeeting time between two nodes,
then the meetings are memoryless if P (X > s + t | X > t) = P (X > s) for s, t > 0 holds.

70

71

we introduce a new link metric, conditional intermeeting time, that computes the

average intermeeting time between two nodes relative to a meeting with a third node

using only local knowledge of the past contacts. For example, let τA(D|B) denote

the conditional intermeeting time of node A with destination D given the condition

that it has just met B. We define τA(D|B) as the average time it took in the past

(computed from previous contact history) to meet with D after its meeting with B.

Hence, at each meeting of node A with a potential destination node D, we compute

the meeting frequency of A with D conditioned on meetings with all the other nodes

A met since its last meeting with node D. Throughout this chapter, we discuss how

this metric addresses all the above three observations.

The definition of intermeeting times has natural interpretation in the context

of message routing during which messages are received from a node and given to

another node on the way towards the destination. Hence, conditional intermeeting

time refers to the message holding duration on a given node during the message

routing.

We analyze the conditional intermeeting time and discuss when and why it

is beneficial in providing accurate information to nodes making routing decisions.

We also present statistical results from three different data sets (RollerNet [45],

Cambridge [86], Haggle [89]) which contain the contact traces of real objects logged

during real life experiments.

We then propose modifications to the existing DTN routing protocols using

the proposed metric and demonstrate how their performance improves as the result.

Firstly, for the algorithms which route messages over shortest paths (SP) [82, 83],

we propose to use conditional intermeeting times rather than standard intermeeting

times and route the messages over conditional shortest paths (CSP) [72]. Secondly,

for the algorithms which make message forwarding decisions depending on a delivery

metric (we call them metric-based forwarding algorithms), we propose to use condi-

tional intermeeting time as a secondary delivery metric and allow the forwarding of

messages if and only if both the algorithm’s original delivery metric and conditional

intermeeting time agree to forward the message to the encountered node [73].

72

Through simulations based on three different real DTN traces and synthetic

traces formed using community based mobility model of nodes, we compare the

modified protocols with the original ones. The results show that modifications im-

prove performances of those protocols remarkably. This shows that the conditional

intermeeting time represents inter-node link costs more accurately (in the context

of routing), hence guiding forwarding decisions effectively while routing a message.

Shortly, the contributions of this chapter are four-fold:

1. We introduce a new metric, conditional intermeeting time, which computes

the average intermeeting time between two nodes relative to a meeting with a

third node using only the local knowledge of the past contacts.

2. We analyze the proposed metric and show its significance for routing.

3. We improve the existing DTN routing protocols by exploiting conditional in-

termeeting time.

4. Finally, we perform extensive simulations based on both real and synthetic

DTN traces and measure the performance improvement achieved in the mod-

ified versions of the existing algorithms.

5.1 Conditional Intermeeting Time

Recently, the research community working on routing algorithms in DTNs has

focused on the analysis of real mobility traces to understand the main characteristics

of mobile objects. Several experiments in different environments (office [59], confer-

ence [89], city [86], skating tour [45]) with different objects (human [62], bus [20],

zebra [88]) and with variable number of attendants were performed. From the anal-

ysis of the data sets collected during these experiments, significant results about the

aggregate and pairwise mobility characteristics of real objects were obtained.

As opposed to the random mobility models [44] according to which the inter-

meeting times between pairs follow an exponential distribution and are considered

independent from each other, recent analysis [59, 45] on real mobility traces showed

that the intermeeting times between most (more than 99% in many datasets) of

73

4 time units/cycle
3 time units/

2 time units
A

B

C

cycle

cycle

Figure 5.1: A physical cyclic MobiSpace with a common motion cycle of
12 time units.

the node pairs fit to log-normal distribution. This revokes the validity of a com-

mon assumption [47, 66, 51] that the pairwise intermeeting times are exponentially

distributed and memoryless, and it makes the pairwise contacts between nodes de-

pendent on their pasts. Consequently, the residual time until the next meeting of

two nodes can be predicted more accurately if we know that they have not met

during the last t time units [59]. Such prediction can be further improved if we

consider that meetings of a node with other nodes are not independent from each

other (i.e. meetings are correlated). Hence, the nodes can benefit from their entire

history of past contacts to predict their future contacts more accurately.

Previous works have used pairwise node relations for guiding forwarding deci-

sions in the DTN routing protocols. The more frequently a node meets with desti-

nation, the higher the probability that it can deliver a message to the destination.

Therefore, after the meeting of two nodes, the node with smaller average intermeet-

ing time with destination should carry the message. Thus, each node involved in

routing, holds the message from the time the message was created or passed at the

meeting with a node, to the time of the meeting with another node that received this

message. That is, the duration that a non-source node holds a message is between

this node’s contacts with two other nodes.

Considering the above facts together, we introduce a new metric called con-

ditional intermeeting time to define the node relations more precisely within the

74

context of routing. This metric computes the average intermeeting time between

two nodes relative to a meeting with a third node using only the local knowledge of

the past contacts.

Algorithm 5 update (node m, time t)

1: if m is seen first time then
2: firstTimeAt[m] ← t
3: else
4: increment βm by 1
5: lastTimeAt[m] ← t
6: end if
7: for each neighbor j ∈ N and j 6= m do
8: start a timer tmj

9: end for
10: for each neighbor j ∈ N and j 6= m do
11: for each timer tjm running do
12: S[j][m] += time on tjm
13: increment C[j][m] by 1
14: end for
15: delete all timers tjm
16: end for
17: for each neighbor i ∈ N do
18: for each neighbor j ∈ N and j 6= i do
19: if S[j][i] 6= 0 then
20: τs(i|j) ← S[j][i] / C[j][i]
21: end if
22: end for
23: τs(i) ← (lastTimeAt[i] − firstTimeAt[i]) / βi

24: end for

The proposed metric can also provide more accuracy if the nodes move in a

cyclic MobiSpace [32, 81]. According to the definition of a cyclic MobiSpace, if two

nodes contact frequently at a particular time in previous cycles, the probability that

they will be in contact around the same time in the next cycle is high. In Figure 5.1,

a sample cyclic MobiSpace with three objects is illustrated. The common motion

cycle is 12 time units. In this example, the discrete probabilistic contacts between

A and B happen every 12 time units (1, 13, 25 ...) and the discrete probabilistic

contacts between B and C occur every 6 time units (2, 8, 14 ...). When we consider

the intermeeting time between nodes B and C, we can expect that node B will

75

forward its message to node C in 6 time units, however conditional intermeeting

time of B with C based on the condition that it has met (received the message

from) node A lets us know that the message will be forwarded to node C within 1

time unit.

Each node in a DTN can compute the average of its standard and conditional

intermeeting times with other nodes using its contact history. In Algorithm 6, we

show how a node, s, can compute these metrics from its previous meetings. The

notations we use in this algorithm (and also throughout the chapter) are listed below

with their meanings:

• τA(B|C): Average time it takes for node A to meet node B after it meets node

C. If B=C, the notation (in short τA(B)) shows the standard intermeeting

time between nodes A and B.

• S: N × N matrix where S(i, j) shows the sum of all samples of conditional

intermeeting times with node j relative to the meeting with node i. Here, N

is the neighbor count of current node (i.e. N(s) for node s).

• C: N × N matrix where C(i, j) shows the total number of conditional inter-

meeting time samples with node j relative to its meeting with node i.

• βi: Total meeting count with node i.

To find the conditional intermeeting time of τA(B|C), each time node A meets

node C, it starts a different timer. When it meets node B, it sums up the values of

these timers and divides the results by the number of active timers before deleting

them. This computation is repeated again each time node C is encountered. Then,

the total of times collected from each timer is divided by the total count of timers

used, to find the value of τA(B|C). We can also use a sliding window with an

appropriate size over the past contacts [83] and take into account the edge effects [20]

to make the computation more local and updated. Moreover, we do not consider

the contact durations in these computations since inter-contact times are usually

much longer than contact times in real DTNs. However, if the last assumption does

not hold, it is easy to modify all computations accordingly.

76

A
B

5

C

11

C

14

B

16

C

23

B

25

B

30

C

34 time

6 units 7 units 4 units

9 units

5 units

2 units 2 units

0

Figure 5.2: Example meeting times of node A with nodes B and C. Upper
and lower values are used to compute τA(B|C) and τA(C|B),
respectively.

Consider the sample meeting times of a node A with its neighbors B and C

in Figure 5.2. Node A meets with node B at times {5, 16, 25, 30} and with node

C at times {11, 14, 23, 34}. Following the procedure described above, we find that

τA(B|C) = (5+2+2)/3 = 3 time units and τA(C|B) = (6+7+4+9)/4 = 6.5 time

units while τA(B) = 8.33 time units and τA(C) = 7.67 time units.

5.2 Analysis of Conditional Intermeeting Time

In this section, we give the analysis of conditional intermeeting time and show

why it is significant in accurate prediction of future meetings within the context of

routing.

Assume that node A has two different contacts, B and C, and the sets SB and

SC include the meeting times of node A with nodes B and C during the time frame

[0, T], respectively.

SB = {B1, B2, B3, . . . Bn}, n meetings

SC = {C1, C2, C3, . . . Cm}, m meetings

Furthermore, assume that the intermeeting time of node A with node B is well

represented by a random variable X1 with the cdf D1(x) and probability density

d1(x) = D′
1(x), whereas the intermeeting time of node A with C is well represented

by a random variable X2 with the cdf D2(x) and probability density d2(x) = D′
2(x).

To find τA(C|B), we need to compute the following (without loss of generality,

77

we assume that Cm ≥ Bn):

τA(C|B) =

∑n
k=1(Cd(k) −Bk)

n
,

where, d(k) = min{i : Ci ≥ Bk}.
The conditional intermeeting time of node A with node C under the condition

that it has met node B is then a random variable that we will denote as Y . Then

τA(C|B) = E[Y]. Let’s consider jth meeting of node A with node B and denote

t = Bj −Cd(j)−1. Consider a family of random variables Y (t)’s with cdfs Dt(x) and

probability densities dt(x). Y (t) represents the distribution of the remaining time

for A to meet C given that t time units has passed since the last meeting with C

(Note that, t is defined by meeting with node B). Then:

Dt(y) =
D2(y + t)−D2(t)

1−D2(t)

dt(y) =
d2(y + t)

1−D2(t)

E[Y (t)] =

∫∞
y=0 yd2(y + t)dy

1−D2(t)

Then, using [z(1−D(z))]′ = 1−D(z)− zD′(z):

E[Y (t)] =

∫∞
z=t(1−D2(z))dz

1−D2(t)

When X1 and X2 are exponentially distributed random variables, then Dt(x) =

D2(x), showing the memoryless property of exponential distribution. However, as

the previous work suggests, X1 and X2 fit well with log-normal distribution. Then:

E[Y (t)] =
eµ2+

σ2
2
2

[

1− erf
(

ln t−(µ2+σ2
2)

σ2

√
2

)]

1− erf
[

ln t−µ2

σ2

√
2

] − t

where erf is the error function and µ2 and σ2 are mean and variance of X2, respec-

tively. Since in this case, as well in general, the expected value of Y (t) depends

78

on the value of t. Then, denoting by dACB(t) the probability density of the time

difference between the meeting of node A with C to time of meeting of node A with

B before A meets C, we get:

E[Y] =
∫ ∞

t=0

∫∞
z=t(1−D2(z))dz

1−D2(t)
dACB(t)dt

Clearly, E[Y] depends on probability density function dACB(t) that is defined by

the correlation between the meetings of node A with nodes B and C. This formula

analytically expresses the fact that the time it takes to meet C depends on the

identity of B (τA(C|B) is not the same for all Bs). Due to the nature of DTNs,

and also the possible cyclic behavior of nodes [81], there is often a repeating pattern

between the meetings of node A with node B and C, creating a strong correlation.

Consequently, E[Y] strongly depends on the aforementioned correlation.

Given A, to see the distribution of τA(C|B) according to different B and C

nodes, we computed the average conditional intermeeting time maps (C-Map) of the

most popular nodes (having the highest total meeting count with other nodes) in

three different datasets. In Figure 5.3, we show these results. For each dataset, the

left plot shows the 3D view of τA(C|B) and the right plot shows the contour plot

displaying the isolines of τA(C|B). The darker the color in the plots, the smaller

the τA(C|B) values. Interestingly, the diagonals and the Ath row and column in the

plots are the darkest places because τA(C|B) values are assumed zero in these cases.

Moreover, if there is no instance of the case in which node A meets node C after it

meets node B, we set τA(C|B) = −1.

If there were no correlation between the meetings of node A with other nodes,

τA(C|B) would have been the same for all B’s other than A or C and entire rows

would have been of the same color in contour plots. In contrast, we observe different

colors within the rows, demonstrating that the meetings of node A with different

nodes are not independent of each other. Indeed, this observation is consistent

with the real world scenarios. For example, consider the meetings of a man who

goes from home to work every morning. After meeting his family members (while

leaving home), he meets later his office friends. Yet, on the way to his office, he

meets the security guard at the gate of his workplace a few moments before meeting

79

his office friends. In other words, the meetings of the man with his office friends is

correlated with his meetings with security guard.

5.3 Proposed Algorithms

In this section, we present two different applications of conditional intermeet-

ing time to the existing DTN routing algorithms. In the first part, we look into

the shortest path based routing algorithms and propose to use conditional shortest

paths to route messages. Then, in the second part, we propose to revise message

forwarding decisions of metric-based forwarding algorithms by including the condi-

tional intermeeting time.

5.3.1 Shortest Path based Routing

5.3.1.1 Overview

Shortest path routing (SPR) protocols for DTNs are based on the designs of

routing protocols for traditional networks. The links between each pair of nodes

are assigned a cost and messages are forwarded over the shortest paths between

the source and the destination. Furthermore, the dynamic nature of DTNs is also

addressed in these designs. Two of the common metrics used to define the link

cost are minimum expected delay (MED [82]) and minimum estimated expected

delay (MEED [83]). These metrics compute the expected waiting time plus the

transmission delay between each pair of nodes. However, while the former uses the

future contact schedule, the latter uses only observed contact history.

Routing decision can be made at three different points in shortest path based

routing: i) at source node, ii) at each hop, and iii) at each contact with other

nodes. In the first case (source routing), shortest path of the message is decided

at the source node and the message follows that path. In the second one (per-hop

routing), when a message arrives at an intermediate node, the node determines the

next hop for the message towards the destination and the message waits for that

node. Finally, in the third one (per-contact routing), the routing table is recomputed

at each contact with other nodes and the forwarding decision is made accordingly.

In these algorithms, utilization of recent information increases from the first to the

80

0

20

40

0

20

40
0

5

10

x 10
4

B

Haggle Traces

C

C
o

n
d

iti
o

n
a

l I
n

te
rm

e
e

tin
g

 t
im

e
 (

se
c)

B

C

C−Map of node 21 in Haggle traces

0 10 20 30 40
0

5

10

15

20

25

30

35

40

(a) C-Map of node 21 in Haggle traces

0
20

40
60

0

20

40

60
0

500

1000

B

RollerNet Traces

C

C
o

n
d

iti
o

n
a

l I
n

te
rm

e
e

tin
g

 t
im

e
 (

se
c)

B

C

C−Map of node 33 in RollerNet traces

0 20 40 60
0

10

20

30

40

50

60

(b) C-Map of node 33 in RollerNet traces

0
10

20
30

0
10

20
30

0

1

2

3

x 10
5

B

Cambridge Traces

C

C
o

n
d

iti
o

n
a

l I
n

te
rm

e
e

tin
g

 t
im

e
 (

se
c)

B

C

C−Map of node 2 in Cambridge traces

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

(c) C-Map of node 2 in Cambridge traces

Figure 5.3: C-Maps of popular nodes in three datasets. In figures, B
represents the id of the node already met and C represents
the id of the node to be met.

81

A

B
D

C

TA(D)

TA(D|C)

TA(D|B)TA(B|D)
TA(B|C)

TA(C|B)
TA(C|D)

TA(B)

TA(C)

Figure 5.4: A sample DTN graph with four nodes and nine edges.

last one improving the quality of the forwarding decisions; however, more processing

resources are used as the routing decision is computed more frequently.

The suitability of SPR algorithms for DTNs and the scalability and complex-

ity of their designs have been already discussed in [82, 83], hence, in this chapter,

we focus on the enhancements of the performance of SPR algorithms achieved by

utilizing our metric, conditional intermeeting time, rather than using standard in-

termeeting time. To this end, in the rest of this section, we show the necessary

changes to the current designs of SPR algorithms.

5.3.1.2 Network Model

We model a DTN as a graph G = (V , E) where the mobile nodes are repre-

sented by vertices (V) and the possible connections between these nodes are repre-

sented by the edges (E = Eu ∪ Eb). Unlike previous DTN graph models, there can

be multiple and both unidirectional (Eu) and bidirectional (Eb) edges between the

nodes. The neighbors of a node i are denoted by N(i) and the edge sets are given

as follows:

Eb = {(i, j) | ∀j ∈ N(i)} w(i, j) = τi(j) = τj(i)

Eu = {(i, j) | ∀j 6= k ∈ N(i)} w(i, j) = τi(j|k)

82

A D

B

C
30= C

(D)

15= B
(D)=25A(B|t)R

=20A(C|t)R

A D

B

C
10= C

(D|A)

12= B
(D|A)=25A(B|t)R

=20A(C|t)RT

T T

T

Figure 5.5: An example case where CSP can be different than SP.

There can be multiple unidirectional edges (Eu) between any two nodes but these

edges differ from each other in terms of their weights (w(i, j)) and the correspond-

ing third node which is the reference point used while computing the conditional

intermeeting time. In Figure 5.4, we illustrate a sample DTN graph with four nodes

and nine edges. There are three bidirectional edges with weights of standard inter-

meeting times and six unidirectional edges with weights of conditional intermeeting

times. In the graph, there are no unidirectional edges originating from nodes B,

C and D because these nodes meet only with a single node, thus there are no

conditional intermeeting times associated with them.

5.3.1.3 Conditional Shortest Path Routing

Our algorithm basically finds conditional shortest paths (CSP) for each source-

destination pair and routes the messages over these paths. We define the CSP from

a node n0 to a node nd as follows:

CSP (n0, nd) = {n0, n1, . . . , nd−1, nd | ℜn0(n1|t) +
d−1
∑

i=1

τni
(ni+1|ni−1) is minimized.}

Here, t represents the time that has passed since the last meeting of n0 with n1 and

ℜn0(n1|t) is the expected residual time to the next meeting of n0 and n1 given that

they have not met in the last t time units. ℜn0(n1|t) can be computed as in [59] with

parameters of distribution representing the intermeeting time between n0 and n1.

It can also be computed in a discrete manner from the observed intermeeting times

83

of n0 and n1. Assume that n0 observed k intermeeting times with n1 in the past.

Let τ 1
n0

(n1), τ 2
n0

(n1),. . .τ
k
n0

(n1) denote these values. Then, discrete computation of

ℜn0(n1|t) can be defined formally as follows:

ℜn0(n1|t) =

∑k
s=1 f s

n0
(n1)

|{τ s
n0

(n1) ≥ t }| where,

f s
n0

(n1) =

τ s
n0

(n1)− t if τ s
n0

(n1) ≥ t

0 otherwise

If none of the k observed intermeeting times is bigger than t (this case occurs

less likely as the the contact history grows), ℜn0(n1|t) becomes 0, which is a good

approximation.

Next, we give an example showing that CSP gives the right path with more

accurate delay than SP. Consider Figure 5.5 which shows the two different views

of the same DTN at node A. While the left graph is formed using the standard

network model where the link weights (after the first hop) are intermeeting times,

the right one is formed by the network model proposed in previous section. From

the left graph, we conclude that SP(A, D) is <A,B,D>. Thus, it is expected that

on average a message from node A will be delivered to node D in 40 time units.

However, this might be an overestimation because the actual delay might be smaller

due to the correlation between the meetings of B with A and D. As w(C, D) states

in the right graph, node C can have a smaller conditional intermeeting time (than

the standard intermeeting time) with node D assuming that it has met node A. In

other words, node C can compute its faster transfer capability of messages (received

from node A) to node D. Hence, in the right graph, CSP(A, D) is <A,C,D> with

the path cost of 30 time units. As a result, node A decides to send a message to

node D over C.

Each node forms the DTN using the aforementioned network model and col-

lects the standard and conditional intermeeting times of other nodes via epidemic

link state protocol as it is described in the original study [83]. However, once the

weights are known, it is not as easy to find CSPs as it is to find SPs. Consider

Figure 5.6 where the CSP(A, E) follows path 2 and CSP(A, D) follows <A,B,D>.

84

EA D

C

Path 1

Path 2

B

Figure 5.6: Path 2 may have smaller conditional delay than path 1 even
though CSP from A to D is through B.

This situation is likely to happen in a DTN, if τD(E|B) ≥ τD(E|C) is satisfied.

Running Dijkstra’s or Bellman-Ford algorithm on the current graph structure can-

not detect such cases and concludes that CSP(A, E) is <A,B,D,E>. Therefore, to

obtain the correct CSPs for each source destination pair, we propose the following

transformation on the current graph structure.

Given a graph G = (V,E), we obtain a new graph G′ = (V ′, E ′) where:

V ′ ⊆ V × V and E ′ ⊆ V ′ × V ′ where,

V ′ = {(ij) | ∀j ∈ N(i)} and E ′ = {(ij, kl) | i = l}

where, w′(ij, kl) =

τi(k|j) if j 6= k

τi(k) otherwise

Notice that the edges in Eb (in G) are made directional in G′. Also, the unidirectional

edges (Eu) between the same pair of nodes in G are separated in E ′. This graph

transformation keeps all the historical information that conditional intermeeting

times require and also keeps the paths only with a valid history. For example, for

path <A,B,C,D> in G, an edge like (CD, DA) does not exist in G′. Hence, only

the correct τ values will be added to the path calculation. To solve the conditional

shortest path problem however, we add one vertex for source S (apart from its

permutations) and one vertex for destination node D. We also add outgoing edges

from S to each vertex (iS) ∈ V ′ with weight ℜS(i|t). Furthermore, for the destination

node, D, we only add incoming edges from each vertex ij ∈ V ′ with weight τi(D|j)

85

BA

BC

CA

CB

AB

AC

DA

A(D|t)

A(C|t)

A(B|t)

C

(C | B)

C(B | A)

(D | B)

A

B(A | C)

A
(D | B)

A(D | C)

B
(D | C)

C
(D | A)

B
(D | A)

A

A

B C

D

Source

Destination

A, B, C and D all meet with each other

R

R

R

T

T

T

T

T

T

T

T

T

Figure 5.7: Graph transformation to solve CSP with 4 nodes where A is
the source and D is the destination.

and from S with weight ℜS(D|t).
In Figure 5.7, we show a sample transformation of a clique of four nodes to

the new graph structure. In the initial graph, all mobile nodes A to D meet with

each other, and we set the source node to A and destination node to D (we did not

show the directional edges in the original graph for brevity). Note that we set any

path to begin with A on transformed graph G′, but we also put the permutations

of A, B and C with each other.

Running Dijkstra’s shortest path algorithm on G′ given the source node S and

destination node D will give the shortest conditional path. In G′, |V ′| = O(|V |2)
and |E ′| = O(|V 3|) = |E|3/2, and therefore Dijkstra’s algorithm will run in O(|V |3)
(with Fibonacci heaps) while computing the original shortest paths (with standard

intermeeting times) takes O(|V |2).
Using conditional intermeeting times instead of standard intermeeting times

only requires (over original design) extra space to store the conditional intermeeting

times and additional processing, as complexity of running Dijkstra’s algorithm in-

creases from O(|V |2) to O(|V |3). We believe that in current DTNs, wireless devices

have enough storage and processing power not to be unduly taxed with such an

increase. Moreover, to lessen the burden of collecting and storing link weights, an

86

B
C
5

A
6

C
13

C
15

C
18

A
21

C
29

C
33

A
36

C
46 time

A B C

0

Figure 5.8: A sample case showing how the conditional intermeet-
ing time can be bigger than standard intermeeting time.
Here, while τB(C) = 6.83, τB(C|A) = 8.33. This makes
|CSP(A,C)| >|SP(A,C)|.

asynchronous and distributed version of the Bellman-Ford algorithm can be used,

as described in [58].

For conditional shortest paths, an interesting case may arise. For some source-

destination pairs, the length of CSP can be longer than the length of SP if the

conditional intermeeting time values between the nodes on the path are bigger than

the standard intermeeting time values. For instance, consider Figure 5.8 where the

meetings of a node B with its neighbor nodes A and C are shown. Here, node B

concludes that τB(C) = 6.83 and τB(C|A) = 8.33. Then, node A finds a CSP with

longer delay than SP. Although our algorithm may generate such CSPs and this

may result in using a path longer than the SP between the two nodes, in reality this

does not cause our algorithm to perform worse than the algorithms using SPs. This

is because the goal in DTNs is to route messages with minimum delay and a node

receiving a message from one of its neighbors relays the message to another neighbor

after an average time equal to the conditional intermeeting time of this node with its

neighbors. Shortest paths formed by standard intermeeting times between nodes do

not consider the arrival times of messages at nodes and underestimate the delay on

source-destination path. Therefore, an SP from a source to destination with shorter

but inaccurate delay causes the message follow a non-optimal path and increases

the delivery delay. Our simulations in the next section confirm this conclusion.

87

5.3.2 Metric-based Forwarding Algorithms

5.3.2.1 Overview

A common method of routing in DTNs is to forward the message to the en-

countered node that is more likely to meet with destination than the current message

carrier. However, making effective forwarding decisions in single-copy based rout-

ing in DTNs is a challenging task. When two nodes meet, one of them forwards a

message to the other one if it decides that the message will have a higher chance to

be delivered to the destination at the other node.

In previous work, depending on the observed contact history between nodes,

several metrics have been used to define the delivery quality of nodes. Some of the

popular ones are encounter frequency [25], time elapsed since last encounter [64, 66],

residual time [59], social similarity [68, 48] and location similarity [84]. For example,

in Prophet [25], messages are forwarded to the nodes that meet with the destination

more frequently.

5.3.2.2 Proposed Revision

In most of the previous work, meetings of a node with other nodes are assumed

independent from each other and the forwarding decision at the encounter of two

nodes is made depending on their individual relations with the destination node. In

some algorithms such as [25, 66], with additional processing (i.e. applying transi-

tivity) on pairwise meetings, more accurate metrics are used to reflect the effect of

other nodes on the delivery quality of a node. However, these improvements can

also be applied to all other metrics, including the one introduced in this chapter.

Our contribution is the introduction of a new metric having this property by default

in its basic definition.

To make forwarding decisions of these algorithms more effective, thus to im-

prove their performance, we propose to use conditional intermeeting time as an

additional delivery metric. That is, when two nodes meet, they will also compare

their conditional intermeeting times with destination (depending on the condition

that they met each other). If the current carrier of the message learns that other

node also has a shorter remaining time (according to conditional intermeeting time)

88

to meet the destination than itself, the message is forwarded. At first glance, this

additional condition seems to cut down the number of times the message is for-

warded so that the probability of delivery will be reduced. However, as simulation

results show, the necessary number of hops are preserved and the less beneficial

ones are not performed. Therefore, more effective forwarding decisions are made so

that the cost of message delivery declines while the delivery ratio and average delay

are maintained (in some cases, even the delivery ratio increases and average delay

decreases).

5.4 Performance Evaluation

To evaluate the performance of proposed modifications of algorithms, we used

our Java based custom DTN simulator. It uses either the traces of real objects from

real DTN environments or the traces which are built synthetically. The network

parameters (number of nodes etc.) are set according to the traces used.

5.4.1 Algorithms in Comparison

In simulations, we compared existing DTN algorithms with their modified

versions that utilize conditional intermeeting time in their designs. In the first

part, we compared Shortest Path Routing (SPR) with Conditional Shortest Path

Routing (CSPR) which is described in Section 5.3.1.3. Then in the second part,

we compared the existing and revised versions of two metric-based DTN routing

algorithms: Prophet [25] and Fresh [64]. In Prophet, when two nodes, A and B,

meet, A forwards its message to B if and only if its delivery probability to destination

D is smaller than B’s delivery probability. In Fresh, A forwards the message to

B only if B has a more recent meeting with destination D than itself. In the

revised versions of these algorithms (we refer to them as C-Prophet and C-Fresh to

underline that they use conditional intermeeting time), A forwards the message to

B if τA(D|B) > τB(D|A) is also satisfied (in addition to algorithm’s own forwarding

condition). Although we obtained results (showing performance improvement) with

many metric-based algorithms (including [59]), we show only the results of two

benchmarking algorithms for brevity. However, we give also the results obtained by

89

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time (min)

M
e

s
s
a

g
e

 d
e

liv
e

ry
 r

a
ti
o

SPR
CSPR
Epidemic

(a) RollerNet Traces

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time (day)

M
e

s
s
a

g
e

 d
e

liv
e

ry
 r

a
ti
o

SPR
CSPR
Epidemic

(b) Cambridge Traces

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time (day)

M
e

s
s
a

g
e

 d
e

liv
e

ry
 r

a
ti
o

SPR
CSPR
Epidemic

(c) Haggle Project Traces

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Time units

M
e

s
s
a

g
e

 d
e

liv
e

ry
 r

a
ti
o

SPR
CSPR
Epidemic

(d) Synthetic Data

RollerNet Cambridge Haggle Synthetic
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
ve

ra
ge

 c
os

t p
er

 m
es

sa
ge

SPR
CSPR

(e) Average Cost

RollerNet Cambridge Haggle Synthetic
0

0.1

0.2

0.3

0.4

0.5

0.6

R
ou

tin
g

E
ffi

ci
en

cy

SPR
CSPR

(f) Routing Efficiency

Figure 5.9: Comparison of SPR and CSPR: Message delivery ratio (a-d),
Cost (e) and Routing Efficiency (f) vs. time.

90

Epidemic Routing [22] since it achieves the optimum delivery ratio and delay (at

high cost, however).

5.4.2 Data Sets

5.4.2.1 Real DTN Traces

We used the following three real DTN traces from the crawdad archive [87]:

• RollerNet [45] traces include the opportunistic sightings of Bluetooth devices

distributed to 62 rollerbladers in the 3 hour roller tour of Paris on August 20,

2006.

• Cambridge Dataset [86] includes a number of traces from Bluetooth sight-

ings by 36 students from Cambridge University who were asked to carry the

iMotes with them at all times for the duration of the experiment that started

on October 28, 2005 and ended on December 21, 2005.

• Haggle Project Dataset [89] consists of many traces from different experi-

ments. We selected the Bluetooth sightings recorded between the iMotes car-

ried by 41 attendants of Infocom 2005 Conference held in Miami. Devices were

distributed on March 7th, 2005 between lunch time and 5pm and collected on

March 10th, 2005 in the afternoon.

5.4.2.2 Synthetic Mobility Traces

We also generated synthetic mobility traces using a community-based mobility

model which is similar to the models in [25, 44, 94]. In a 1000 units by 1000

units square region, we generated Nc randomly located non-overlapping community

regions (home, work, school etc.) of size 100 units by 100 units and distributed

Np nodes (i.e. people) to these community regions. For each node, we randomly

assigned V communities to visit (i.e. commonly visited places for a person in a day).

Each node first selects a random point within the next community region in its list,

assigns a random speed in range [Vmin, Vmax] and moves towards the target point

with that speed. Once it reaches that point, it randomly assigns a visit duration in

range [Tmin, Tmax] and randomly walks within the community region for that visit

91

duration. Once that duration expires, it moves to the next community in its list

in a similar way. Each node visits all the communities in its list as indicated, then

once all of them are done (i.e. end of day), they again start the same process and

start visiting the communities in their list. While nodes are moving, we record the

meetings between nodes assuming they have a transmission range of R. The default

values for the parameters are Nc=10, Np=50, V =5, Vmin=10 units, Vmax=50 units,

Tmin=20 time units, Tmax=50 time units. However, we also looked at the effects of

different values of parameters in simulations.

5.4.3 Performance Metrics

We use the following three metrics to compare the algorithms: message de-

livery ratio, average cost, and routing efficiency. Delivery ratio is the proportion

of messages that are delivered to their destinations among all messages generated.

Average cost is the average number of forwards (hop counts) done per message be-

fore delivery. Finally, routing efficiency [90] is defined as the ratio of delivery ratio

to the average cost. In the results, we did not give separate plots for delivery delay

because they can be obtained from the delivery ratio plots.

5.4.4 Simulation Results

To collect several routing statistics, we have generated traffic on the afore-

mentioned traces. For each simulation run, after a warm up period, we generated

5000 messages from a random source node to a random destination node at each t

seconds. In RollerNet, since the duration of experiment is short, we set t = 1s, but

for Cambridge and Haggle data sets, we set t = 1min and t = 30s, respectively. For

synthetic trace, we set t = 10 time units. Besides this single difference, we compare

all algorithms in the same conditions.

For main simulations, we assume that the nodes have enough buffer space to

store every message they receive, the bandwidth is high and the contact durations

of nodes are long enough to allow the exchange of all messages between nodes15.

These assumptions are reasonable in view of capabilities of today’s technology and

15We also performed simulations with limited resources and different values for parameters and
present these results later.

92

are also used commonly in previous studies [85, 51]. Any change in the current

assumptions is expected to affect the performance of compared algorithms in the

same way since they use one copy of the message. Moreover, we used a simplified

slotted CSMA MAC model as in [47]. We ran each simulation 10 times with different

seeds and in each run, we collect statistics by running each algorithm on the same

set of messages. All results plotted in figures show the averages of results obtained

in all runs.

5.4.4.1 Comparison of CSPR and SPR

Figure 5.9a shows the delivery ratios achieved in CSPR and SPR algorithms

with respect to time (i.e. TTL of messages) in RollerNet traces. Clearly, CSPR

algorithm delivers more messages to their destinations than SPR algorithm. More-

over, it achieves lower average delivery delay than SPR algorithm. For example,

CSPR delivers 80% of all messages after 17 minutes with an average delay of almost

6 minutes, while SPR achieves the same delivery ratio only after 41 minutes and

with an average delay of 12 minutes. Moreover, as it is shown in Figure 5.9e, average

costs in SPR and CSPR are very close (1.48 and 1.52 respectively) to each other

(and much smaller than the average cost in epidemic routing which is around 25).

We also observe better delivery ratios achieved by CSPR algorithm in Cam-

bridge and Haggle traces in Figure 5.9b and Figure 5.9c, respectively. In Cambridge

traces, after 6 days, CSPR delivers 78% of all messages with an average delay of

2.6 days, however SPR can only deliver 62% of all messages to their destination

with an average delay of 3.2 days. Moreover, average costs in SPR and CSPR are

1.73 and 1.78 respectively while it is around 16 in epidemic routing. Similarly, in

Haggle traces, with an average cost close to each other, CSPR delivers 87% of all

messages by the end of simulation whereas SPR can only achieve 78% delivery ratio.

The results with synthetic data in Figure 5.9d also support the results based on real

traces. While SPR delivers 65% of messages, CSPR delivers 82% of them when TTL

of messages is set to 500 time units.

Figure 5.9f compares the routing efficiency of SPR and CSPR in all four traces.

It shows an increase of 10%-22% in routing efficiency with the usage of conditional

93

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time (min)

M
e

s
s
a

g
e

 d
e

liv
e

ry
 r

a
ti
o

Prophet
C−Prophet
Fresh
C−Fresh
Epidemic

(a) Message delivery ratio vs. time

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

Time (min)

A
v
e

ra
g

e
 C

o
s
t

Prophet
C−Prophet
Fresh
C−Fresh

(b) Average cost vs. time

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (min)

R
o

u
ti
n

g
 E

ff
ic

ie
n

c
y

Prophet
C−Prophet
Fresh
C−Fresh
Epidemic

(c) Routing Efficiency vs. time

Figure 5.10: Comparison of metric-based forwarding algorithms using
RollerNet traces

intermeeting times. However, if we compare the percentage of undelivered messages

in these algorithms that are delivered in Epidemic routing, we can observe a higher

performance increase. For example in Haggle traces, Epidemic routing delivered

94% of all messages. CSPR lost only 7% of these messages, while SPR lost 16% of

them. Hence, CSPR achieved more than 55% improvement over SPR.

These results show that in the context of routing, conditional intermeeting

time provides more accurate link costs than standard intermeeting time. Therefore,

in CSPR, more effective paths with similar average hop counts are selected during

the routing of a message towards the destination. Thus, higher delivery ratios with

lower end-to-end delays are achieved. In SPR and CSPR algorithms here, we used

source-routing [82] and let the messages follow the paths which are decided at the

source nodes. We also observed similar results in our simulations with other routing

94

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Time (day)

M
e

s
s
a

g
e

 d
e

liv
e

ry
 r

a
ti
o

Prophet
C−Prophet
Fresh
C−Fresh
Epidemic

(a) Message delivery ratio vs. time

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

Time (day)

A
v
e

ra
g

e
 C

o
s
t

Prophet
C−Prophet
Fresh
C−Fresh

(b) Average cost vs. time

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

Time (day)

R
o

u
ti
n

g
 E

ff
ic

ie
n

c
y

Prophet
C−Prophet
Fresh
C−Fresh
Epidemic

(c) Routing Efficiency vs. time

Figure 5.11: Comparison of metric-based forwarding algorithms using
Cambridge traces

approaches (per-hop and per-contact routing).

5.4.4.2 Comparison of revised and original versions of metric-based al-

gorithms

In Figure 5.10a, we show the delivery ratios achieved in RollerNet traces.

Clearly, the modified algorithms provide higher delivery ratio than the original ones.

Moreover, as Figure 5.10b shows, average cost is lower for the modified versus the

original algorithms. For example, C-Prophet delivers 90% of all messages after 23

minutes with average delay of 7.8 minutes and average cost of 4.83 hops. However,

the original Prophet reaches the same delivery ratio only after 33 minutes with

average delay of 13.5 minutes and 17.02 average cost. A similar situation is also

observed between C-Fresh and Fresh. As a result, more than 100% increase in

95

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time (day)

M
e

s
s
a

g
e

 d
e

liv
e

ry
 r

a
ti
o

Prophet
C−Prophet
Fresh
C−Fresh
Epidemic

(a) Message delivery ratio vs. time

0.5 1 1.5 2
0

5

10

15

20

Time (day)

A
v
e

ra
g

e
 C

o
s
t

Prophet
C−Prophet
Fresh
C−Fresh

(b) Average cost vs. time

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (day)

R
o

u
ti
n

g
 E

ff
ic

ie
n

c
y

Prophet
C−Prophet
Fresh
C−Fresh
Epidemic

(c) Routing Efficiency vs. time

Figure 5.12: Comparison of metric-based forwarding algorithms using
Haggle Project traces

routing efficiency is achieved.

When we look at the results obtained from Cambridge and Haggle traces in

Figure 5.11 and Figure 5.12, we observe a different improvement. As it is seen in

Figure 5.11a and Figure 5.12a, revised and original versions of algorithms have sim-

ilar delivery ratios (and therefore similar average delays). However, as Figure 5.11b

and Figure 5.12b show, average costs in modified versions are lower than they are in

the original ones. Moreover, in Cambridge traces, the mean hop counts of Prophet,

C-Prophet, Fresh and C-Fresh are 5.21, 2.48, 3.83 and 2.53, respectively and in

Haggle traces, they are 12.7, 4.98, 5.23 and 3.44. This shows that when conditional

intermeeting time is used as an additional delivery metric, the nodes choose better

next hops so that the cost is decreased while still keeping the original delivery ratio.

Therefore, again more than 100% gain is achieved in routing efficiency. The results

96

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Time units

M
e

s
s
a

g
e

 d
e

liv
e

ry
 r

a
ti
o

Prophet
C−Prophet
Fresh
C−Fresh
Epidemic

(a) Message delivery ratio vs. time

0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

Time units

A
v
e

ra
g

e
 C

o
s
t

Prophet
C−Prophet
Fresh
C−Fresh

(b) Average cost vs. time

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (day)

R
o

u
ti
n

g
 E

ff
ic

ie
n

c
y

Prophet
C−Prophet
Fresh
C−Fresh
Epidemic

(c) Routing Efficiency vs. time

Figure 5.13: Comparison of metric-based forwarding algorithms using
Synthetic Data

with synthetic data in Figure 5.13 also demonstrates the superiority of revised algo-

rithms. More messages are delivered with lower cost when compared to the original

algorithms.

From the above results, we observe the benefit of conditional intermeeting time

in metric-based forwarding algorithms clearly. Moreover, we also notice that in dif-

ferent environments, the improvements obtained thanks to utilization of conditional

intermeeting times are different. In RollerNet and synthetic traces, we observed im-

provement in all metrics. However, in Cambridge and Haggle traces we observed an

improvement only in average cost, thus, in routing efficiency. From our initial anal-

ysis of the traces, we conclude that this is caused by the repetitive contacts between

objects in RollerNet and synthetic traces. For example, as it is stated in [45], during

the tour, fluctuations in the motion of the rollerbladers cause a typical accordion

97

1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

Buffer space (messages)

P
e

rc
e

n
ta

g
e

 I
n

c
re

a
s
e

 i
n

 R
o

u
ti
n

g
 E

ff
ic

ie
n

c
y

Message generation interval = 3 time units

SP −> CSP
Prophet −> C−Prophet
FRESH −> C−FRESH

(a) Percentage of increase in routing efficiency
vs. buffer space

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

Message generation interval (time units)

P
e

rc
e

n
ta

g
e

 I
n

c
re

a
s
e

 i
n

 R
o

u
ti
n

g
 E

ff
ic

ie
n

c
y

Buffer space = 3 messages

SP −> CSP
Prophet −> C−Prophet
FRESH −> C−FRESH

(b) Percentage of increase in routing efficiency
vs. message generation interval

30 35 40 45 50 55 60 65 70
0

100

200

300

400

500

600

700

Total node count

P
e

rc
e

n
ta

g
e

 I
n

c
re

a
s
e

 i
n

 R
o

u
ti
n

g
 E

ff
ic

ie
n

c
y

Message generation interval = 10 messages, Unlimited buffer

SP −> CSP
Prophet −> C−Prophet
FRESH −> C−FRESH

(c) Percentage of increase in routing efficiency
vs. total node count

Figure 5.14: Effects of parameters on simulations with synthetic data.

phenomenon (the topology expands and shrinks with time). When the topology

shrinks, nodes are in contact with each other, but when the topology expands, they

are disconnected. This property in the contacts of nodes creates a cyclic behav-

ior and lets the proposed algorithms perform better. Similarly in synthetic traces,

people are assigned outer communities to visit regularly, thus repetitive mobility

behaviors occur. On the other hand, in Cambridge and Haggle traces, the repetitive

behavior of node meetings is not apparent. From these results, we conclude that the

benefit of using conditional intermeeting times in metric based algorithms becomes

more pronounced in the environments in which the repetitive motion of nodes is

clearly observed. However, even in the environments where this is not the case,

average cost of routing can still be decreased and routing efficiency can be improved

remarkably thanks to use of conditional intermeeting times.

98

5.4.4.3 Effects of Simulation Parameters on Results

We also look at the effects of some parameters on the results. Since the effects

are turned out to be similar on each data set, here we show the results with only

synthetic traces.

First, we look at the scenarios where the buffer space at nodes are limited.

Assuming that nodes use FIFO buffer management scheme, we computed the in-

crease obtained in the routing efficiency via utilization of proposed metric over the

original algorithms in these environments. Figure 6.17 shows the results for different

buffer sizes in the range of [1-5] messages. For these simulations we kept the message

generation interval, t=10 time units and TTL=1000 time units. The results show

that in the modified versions of algorithms, the increase in the routing efficiency

grows as the buffer space increases. Moreover, the amount of increases converge to

some constant values after sufficient buffer spaces. CSP, C-Prophet and C-Fresh

offers 20%, 100% and 500% increase in the routing efficiency over their original

algorithms, respectively.

In Figure 5.14b, we observe similar results with different message generation

intervals. As the messages are generated more frequently, due to buffer overflow,

some messages are lost. However, the routing efficiency of algorithms is still re-

markably increased with modified versions. Finally, in Figure 5.14c, we observe the

results with different node counts in the network. Clearly, the increase in routing

efficiency rises as the node count increases. This is because in synthetic data, the

correlation between the meetings of nodes increases due to higher number of nodes

in each community. Thus, conditional intermeeting time provides more accurate

information about node relations.

The results with different values of simulation parameters show that the im-

provement achieved in the performance of algorithms with the utilization of the

proposed metric is solid and valid with different settings. Other than the above

parameters, we also performed simulations with different bandwidth, failure rate,

speed ranges for nodes etc. All of these results still show the better performance of

revised versions of the algorithms over the original ones with a remarkable increase

in routing efficiency.

99

5.5 Summary of Contributions

In this chapter, we studied the effect of correlated mobility in single-copy

based DTN routing algorithms. First, inspired by the results of the recent studies

showing that intermeeting times between nodes are not memoryless and the motion

patterns of mobile nodes are frequently repetitive, we introduced a new metric called

conditional intermeeting time which is the average time that passes from the time

a node meets with a neighbor node until the time it meets another one. Next,

we presented an analysis of this metric showing why it can be beneficial in more

accurate representation of node relations. Then, we looked at the effects of this

metric on existing DTN routing algorithms. To this end, we modified their current

designs using conditional intermeeting time. Finally, through extensive simulations

based on both the real DTN traces and synthetic mobility traces, we evaluated the

modified algorithms and demonstrated the superiority of them over original ones.

As a future work of our study, we would like to extend the definition of con-

ditional intermeeting time by using more meetings from the contact history. For

instance, assume that a node A wants to compute its conditional intermeeting time

with a node B after the time it has met another node C. Here, we want to differen-

tiate the following two cases which are considered together in our current approach;

when node A has met node D before node C and when node A has met node E

before node C. To apply this algorithm in our work, we plan to use probabilistic

context free grammars (PCFG) and utilize the construction algorithm presented

in [57, 54].

CHAPTER 6

EXPLOITING SOCIAL RELATIONS FOR EFFICIENT

DTN ROUTING

Although there are remarkable amount of studies proposing routing algorithms for

DTNs, very few of them take into account the effect of social structure of the network

or the social relations between nodes on the design of the routing algorithms. It is

always noted in many studies (i.e. [44]) that the mobility of nodes in a mobile (social)

network and the interactions between nodes is not purely random and homogeneous

but it is somewhat a mixture of homogeneous and heterogeneous behaviors. In

other words, in a real mobile network, we always see grouping of nodes into classes

or communities such that the nodes within the same community behave similarly

and the nodes from different communities show different behaviors.

Consider a Pocket Switched Network (PSN) [61] which is a kind of social

network in which people are intermittently connected via different wireless devices

including cell phones and GPS devices. The connectivity among these human-

carried devices (i.e. people) is achieved when they get into the range of each other.

In a social network, the relationship defining the connectivity frequency among

the nodes can be various interdependencies including friendship, trade and status.

Therefore, for an efficient routing of messages in such networks, the mobility of

nodes and the underlying community structure among the members of the whole

society has to be carefully considered. For example consider a high school network.

Students in the same class have higher chance to see (so to transfer data) each

other than the students from other classes (i.e. they can probably meet only during

breaks).

In this chapter, we study the routing problem in people-centric DTNs (i.e.

mobile social networks, pocket switched networks) considering the social network

concepts.

In the first section, we study the effect of the social structure of DTNs in

Spray and Wait routing and show that making routing decisions considering the

100

101

Figure 6.1: A sample social network structure with five communities.
Each community has different inner and inter-community
meeting rates.

inner structure of the network increases the performance of routing [75]. More

specifically, we discuss the problem of selecting the nodes to which the message is

replicated in social (community-based) delay tolerant networks in which the nature

of standard delay tolerant networks changes because of the heterogeneous inter-

meeting time between the nodes in the network (Note that, a homogeneous network

model is used in chapter 3 and in [37]).

In the second section, we analyze the real DTN traces and utilize social rela-

tions between nodes and introduce a friendship based routing algorithm [70]. First,

inspired by the properties of friendship relations between people, we define a new

metric to understand social relations between nodes more properly. Second, we pro-

pose a local community formation algorithm based on this new friendship detection

metric. We use not only direct relations but also indirect ones in a different way

than it was considered previously. Third, we introduce a new approach to handle

periodic changes of node relations.

102

6.1 Impact of Social Structure on Spray and Wait Routing

6.1.1 Network Model and Assumptions

To illustrate the general picture of communities in a social network, we use

the following model. Assume that there are m communities (C1 to Cm) in the

whole network and there are Ni nodes in community Ci. Moreover, assume that the

nodes in community i get contact with the nodes in community j with an average

intermeeting time of βij (for simplicity βi = βii). In other words, they find chance to

exchange their data in every βij time units on the average (they contact each other

after each t time units where t is an exponential distributed with mean βij). Here

note that the nodes within the same community are considered identical in terms

of meeting behavior with other nodes, but the nodes from different communities

are considered having different behaviors. Accordingly, both the homogeneity and

the heterogeneity structures are embedded into the network structure. A sample

network with five communities is shown in Figure 6.1.

The beauty of this model is that it successfully monitors the general behavior

of nodes in community-based social networks. It avoids dealing with individual

behaviors of nodes and provides only the average intermeeting time of nodes both

inside and outside the community. Consider the examples of real life PSN scenarios.

Nodes get in contact with each other depending on their relations in the society.

Moreover, this contact times may sometimes happen unpredictably. However, even

in such cases, we claim that on the average there may occur stable intra- and inter-

community intermeeting values in the whole network and these can be found using

the histories of node meetings [67].

6.1.2 Challenges and Tradeoff of Efficient Routing

In multi-copy based routing algorithms, the main goal is to deliver a message

in a source node s to a destination node d by generating multiple copies of the

message and spreading them to different nodes in the network. Once one of the

copies is delivered, the message itself is delivered. Clearly, the number of copies

generated and distributed to the network defines the characteristics (i.e. delay,

cost) of the delivery. This is also the main reason of why researchers always have

103

focused on the design of routing algorithms with efficient number of copies of the

message.

It is obvious that we can increase the delivery probability and decrease delivery

delay of a message, by just increasing the number of copies that will be distributed to

the network. However, we also need to distribute the copies by taking into account

the meeting frequencies between nodes (effect of community structure). Assume

that s has a message to deliver to d in the network. Furthermore, assume that s is

allowed to distribute at most L − 1 copies of the message to the other nodes (the

other nodes are not allowed to replicate the message). Therefore, once all copies of

the message are given to other nodes, the total number of copies in the network will

be L. The instant strategy that comes to mind is to allow s to give these copies

to the first L − 1 nodes that it meets in the network. By this way, the fastest

distribution of the copies is achieved and the waiting phase is immediately started

and the delivery of the message is attempted independently by any of the nodes

having the message copy. If s and d are in the same community, this strategy is

reasonable and works well especially in scenarios where the future node meetings

are unknown.

However, if s is not in the same community with the destination, this strategy

loses its effectiveness due to its copy distribution without considering the community

information. The copies may be given to nodes which have low chance to meet d,

thus to deliver the message. For example, consider a society with three communities

(source’s community (Cs), destination’s community (Cd) and another community

(Ce)). Moreover, assume that the intermeeting times between the nodes of each

community and different communities hold the following reasonable relations: βs =

βd = βe, βsd = βse = βde and βs << βsd. In this sample scenario, there are three

cases of message copying in terms of its effects on the copying and delivery time:

• s can give copies to nodes within its own community. Since it meets these nodes

more frequently than other nodes, the duration of message copy distribution

to these nodes takes less time than copying to Cd’s nodes. But, on the other

hand, since the nodes in Cs meet the nodes (i.e. d) in Cd less frequently

than Cs’s nodes, the probability of message delivery is lower, so that average

104

delivery delay gets longer.

• s can give copies to nodes that are in Cd. This provides less waiting for nodes

to meet d after they have copies. However, s meets with these nodes less

frequently than the nodes in Cs so that the copying phase is longer.

• s can give copies to nodes that are in Ce. Here, since s meets these nodes

infrequently and after the copying process is done, these nodes meet the des-

tination infrequently, giving copies to such nodes is not an efficient strategy

to reduce the delivery delay.

When we look at the above three cases, we figure out that the first and second

cases have tradeoffs in terms of copying and waiting durations. But the third case

has disadvantages during both the copying and waiting times. Therefore, an efficient

strategy to decrease the delivery delay must take into account the first two cases in

the distribution of message copies, but the number of copies used in either case must

be carefully decided to obtain the optimum delivery delay. In the next section, we

provide an analysis of delivery delay with different number of copies given to source’s

community (Lin) and destination’s community (Lout) in this sample scenario.

6.1.3 Analysis of Delivery

In this part, we will compute the expected delivery delay that can be achieved

in the network where the source node s gives the copies of the message either to the

nodes in Cs or Cd. For the sake of simplicity, we make the following assumptions.

Let N=n+1 denote the number of nodes in Cs and Cd (Ns=Nd=N). We know that,

on the average, s meets all other n nodes in its own community within βs time units.

Therefore, if we assume that the average time of meeting any other node is a single

time unit, then it follows that βs = n. Moreover we assume that βsd = kβs = kβd

where k > 1.

In this model, as it is seen in Figure 6.2, there are two independently running

processes by which delivery can happen:

Local Spraying: Source distributes Lin − 1 additional copies of the message (in

total there are Lin copies with the copy in s) to the other nodes that are in the same

105

Figure 6.2: Distribution of copies to source’s and destination’s commu-
nities.

community with itself (Cs). Then, each of these nodes can deliver the message to

the destination with probability 1
nk

in each time unit. Since from time i − 1 to i,

on the average, there are i16 nodes having the message copy in Cs, the total gained

probability of delivery by the nodes in Cs becomes i
nk

at time i. Here, note that the

case of direct delivery of the message (to d) by source is also included in this type

of delivery which occurs of course with the same probability.

Global Spraying: Source gives Lout = L− Lin copies of the message to the nodes

that are in the same community with destination (Cd). Then, each of these nodes

can deliver the message to the destination with probability 1
n

in each time unit. The

number of nodes having copy in Cd is zero at the beginning and on the average

source can give a copy to a node in Cd in every kth unit. As a result, we can assume

that in a time unit, there is only 1/k copies given to such nodes so that the total

probability of delivery by the nodes (in Cd) having copy becomes i−1
nk

(i.e. until time

1 it is zero).

Now, we will calculate both the probability of delivery and the expected deliv-

ery time of a message in such a network model. We need to combine the probabilities

of two processes in a time unit. One can easily see that there are three different

phases in the delivery process of the message. In the first (All Spraying), both the

16Here, we ignore the cases where s meets the nodes already having copy for simplicity. Since
we mostly study the cases where Lin << Ns, the effect of these cases on the total probability is
very low.

106

local and global spraying will continue and at each time unit the delivery probabil-

ity will be increased by both processes. In the second phase (Mixed), only one of

these processes will continue spraying, the other one will stop spraying and enter

waiting phase. Here, note that depending on the parameters Lin and k, either of

these processes can end up spraying before the other one. We need to consider this

in our calculation. Finally, in the third phase (All Waiting), both of these processes

stop spraying and run their waiting processes which means that they contribute to

the delivery probability with constant copy counts.

We can assume that local spraying ends before global spraying if the following

condition is satisfied:

Lin − 1 ≤ k(L− Lin) , so when

Lin ≤
k

k + 1
L +

1

k + 1

According to these observations, if local spraying ends before global spraying

(case A), then the delivery probability of a message in All Spraying phase can be

calculated as:

P1 =
Lin−1
∑

i=1

D′
1(i)

(

2i− 1

nk

)

, where

D′
1(i) =

i−1
∏

j=1

(

1− 2j − 1

nk

)

Here, 2i−1
nk

denotes the probability of delivering at the ith time unit and the

product term denotes the probability of not delivering before the ith time unit.

In the second phase (Mixed phase), since the local process finishes its spraying,

the probability of delivery at a time unit changes and the total delivery probability

becomes:

P2 =
k(L−Lin)
∑

i=Lin

C1D
′
2(i)

(

Lin + (i− 1)

nk

)

, where

D′
2(i) =

i−1
∏

s=Lin

(

1− Lin + (s− 1)

nk

)

107

C1 =
Lin−1
∏

j=1

(

1− 2j − 1

nk

)

In the All Waiting phase, since spraying of copies ends in both processes, then the

delivery probability is increased by a constant probability at each time unit. Hence,

the total delivery probability in the third phase is computed as:

P3 =
∞
∑

i=k(L−Lin)+1

C1C2D
′
3(i)

(

Lin + k(L− Lin)

nk

)

, where

D′
3(i) =

(

1− Lin + k(L− Lin)

nk

)i−k(L−Lin)−1

C2 =
k(L−Lin)
∏

s=Lin

(

1− Lin + (s− 1)

nk

)

But if the global spraying ends before local spraying (Case B) then the for-

mulations need to be updated due to changes in the boundaries between the three

phases:

P1 =
k(L−Lin)
∑

i=1

D′
1(i)

(

2i− 1

nk

)

P2 =
Lin
∑

i=k(L−Lin)+1

C1D
′
2(i)

(

k(L− Lin) + i

nk

)

P3 =
∞
∑

i=Lin

C1C2D
′
3(i)

(

Lin + k(L− Lin)

nk

)

where, D′
1(i) remains same as in above but D′

2(i), D′
3(i), C1 and C2 change as follows:

D′
2(i) =

i−1
∏

s=k(L−Lin)+1

(

1− k(L− Lin) + s

nk

)

D′
3(i) =

(

1− Lin + k(L− Lin)

nk

)i−Lin

C1 =
k(L−Lin)
∏

j=1

(

1− 2j − 1

nk

)

108

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
in

D
el

iv
er

y
Pr

ob
ab

ilit
y

Phase 1
Phase 2
Phase 3

Figure 6.3: Delivery probabilities when k = 5 and L = 10

C2 =
Lin
∏

s=k(L−Lin)+1

(

1− k(L− Lin) + s

nk

)

Using the above formulations, we can compute the average delivery probability

in each of the three phases separately. As an example, we calculated these prob-

abilities for two different configurations and plotted the results in Figure 6.3 and

Figure 6.4. While in the former graph (L, k) pair is assumed to be (10, 5), in the

latter they are assigned (15, 3) values (N=50). In both of these figures, note that,

the delivery probability in the first period has a maximum point which is obtained

at the biggest integer value of Lin that is less than the boundary value. That point

is also the optimum point for second period where the minimum probability value

is achieved. This is because the duration of second period gets smaller when Lin

gets closer to boundary point. It is also important to note that when Lin = 1, the

message is most probably (≈100%) delivered in the second phase (only global spray-

ing) but on the other hand, when Lin = L, the delivery probability in this mixed

phase (only local spraying) is much smaller than 100%. This is caused by the longer

duration of global spraying than local spraying (when Lin = 1 and Lout = L − 1)

which increases the delivery probability of the message (in Mixed period) by nodes

already having copy (in Cd) while source is still trying to distribute remaining copies

to the nodes in Cd (which of course takes longer).

The above formulations are to estimate the delivery probability in each of

the three phases. To estimate the expected delivery time in a period i, EDi, we

109

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
in

D
el

iv
er

y
Pr

ob
ab

ilit
y

Phase 1
Phase 2
Phase 3

Figure 6.4: Delivery probabilities when k = 3 and L = 15

simply multiply Pi by i. Then, summing these EDi values gives us the expected

delivery time in such a spraying algorithm. We will show the computed ED values

for the same (L, k) pairs used in the previous figures and validate the results with

simulations in the next section.

6.1.4 Simulation Results

We updated our Java-based DTN simulator to see the effects of different Lin

and Lout values. For our initial simulations, we work on a network where the mes-

sages are distributed to the nodes in either the source’s community or destination’s

community (we will work on more complex social network models in the future

work). That’s why we created a network with two communities where there are 50

mobile nodes in each community. We deploy the nodes onto a torus of the size 300

m by 300 m. All nodes are assumed to be identical and their transmission range is

set at R = 10 m. Nodes move according to random direction mobility model [44].

The speed of a node is randomly selected from the range [4, 13]m/s and its direction

is also randomly chosen. Then, each node goes in the selected random direction at

the assigned speed for an epoch duration. Each epoch’s duration is again randomly

selected from the range [8, 15]s. The meeting times of nodes are assumed to be in-

dependent and identically distributed (IID). Furthermore, we also assume that the

buffer space in a node is infinite and the communication between nodes is perfectly

separable, that is, any communicating pair of nodes do not interfere with any other

110

0 2 4 6 8 10

300

350

400

450

L
in

D
el

iv
er

y
tim

e

Analysis
Simulation

Figure 6.5: Simulation vs. analysis showing the expected delivery time
when k = 5 and L = 10

0 2 4 6 8 10 12 14 16
100

150

200

250

300

L
in

D
el

iv
er

y
tim

e

Analysis
Simulation

Figure 6.6: Simulation vs. analysis showing the expected delivery time
when k = 3 and L = 15

simultaneous communication. We used different values of k to see its effect on the

performance of the algorithm. To simulate nodes from different communities (Cs

and Cd) which meet each other in every βsd = kβs time units on the average, we

ignored the first k − 1 meetings of such node pairs and treated the kth meeting as

a real meeting (here note that average meeting time between two encounters of any

pair of nodes is βs or βd).

We have created messages at a randomly selected source node for delivery to

a randomly selected destination node in the other community. Then, we collected

some useful statistics from the network. The results are averaged over 3000 runs.

First of all, to validate the analysis computation of average message delivery

111

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

k
A

ve
ra

ge
 D

el
iv

er
y

D
el

ay

Community−based Spraying
Normal Spraying

Figure 6.7: Average delivery delay with different k values when L = 10

delay, we did simulations with two different (L, k) pairs. Figure 6.5 and Figure 6.6

show the comparison of analysis and simulation results in terms of average delivery

delay when (10, 5) and (15, 3) pairs are used, respectively. Since a single time unit

is defined differently in our analysis, we adjusted results of the analysis accordingly.

From these two graphs, we observe that the analysis and simulation results are

matching, proving the correctness of the analysis.

We have also compared two spraying strategies: 1) Community based spraying

where the Lin and Lout (in total L) values are set such that the minimum delay is

achieved 2) Normal spraying algorithm [37] in which copies are given to the first

L − 1 nodes met by the source node. Figure 6.7 and Figure 6.8 show the average

message delivery delay and average message copy count (and therefore the cost)

achieved in both algorithms with different k values when L = 10. It is clear that,

as k increases, the difference of delivery delay obtained in both algorithms gets

bigger. Furthermore, community based spraying algorithm also outperforms normal

spraying algorithm in terms of used copy count per message (when k = 8, the

improvement is around 15%). Since in the former, the distribution of copies to

other nodes is designed considering the community structure in the network, we get

improvements in both of these metrics.

112

0 1 2 3 4 5 6 7 8 9
6

7

8

9

10

11

12

k
A

ve
ra

ge
 C

op
y

C
ou

nt

Community−based Spraying
Normal Spraying

Figure 6.8: Average copy count used per message with different k values
when L = 10

6.2 Utilizing Friendship Relations for Efficient Routing in

Mobile Social Networks

In this section, different from the previous section which worked on random

mobility models, we work on real DTN traces (especially mobile social networks

(MSN) which are special kind of DTNs where the nodes are carried by people) and

try to understand the social relations between nodes to be used in developing an

efficient single-copy based routing algorithm.

First, we define a new metric to understand social relations between nodes

more properly. Second, we propose a local community formation algorithm based

on this new friendship detection metric. We use not only direct relations but also in-

direct ones in a different way than it was considered previously. Third, we introduce

a new approach to handle periodic changes of node relations.

6.2.1 Analysis of Node Relations

The intermittent connectivity between nodes in an MSN makes the routing

of messages possible only in opportunistic manner. That is, message exchanges

occur only when two nodes come within the range of each other and one of them

assesses that the other has higher delivery chance than itself. Hence, the link quality

between each pair of nodes needs to be estimated accurately (from contact history)

to consider the possible forwarding opportunity arising from the encounter. As a

113

0 T
time

0 T
time

0 T
time

0 T
time

0 T
time

0 T
time

t1 t1 t2

t3 t3 t3

(a)

(b)

(c) (f)

(e)

(d)

Figure 6.9: Six different encounter histories between nodes i and j in
the time interval [0, T]. Shaded boxes show the encounter
durations between nodes.

result, the periodic encounters between nodes can be condensed to a single link

weight and the neighboring graphs of nodes can be constructed.

In previous works, several metrics, including encounter frequency, total or

average contact period and average separation period [76], were used to extract

the quality of links between pairs of nodes. However, all these metrics have some

deficiencies in accurate representation of forwarding opportunity arising from en-

counters between nodes. For example, consider the six different encounter histories

of two nodes, i and j, in Figure 6.9, where shaded boxes show encounter durations

between these nodes in the time interval T . In cases a and b, the encounter frequen-

cies are the same but the contact durations between nodes are longer in case b than

in case a. Hence, encounter pattern b offers better forwarding opportunities than a

does17. Comparing cases b and c, we notice that the contact durations are the same

but the encounter frequencies are different. Since frequent encounters enable nodes

to exchange messages more often, case c is preferable to case b for opportunistic

forwarding.

Among the previously proposed metrics, encounter frequency fails to represent

17It should be noted that the comparison of all configurations in terms of message exchange
opportunity obviously depends on the application scenario which defines the packet size. However,
without loss of generality, here we assume that the encounter durations are long enough for sending
of a packet.

114

the stronger link when cases a and b are considered, and the total contact duration

fails for cases b and c. Although average separation period can assign correct link

weights representing the forwarding opportunity in cases a, b and c, it fails in other

cases. When we compare cases c and d, both the contact durations and the en-

counter frequencies are the same. However, case c is preferred to d due to the even

distribution of contacts. In [76], preference of case c is achieved by utilizing irreg-

ularities in separation period as a penalty factor. However, deciding on how much

it will affect the link quality in different cases is still difficult. Furthermore, for the

cases such as e an f , average separation period fails to assign accurate link weights.

If t1 = t2, average separation period cannot differentiate between cases b and e but

case e is preferable due to its longer contact duration (average separation period

can even give preference to case b if t1 is slightly less than t2). Similarly, if t1 = t3,

average separation period cannot differentiate between cases b and f , even though

case b offers better forwarding opportunity.

To find a link metric that reflects the node relations (also the forwarding

opportunities) more accurately, we considered the following three behavioral features

of close friendships: high frequency, longevity, and regularity. In other words, for

two nodes to be considered friends of each other, they need to contact frequently

and regularly in long-lasting sessions. Here, frequency refers to average intermeeting

time while regularity refers to the variance of the intermeeting time. Hence, two

nodes may meet infrequently but regularly (e.g. once a week) and still be considered

friends. This is of course a weaker friendship than the one with both frequent and

regular contacts. The previous metrics take into account some of these features but

not all of them at the same time. We account for these properties in a new metric

that we called social pressure metric (SPM). It may be interpreted as a measure of

a social pressure that motivates friends to meet to share their experiences. In our

setting, this amounts to answering the question ‘what would be the average message

forwarding delay to node j if node i has a new message destined to node j at each

time unit when the time unit tends to zero (so the result is independent of time

units)?’. Then, we define the link quality (wi,j) between each pair as the inverse of

115

this value. More formally:

SPMi,j =

∫ T
t=0 f(t)dt

T
and wi,j =

1

SPMi,j

where f(t) represents the time remaining to the next encounter of the two nodes

at time t. If at time t, the nodes are in contact, then f(t) = 0, otherwise, f(t) =

tnext − t, where tnext is the time of the next meeting between nodes i and j. Hence,

each intermeeting time tinter contributes term t2inter/(2T) to SPM. If there are n

intermeeting times in the time period T , then SPMi,j =
(

∑n
x=1 t2inter,x

)

/(2T) and

wi,j = (2T)/
(

∑n
x=1 t2inter,x

)

.

The larger the value of wi,j, the closer the friendship (the higher the forwarding

opportunities) between nodes i and j. Clearly, increasing the time the nodes are

in contact decreases SPM as does equalizing the time between encounters. Finally,

splitting the intermeeting times into larger number of smaller pieces also decreases

the SPM. Hence, indeed, this metric combines the three desired properties of the

friendship behaviors discussed above into a single measure. To illustrate the benefits

of this metric, we notice that when it is used to evaluate all cases in Figure 6.9,

the resulting weights will accurately indicate which case offers more forwarding

opportunities. It should also be noted that SPM is computed from the history of the

encounters of the node. As additional node encounters happen, the corresponding

SPM value is updated easily.

6.2.2 Friendship Community Formation

Using its encounter history, each node can compute qualities (wi,j values) of its

links with other nodes. Then, it can define its friendship community as a set of nodes

having a link quality with itself larger than a threshold (τ). This set will include

only direct friends. However, two nodes that are not close friends directly (they even

may not have contacts at all) still can be close indirect friends. This happens if they

have a very close friend in common so that they can contact frequently through this

common friend. Moreover, the relations between nodes may show periodic changes.

For example, they could depend on the time of the day or the day of the week

considered. Therefore, both strong indirect relationships and periodic variations of

116

0 T
time

0 T
time

t

j j
i

j

j k k

a,2ta,1

tb,2

ta,3

k

j

k

tb,3tb,1

ta,4

Figure 6.10: Encounter history between nodes i and j (upper diagram)
and between nodes j and k (lower diagram) in the same time
interval [0, T].

relationships must be addressed when forming friendship communities.

6.2.2.1 Handling Indirect Relationships

To find indirect friendships between nodes in a way relevant for routing, we

propose to use relative SPM (or simply RSPM) metric. Consider the sample en-

counter history shown in Figure 6.10 in which the upper diagram shows the contacts

between nodes i and j, while the lower one shows the contacts between nodes j and

k. We define RSPMi,k|j as the answer to the question ‘what would be the aver-

age delivery delay of node i’s continuously generated messages if they followed the

path <i,j,k>?’. Each indirect information passing consists of two stages. The first

one starts at the last meeting of node i with node j and ends at the time node

i’s next contact with node j ends (assuming that any message generated at node i

can be transferred to node j when they are in contact). Here, if there are several

subsequent meetings with j before any meeting of j with k, then the last one is

considered. We denote duration of this stage as ta,x where x denotes the number of

indirect information passing occurring. During this stage, node i transfers messages

to node j. The second stage starts when the first one ends and it finishes when

node j meets node k. The duration of this session is denoted tb,x. During this stage,

the messages accumulated at j merely wait for the meeting with the destination

(without accumulating further at node j). Example is given in Figure 2, in which in

time T , there are three full information passing sessions between nodes i and k via

117

node j, and the beginning of the fourth one. Denoting the number of such sessions

as n, RSPMi,k|j is computed as:

RSPMi,k|j =

(

n
∑

x=1

∫ ta,x

0
(tb,x + ta,x − t)dt

)

/T

=

∑n
x=1(2tb,xta,x + t2a,x)

2T

Since the intermediate node, j, records all of its past contact times with i and

k, it can compute the value of RSPMi,k|j.

In Algorithms 6-8, we give the details of computation of SPM and RSPM

values from a node’s point of view. At the beginning, each node j initializes its

parameters as described in Algorithm 6. Then, when a new node m is encountered,

it updates the value of SPM [m] and for each of its other contacts, i, it updates

the value of RSPM [i][m] if node m is encountered first time after its meeting with

node i (Algorithm 7). When the meeting of a node with another node m ends, it

also updates the value of SPM [m] and sets the end time of current ta(m, k) and

start time of next tb(m, k) to the current time t for each of its other contacts k

(Algorithm 8).

Algorithm 6 initialize (node j)

1: for each i ∈ N and i 6= j do
2: cur total1[i] = 0
3: tend

pre (i) = 0
4: for each k ∈ N and k 6= j 6= i do
5: tstart

a (i, k) = 0
6: tend

a (i, k) = 0
7: cur total2[i][k] = 0
8: end for
9: end for

In an MSN, each node can detect its direct friendships from its own history

(by computing SPM values). However, to detect indirect friendships, a node needs

RSPM values from its friends. Once such RSPM values are received and updated

at the encounter times with its friends, each node can form its friendship community

118

Algorithm 7 neighborDetected (node m, time t)

1: tstart
cur (m) = t

2: nt = tstart
cur (m) - tend

pre (m)

3: cur total1[m] += nt(nt+1)
2

4: SPM [m] = cur total[m]/2t
5: for each i ∈ N and i 6= m do
6: tend

b (i,m) = t
7: if tend

a (i,m)> tstart
a (i,m) then

8: tb(i,m) = tend
b (i,m) - tstart

b (i,m)
9: ta(i,m) = tend

a (i,m) - tstart
a (i,m)

10: cur total2[i][m]+=2tb(i,m)ta(i,m)+(ta(i,m))2

11: RSPM [i][m] = cur total2[i][m]/2t
12: tstart

a (i,m)=tend
a (i,m)

13: end if
14: end for

Algorithm 8 neighborLeft (node m, time t)

1: tend
pre (m) = t

2: SPM [m] = cur total1[m]/2t
3: for each k ∈ N and k 6= m do
4: tend

a (m, k) = t
5: tstart

b (m, k) = t
6: end for

using the following definition:

Fi = {j | wi,j > τ and i 6= j} ∪

{k | wi,j,k > τ and wi,j > τ and i 6= j 6= k}

where wi,j,k = 1/RSPMi,k|j. The above equation enables nodes to detect their one-

hop direct and two-hop indirect friends. Indirect friendships can also be generalized

to friends more than two hops away. However, we have not included such extension

because [76] demonstrated that nodes in the same community are usually at most

two hops away from each other.

Clearly, the introduced method for detecting the indirect strong links between

nodes is different than previous approaches (based on transitivity [25, 46, 76]) which

basically consider the links between node pairs separately and assume a virtual link

between node i and k if wi,jwj,k > τ . However, in our model we can detect indirect

119

0 10 20 30 40 50 60 70 80 90
12am

3am

6am

9am

12pm

3pm

6pm

9pm

12am

Node ids

T
im

e
 fr

o
m

 th
e

 s
ta

rt
 o

f d
a

y

Meetings of Node 28 (MIT Trace)

0 10 20 30 40 50 60 70 80 90
12am

3am

6am

9am

12pm

3pm

6pm

9pm

12am

Node ids

T
im

e
 fr

o
m

 th
e

 s
ta

rt
 o

f d
a

y

Meetings of Node 56 (MIT Trace)

Figure 6.11: Encounter distributions of node 28 and 56 in MIT traces.

0 10 20 30 40
12am

3am

6am

9am

12pm

3pm

6pm

9pm

12am

Node ids

T
im

e
 fr

o
m

 th
e

 s
ta

rt
 o

f d
a

y

Meetings of Node 39 (Haggle Trace)

0 10 20 30 40
12am

3am

6am

9am

12pm

3pm

6pm

9pm

12am

Node ids

T
im

e
 fr

o
m

 th
e

 s
ta

rt
 o

f d
a

y

Meetings of Node 21 (Haggle Trace)

Figure 6.12: Encounter distributions of node 39 and 21 in Haggle traces.

relations more accurately. For example, if node j has a weak link with node k,

wi,jwj,k may be less than τ . However, if node j usually meets node k in a short

time right after its meeting with node i, our metric can still identify node k as a

friend of node i. This definition of indirect node relations is particularly meaningful

within the context of routing because a node receives a message from one of its

contacts and sends it to another contact. That is, it holds the message between

its contacts with two different nodes. Hence, this metric accurately estimates the

indirect opportunistic message exchange quality between two nodes.

6.2.2.2 Handling Periodic Variation in Node Relations

Node relations in an MSN often change with time periodically. Such periodic

changes must be addressed for accurate computation of link qualities between nodes.

120

When we analyzed two commonly used mobile social network data (MIT Reality

dataset [80] and Haggle dataset [89], see Section 6.2.4 for details), we have observed

periodic [79] variations in node relations.

In Figures 6.11 and 6.12, we plotted the distribution of encounter times of two

different nodes18 in each dataset with other nodes in their dataset. Clearly, nodes

encounter other nodes in some specific periods of the day. For example, in MIT

traces, node 28 meets with node 38 usually between 9am to 7pm while it meets with

node 48 usually between 1pm to 7pm. Similar behavior is also seen in Haggle traces.

Considering the fact that main activities of people are periodic, it is reasonable

to expect similar behaviors in other MSNs. For instance, i can be a school, work

or home friend of a node j and their encounter times then would differ accordingly.

Moreover, i can be both school and home friend of j in which case they stay together

during the entire day.

To capture the impact of temporal changes of node relations on the link quality,

previous works have proposed to use some aging mechanisms [25] [69]. However,

these mechanisms do not take into account the periodicity of node relations and

react slowly to temporal changes of link quality. For example, around 7pm, the

quality of link from node 56 to node 38 (see Figure 6.11) starts to decrease with

aging effect19 but still keeps a high value for some time. Yet, node 56 usually

does not meet with node 38 until 10am next day. Therefore, forwarding a message

considering an aged but still strong link quality may cause high delays when the

link is already in its periodic low.

To reflect the periodic variation of the strength of friendship, we propose to

use periodic friendship communities in our protocol. That is, each node i computes

its Fi for different periods of the day and has different friendship communities in

different periods. For example, if we divide a day into three hour periods, as shown

in Figure 6.11, node 85 can be the only friend of node 56 in period 3am-6am, whereas

nodes 28, 85 and 95 can be friends of node 56 in period 9pm-12am. In Haggle traces

(Figure 6.12), we also observe similar situations. While nodes 23, 24, 35 and 36 are

18These nodes are 28 and 56 in MIT traces, 39 and 21 in Haggle traces. We selected these nodes
because they are the ones with the highest number of encounters (with other nodes).

19wi,j = wi,jα
t where t is the time since the last encounter and 0 < α < 1 is aging parameter.

121

Algorithm 9 periodEventHandler (event e, node m, time t, time start index, time
end index)

1: tupd = update time(t, start index, end index)
2: if (Stack is not empty) then
3: if (value at top of Stack 6= tupd) then
4: if (Stack.size = 2) then
5: if (e is neighbor detection) then
6: t2 = Stack.pop()
7: t1 = Stack.pop()
8: neighborDetected(m, t1)
9: neighborLeft(m, t2)

10: else if (e is neighbor leaving) then
11: Stack.pop()
12: end if
13: end if
14: Stack.push(tupd)
15: else
16: if (Stack.size = 1) then
17: Stack.pop()
18: end if
19: end if
20: else
21: Stack.push(tupd)
22: end if

main friends of node 21 in period 9pm-12am, node 20 is its only friend in period

12am-3am. However, if an aging mechanism were used, these four nodes would

have still been considered good friends of node 21 in period 12am-3am because even

though the corresponding link weights were decreasing, they were still high enough

to indicate friendship. In Haggle traces, for some nodes, all of the contacts may be

squeezed into 9am-6pm range of work hours. However, with a careful look, one can

easily detect similar examples even within this time range (e.g. in Figure 6.12 (left),

node 11 is the friend of node 39 only from 9am to 1pm.).

To be able to compute its friendship community for each period, a node i first

needs to convert the time of its encounters to the local time of each period. Consider

the upper graph in Figure 6.13 where a sample four day contact history between two

nodes is illustrated. If three-hour ranges are used to define periods, the encounters

within each specific three-hour period should be considered separately to analyze

122

Algorithm 10 update time (time t, time start index, time end index)

1: d=⌊(t− end index)/86400⌋
2: period length = end index− start index
3: if ((t < start index + (d+1)× 86400) and (t>end index+d×86400)) then
4: tupd = (d + 1)× period length
5: else
6: tupd = (t%86400)−start index+(d + 1)× period length
7: return tupd

8: end if

Day 1

Day 2

Day 3

Day 4

12 a.m. 3 a.m. 6 a.m. 9 a.m. 12 p.m. 3 p.m. 6 p.m. 9 p.m. 12 a.m.

Day 1 Day 2 Day 3 Day 4

(6 a.m. - 9 a.m.)

(12 p.m. - 3 p.m.)

0

0

(6 p.m. - 9 p.m.)

0

Figure 6.13: Sample contact history between two nodes (upper) and the
updated contact history for three different periods (lower).

the friendship relations within the periods. Therefore, the encounter history has to

be updated for each period as it is shown in the lower graph in Figure 6.13. As it

is seen clearly, corresponding periods of the contact history in a day (global time)

are concatenated to form the updated contact history of a period (local time). In

Algorithm 9, we show how each period forms and maintains its own contact history

as the events (neighbor detection or neighbor leaving) occur in global time. Once

each node generates an event handler for each of its periods with given start and

end indexes (e.g. start and end indexes for period (6 a.m.-9 a.m) are 21600s and

32400s), local contact history for each period can be generated following the steps

123

in Algorithm 9. First the global time of the event is converted to local time (in

seconds) using the update time() method (Algorithm 10), then with the help of a

stack, the start and end times of contacts within the period are detected. Note that,

as it is seen in lines 8-9 of Algorithm 9, when the event handler of a period notices

that a full encounter according to the local clock of the period has finished, it calls

neighborDetected() (Algorithm 7) and neighborLeft() (Algorithm 8) methods to

compute the SPM and RSPM values within the period (using encounter times

according to local clock of the period).

Contact id Global time of en-
counter (t start,
t end)

Local time in (6
a.m.-9 a.m) period

Local time in (12
p.m.-3 p.m) pe-
riod

1 (17800, 37000) (0, 10800) (0, 0)
2 (48600, 61200) (10800, 10800) (5400, 10800)
3 (73800, 83700) (10800, 10800) (10800, 10800)
4 (91800, 100800) (10800, 10800) (10800, 10800)
5 (126000, 154800) (21600, 21600) (10800, 21600)
6 (191700, 203400) (21600, 30600) (21600, 21600)
7 (207720, 219600) (32400, 32400) (21600, 25200)
8 (264600, 283320) (32400, 34920) (32400, 32400)
9 (318600, 331200) (43200, 43200) (43200, 43200)
10 (338400, 343800) (43200, 43200) (43200, 43200)

Table 6.1: Updated times (in seconds) of encounters in Figure 6.13 for
two different periods. The bold values in local times show
the start and end times of local encounters in corresponding
period.

In Table 6.1, we give the list of the encounter times in Figure 6.13 according

to both the global time (in seconds) and the local time of periods (6 a.m.-9 a.m)

and (12 p.m.-3 p.m). The bold values in local times show the start and end times of

local encounters (that trigger the run of neighborDetected() and neighborLeft())

in corresponding period.

6.2.3 Forwarding Algorithm

After a node constructs its friendship community for each period based on its

current encounter history, it decides whether to forward a message to the encoun-

124

tered node. If a node i having a message for node d meets with node j, it forwards

the message to j if and only if node j’s current friendship community (in the current

period) includes20 node d and node j is a stronger friend of node d than node i is.

Accordingly, even if node j has a stronger link with node d than node i has, if node

j does not include d in its current friendship community (i.e. weight of link between

j and d is less than τ), node i will not forward the message to node j.

For an efficient routing, we also need to handle period boundary cases which

arise when the encounter of two nodes is close to the end of the current period. In

such a case, nodes use their friendship communities in the next period. For example,

if we use three hour periods for community formation and node i meets node j at

2:45 p.m., it would be better if the nodes use their communities (so the link weights)

in the next three hour period (3 p.m.-6 p.m.) to check whether the destination is

included. Since the time remaining in the current period is very short, using the

current communities may lead to inefficient forwarding decisions. In our algorithm,

we use threshold tb and let the nodes use next period’s community information if

remaining time to the end of current period is less than tb.

6.2.4 Evaluations

6.2.4.1 Data Sets

For the evaluation of the proposed algorithm, we used three DTN traces in

our simulator (see previous chapter for simulator details). In addition to the Haggle

Project dataset and synthetic mobility traces that we introduced in simulations

section of previous chapter, we also used MIT Reality Mining dataset [80] from

crawdad archive [87]. MIT dataset consists of the traces of 97 Nokia 6600 smart

phones which were carried by students and staff at MIT over nine months. In

our simulations, we used the contacts logged during a three month period from

the beginning of February to the end of April. This is the time of the second

academic semester where human relations are relatively stable and participants are

active on campus [79]. We also slightly changed the synthetic traces introduced in

20This is equivalent to checking whether either of direct or indirect weights between nodes j and
d is larger than threshold τ . Considering this usage of friendship in the design of the forwarding
algorithm, each node indeed does not need to keep and maintain a separate list of its friends.
Friendship concept here is used to define possible good forwarders of a message.

125

previous chapter as follows. To make the movements of nodes more realistic, we also

considered irregular movements of nodes. When a node finishes its visit in one of the

communities in its list, it decides to visit a random community (other than the ones

in its list) with probability pr. After this irregular visit, the node then continues its

community visits by moving to the next one on its list. The default values we used

in the generation of synthetic traces are also changed as follows: Nc=15, Np=100,

V =5, [Vmin, Vmax]=[20, 120]m/min, [Tmin, Tmax]=[30, 120]min, pr=0.1, R=30m.

6.2.4.2 Algorithms in Comparison and Performance Metrics

In simulations, we compare the proposed routing algorithm with three other

benchmark algorithms: Prophet [25], SimBet [68] and Fresh [64]. In Prophet, each

node calculates its delivery predictability using its contact history along with transi-

tivity and aging features and each node passes the carried packet if it meets a node

with higher predicted delivery probability. In SimBet, each node calculates a simbet

metric using two social measures (similarity and betweenness) and during the meet-

ings, the messages are forwarded to encountered nodes with higher simbet metric.

Finally, in Fresh [64], a node forwards a message to the encountered node only if

the latter has a more recent meeting with destination node than itself. For Prophet

and SimBet, we use the same parameters suggested in original studies [25, 68]. To

show the optimal delivery ratio that could be achieved with current setting in the

network, we also present the results of epidemic routing [22].

In evaluations, we also use the following three metrics: message delivery ratio,

average cost, and routing efficiency. Delivery ratio is the proportion of messages that

are delivered to their destinations among the total messages generated. Average

cost is measured by the average number of forwards done per message during the

simulation. Finally, routing efficiency [90] is defined as the ratio of delivery ratio to

the average cost.

6.2.4.3 Simulation Results

In the simulations, we used 1/5 of each data as warm up period, and let the

nodes build their initial contact history. After the warm up period, we generated

126

0 5 10 15 20
0

20

40

60

80

100

Time (days)

D
el

iv
er

y
ra

tio
 (

%
)

Delivery Ratio

Epidemic
Fresh
Our
Prophet
SimBet

(a) Delivery ratio vs. time

0 5 10 15 20
0

1

2

3

4

5

Time (days)

A
ve

ra
ge

 c
os

t p
er

 m
es

sa
ge

Average Cost

Fresh
Our
Prophet
SimBet

(b) Average cost vs. time

0 5 10 15 20
0

10

20

30

40

50

60

Time (days)

D
el

iv
er

y
ra

tio
/A

ve
ra

ge
 c

os
t

Routing Efficiency

Epidemic
Fresh
Our
Prophet
SimBet

(c) Routing Efficiency vs. time

Figure 6.14: Comparison of algorithms using MIT traces

5000 messages, each from a random source node to a random destination node21

every t seconds. In MIT traces, since the duration of experiment is long, we set t =

300s, but for Haggle and synthetic traces, we set t = 15s. All messages are assigned

a Time-To-Live (TTL) value representing the maximum delay requirement. To form

friendship communities, we used three hour periods22 and set τ = 1/80 min−1 and

tb = 15 min.

For main simulations, we assume that the nodes have enough buffer space

to store every message they receive and the bandwidth is high enough to allow the

21In MIT traces, nodes that do not have any contacts with others in the selected three month
period were not assigned as either source or destination to prevent meaningless messages.

22We used eight (equal-sized) three-hour ranges considering the possible behavior change of
people in daily life (6 a.m. to 9 a.m. and 3 p.m. to 6 p.m. may be considered as commuting times
etc.). However, for a general dataset, the number of periods and their lengths can be decided based
on the density of encounters between different times. This will be the subject of our future work.

127

exchange of all messages between nodes at encounter times23. These assumptions are

reasonable in view of capabilities of today’s technology and are also used commonly

in previous studies [85]. Any change in the current assumptions is expected to affect

the performance of compared algorithms in the same way since they all use one copy

of the message. Moreover, we used a simplified slotted CSMA MAC model as in [47].

We ran each simulation 10 times with different seeds and in each run, we collect

statistics by running each algorithm on the same set of messages. All results plotted

in figures show the averages of results obtained in such repeated runs.

In Figure 6.14, we show comparison of all algorithms in terms of the three

aforementioned metrics using MIT traces. Disregarding Epidemic routing, because

of its unacceptable cost, our algorithm achieves the highest delivery ratio (78%,

similar to Fresh) but it also has the minimum cost (similar to SimBet). Conse-

quently, its efficiency is the best among all algorithms with a 16%, 80% and 125%

improvement over Simbet, Fresh and Prophet, respectively.

In simulations with Haggle traces (Figure 6.15), our algorithm delivers 82%

of all messages with the cost similar again to SimBet. As a result, it provides

30%, 180% and 420% improvement in the routing efficiency over SimBet, Fresh

and Prophet, respectively. From Figure 6.16, we also observe the superiority of our

algorithm on the results with synthetic traces. While our algorithm achieves almost

80% of delivery ratio, Fresh achieves only 60% and SimBet and Prophet deliver

just 48% of all messages, while the average cost induced by our algorithm is only

slightly higher than the cost of SimBet. Therefore, our algorithm achieves the best

routing efficiency which is 33%, 47% and 650% higher than the routing efficiencies

of SimBet, Fresh and Prophet, respectively.

We also look at the effects of some parameters on the results. Since the effects

are turned out to be similar on each data set, here we show the results with only

Haggle dataset.

First, we look at the scenarios where the buffer space at each node is limited

and FIFO buffer management scheme is used. With these assumptions, we com-

puted the routing efficiency achieved in all algorithms with different buffer sizes in

23We also performed simulations with limited resources and different values of parameters. We
present these results at the end of the section.

128

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

Time (hours)

D
el

iv
er

y
ra

tio
 (

%
)

Delivery Ratio

Epidemic
Fresh
Our
Prophet
SimBet

(a) Delivery ratio vs. time

0 2 4 6 8 10 12 14 16
0

5

10

15

Time (hours)

A
ve

ra
ge

 c
os

t p
er

 m
es

sa
ge

Average Cost

Fresh
Our
Prophet
SimBet

(b) Average cost vs. time

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

Time (days)

D
el

iv
er

y
ra

tio
/A

ve
ra

ge
 c

os
t

Routing Efficiency

Epidemic
Fresh
Our
Prophet
SimBet

(c) Routing Efficiency vs. time

Figure 6.15: Comparison of algorithms using Haggle Project traces

the range of [10-50] messages. Figure 6.17 shows the results. For these simulations,

we set the message generation interval t=12s and TTL=16.6 hours. The results

show that routing efficiency of all algorithms increases as buffer space increases be-

cause messages are not dropped. Moreover, the routing efficiency of each algorithm

converges to some constant value after sufficient buffer space is allocated. In Fig-

ure 6.18, we show the routing efficiency of all algorithms with different message

generation intervals (when buffer size is 50 messages and TTL=16.6 hours). The

results are similar to Figure 6.17, because as fewer messages are generated, fewer

messages dropped due to buffer overflows, thus more messages could be delivered,

increasing the routing efficiency.

The simulation results with different traces having different number of nodes,

contact frequencies and durations and also the results with different values of sim-

129

0 5 10 15 20 25 30
0

20

40

60

80

100

Time (hours)

D
el

iv
er

y
ra

tio
 (

%
)

Delivery Ratio

Epidemic
Fresh
Our
Prophet
SimBet

(a) Delivery ratio vs. time

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Time (hours)

A
ve

ra
ge

 c
os

t p
er

 m
es

sa
ge

Average Cost

Fresh
Our
Prophet
SimBet

(b) Average cost vs. time

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Time (days)

D
el

iv
er

y
ra

tio
/A

ve
ra

ge
 c

os
t

Routing Efficiency

Epidemic
Fresh
Our
Prophet
SimBet

(c) Routing Efficiency vs. time

Figure 6.16: Comparison of algorithms using Synthetic traces

ulation parameters (buffer, message generation interval) show that our algorithm

performs better than other algorithms over wide range of environments.

6.2.5 Discussions and Future Work

6.2.5.1 Complexity of the Algorithm

In the introduced algorithm, each node determines its friendship community

in each period using mainly its own encounter history without much control message

overhead. The only information that a node needs from its contacts is their RSPM

values with its non-contact nodes (needed to find indirect close friends). However,

this information is requested only from close friends of nodes and performed with

messages of small size compared to data messages. In contrast, the compared algo-

rithms impose significant control message overhead caused by exchange of summary

130

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Buffer space (messages)
R

o
u

tin
g

 E
ff

ic
ie

n
cy

Message generation interval = 12 sec

Fresh
Ours
Prophet
SimBet

Figure 6.17: Routing efficiency vs. buffer space

vectors during contact times.

6.2.5.2 The Effects of Number of Periods and Thresholds

If we increase the number of periods that a day is divided into (thus the local

friendship communities each node has), this may enable the nodes to make better

forwarding decisions. On the other hand, the cost of computing the friendship

communities (or link weights) in each period and also the space required to hold

different communities will increase as well. However, as long as this cost could

be handled and there is enough space at nodes, better results could be achieved.

Moreover, the thresholds of the algorithm have also effects on its performance. As τ

increases (decreases), friend lists of nodes get smaller (bigger), and as tb changes, the

forwarding algorithm may become more sensitive to period boundaries. In future

work, we will look at these issues and try to find optimum values of τ and tb as well

as the optimal placement of period boundaries.

6.2.5.3 Extension of the Algorithm

We believe that the performance of the proposed algorithm can be improved

by using transitive friendship behavior of different nodes in consecutive periods of

the day. For example, assume that node i has a close friend j in period 12 p.m.-3

p.m., and node j has a close friend k in 3 p.m.-6 p.m. period. Then, when node s

meets node i and has a message destined to node k in period 12 p.m.-3 p.m., it can

forward this message to node i (even though node i has no direct or indirect close

131

4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

Message generation interval (sec)
R

o
u

tin
g

 E
ff

ic
ie

n
cy

Buffer space = 50 messages

Fresh
Ours
Prophet
SimBet

Figure 6.18: Routing efficiency vs. message generation interval

friendship with node k in the current period). This is because with high probability

the message will be forwarded from i to j and then from j to k. However, such a

solution will increase the algorithm’s maintenance cost. We will study this issue in

our future work and analyze the cost-benefit tradeoff.

6.3 Summary of Contributions

In this chapter, we looked at the effects of social relations between nodes in

designing better DTN algorithms.

In the first part, we looked at the impact of social structure on Spray and

Wait algorithm in a DTN where nodes move according to a random mobility model.

We first proposed a new social network model illustrating the general picture of

node meetings in community-based networks. Then we discussed the effects of dis-

tributing different number of copies to different communities on the performance of

routing. We analytically calculated the expected delivery delay in a sample network

scenario and validate the results with simulations. Furthermore, we also compared

the minimum delay achieved when optimal Lin is used with the delay of normal

spraying algorithm in which message copies are distributed without considering the

underlying community structure in the network. We observed that considering the

community structure (resulting in heterogeneous meeting behaviors among nodes)

and distributing copies accordingly outperforms the normal spraying both in terms

of average delivery delay and the average copy count used per message.

132

In the second part, we studied the routing problem in mobile social networks

which is special kind of DTNs where the nodes are human-carried wireless devices.

First, we introduced a new metric to detect friendship based node relations ac-

curately. Then, we presented a new routing algorithm in which a node forwards

its messages to those nodes that contain the destination node in their friendship

communities. To reflect the periodic changes on node relations, our friendship com-

munities depend on the period of day in which forwarding is done. We also treated

indirect relations between nodes in a novel way making them amenable to routing.

We evaluated the proposed algorithm through simulations using two real DTN traces

and synthetic data. The results show that our algorithm performs better than three

benchmark algorithms proposed previously.

CHAPTER 7

CONCLUSIONS AND DISCUSSIONS

This chapter provides a summary of this thesis work and discusses how the proposed

algorithms in this thesis contributed to the field of DTN routing.

This thesis has made four major research contributions to DTN routing field,

with its four different routing algorithms proposed for different DTN environments.

In each, different techniques are utilized to achieve the same goal of obtaining high

delivery rate, low delay and cost within a given time constraint or deadline.

In Chapter 3, we generalized the spray and wait [37] routing algorithm and

proposed a multi-period spray and wait routing algorithm [50, 51, 52]. Rather

than distributing all message copies at the beginning (as in [37]), we distribute

predefined number of message copies at different spraying periods and wait for the

delivery of any of them between spraying durations. By the end of each spraying

period, if the delivery does not happened yet, we spray additional copies of the

message to increase the probability of its delivery. With this idea of spraying message

copies at different periods, we aimed to use the advantage of early delivery and

achieve the same or a higher delivery rate by the deadline while using fewer average

number of copies per message than the single period spray and wait algorithm [37].

Chapter 3 includes both the analytical and simulation results of this multi-period

spray and wait algorithm where we clearly demonstrate that the proposed multi-

period algorithm achieves better performance than single-period spray and wait

routing algorithm.

Chapter 4 describes a different technique, erasure coding of messages, that

is beneficial to increase the reliability and robustness of DTN routing. Beyond

this benefit, in Chapter 4, we also show the benefit of erasure coding method in

decreasing the cost of routing. By encoding the message at source node into multiple

small message blocks and distributing them to other relay nodes, we increase the

number of message carriers of the message, however, as we showed in the chapter,

we can reach higher delivery rates before the replication based routing algorithms.

133

134

Therefore, we utilized this technique in routing of messages and worked on how we

can reduce the routing cost both in a single period and multiple periods [53]. To

this end, we found optimum parameters (number of encoded blocks that need to be

distibuted at each period, the replication factor etc.) that minimize the routing cost

in the current setting and used them in routing of messages. In this chapter, we also

analyzed the effects of message distribution algorithms on the cost of routing both

in replication based and erasure coding based algorithms. By analytical findings

and simulation results we demonstrated that even though binary spraying is the

correct strategy in replication based routing (since the message copies are exactly

same with each other), in erasure coding based routing, since the message contents

are different than each other, source spraying is the best strategy. We believe that

analyzing the effect of message distribution schemes on different routing types is

another significant contribution of this chapter to the literature.

In the next two chapters, we looked at the routing problem from different

perspectives. The research that we presented in these chapters are initiated with

our analysis on real DTN traces. We notice that the movements of nodes in a real

DTN show heterogeneous behavior and they need to be carefully analyzed to be

able to develop better routing algorithms.

In Chapter 5, we focused on the correlation between the movements of different

nodes. To detect the presence of these correlations between the nodes in a real DTN,

we proposed a new metric called conditional intermeeting time and computed this

value for each pair of nodes in available real DTN traces. We noticed that these

correlations are very clear for many node pairs. Therefore, we used the correlations

between the meetings of a node with other nodes for making the existing single copy

based routing algorithms more cost efficient. That is, for shortest path based DTN

routing algorithms, we proposed to use conditional intermeeting times rather than

standard intermeeting times and route the messages over conditional shortest paths

(CSP) [72]. Moreover, for the algorithms which make message forwarding decisions

depending on a delivery metric, we proposed to use conditional intermeeting time

as a secondary delivery metric and allowed the forwarding of messages if and only

if both the algorithm’s original delivery metric and conditional intermeeting time

135

agree to forward the message to the encountered node [73, 74]. With the simulation

results, where we compared the original algorithms with their revised versions, we

detected two different results. If the repetitive motion of nodes is clearly observed

in a trace dataset, the benefit of using conditional intermeeting times in metric

based algorithms becomes more pronounced. However, even in the environments

where this is not the case, average cost of routing can still be decreased and routing

efficiency can be improved remarkably. Consequently, in either case, by utilizing

the correlation between the movements of nodes, we can increase the performance

of single copy based routing algorithms.

Finally, in Chapter 6, we studied the routing problem in mobile social networks

which are special kind of DTNs where the nodes are human carried devices. Since in

these networks, the contacts between nodes depend on the social relations between

the people who carry these nodes, we exploited social network properties of these

nodes to understand the interactions between different nodes and to design better

routing algorithms. In the chapter, we first looked at the spray and wait routing

and analyzed the impact of the grouping behavior of nodes on its performance [75].

We showed that by carefully selecting the number of copies that must be distributed

to inner community and inter community nodes, we can increase the performance

of spray and wait based routing. Second, we proposed a friendship based routing

algorithm [70, 71] in which we use a new social network metric to detect the direct

and indirect relations between nodes more accurately and use these extracted social

relations between nodes to make better routing decisions. By extensive simulations

on both real and synthetic traces, we proved the better performance of proposed

algorithm over the existing algorithms.

Throughout each chapter of the thesis, we discussed the future work that we

plan to do regarding the work of that chapter. Besides these plans, we also would like

to work on the following issues. First of all, we would like to extend the performance

of the proposed algorithms by utilizing multicasting [96, 97]. Then, we would like to

focus on the security [99, 100, 101] and privacy preserving [98, 102] issues in routing

of messages in DTNs, because we believe that the nature of DTNs is very open to

different attacks, and the routing of messages can easily fail due to these attacks.

136

Also, we would like to combine the proposed DTN routing protocols with the service

discovery protocols [55] that we developed for DTNs to increase the performance of

routing.

LITERATURE CITED

[1] A. Doria, M. Uden, and D. P. Pandey, Providing connectivity to the saami
nomadic community, in Proceedings of the 2nd International Conference on
Open Collaborative Design for Sustainable Innovation (dyd 02), Bangalore,
India, Dec 2002.

[2] A. Pentland, R. Fletcher, and A. A. Hasson, A road to universal broadband
connectivity, in Proceedings of the 2nd International Conference on Open
Collaborative Design for Sustainable Innovation (dyd 02), Bangalore, India,
Dec 2002.

[3] G. E. Prescott, S. A. Smith, and K. Moe, Real-time information system
technology challenges for NASAs earth science enterprise, in Proceedings of
The 20th IEEE Real-Time Systems Symposium, Phoenix, Arizona, Dec 1999.

[4] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
Energy-efficient computing for wildlife tracking: design tradeoffs and early
experiences with zebranet, in Proceedings of ACM ASPLOS, 2002.

[5] Disruption tolerant networking, http://www.darpa.mil/ato/solicit/DTN/.

[6] J. Ott and D. Kutscher, A disconnection-tolerant transport for drive-thru
internet environments, in Proceedings of IEEE INFOCOM, 2005.

[7] G. W. Boehlert, D. P. Costa, D. E. Crocker, P. Green, T. OBrien, S. Levitus,
and B. J. Le Boeuf, Autonomous pinniped environmental samplers; using
instrumented animals as oceanographic data collectors, Journal of Atmospheric
and Oceanic Technology, vol. 18, no. 11, pp. 18821893, 2001, 18 (11).

[8] T. Small and Z. Haas, The shared wireless infostation model - a new ad hoc
networking paradigm (or where there is a whale, there is a way), in
Proceedings of The Fourth ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc 2003), June 2003, pp. 233244.

[9] K. Fall, A Delay-Tolerant Network Architecture for Challenged Internets,
SIGCOMM, August 2003.

[10] A. Beaufour, M. Leopold, and P. Bonnet, Smart-tag based data dissemination,
in First ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA02), June 2002.

[11] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry, Epidemic algorithms for replicated database

137

138

maintenance, in Proceedings of the ACM Symposium on Principles of
Distributed Computing, 1987, pp. 112.

[12] W. Vogels, R. V. Renesse, and K. Birman, The power of epidemics: Robust
communication for large-scale distributed systems, In Proceedings of HotNets-I
’02: First Workshop on Hot Topics in Networks, special issue of the ACM
SIGCOMM Computer Communication Review, Princeton, NJ. October 2002.

[13] Delay tolerant networking research group, http://www.dtnrg.org.

[14] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi, Hardware design
experiences in zebranet, In Proc. ACM SenSys, pages 227238, 2004.

[15] M. Motani, V. Srinivasan, and P. Nuggehalli, PeopleNet: Engineering a
Wireless Virtual Social Network, In Proc. ACM Mobicom, pages 243257, Aug.
2005.

[16] J. Partan, J. Kurose, and B. N. Levine, A Survey of Practical Issues in
Underwater Networks, In Proc. ACM WUWNet, pages 1724, Sept. 2006.

[17] A. Maffei, K. Fall, and D. Chayes, Ocean Instrument Internet, In Proc. AGU
Ocean Sciences Conf., Feb 2006.

[18] Z. Zhang, Routing in intermittently connected mobile ad hoc networks and
delay tolerant networks: overview and challenges, Communications Surveys &
Tutorials, IEEE, vol.8, pp. 24-37, 2006

[19] A. Balasubramanian, B. N. Levine, A. Venkataramani, DTN routing as a
resource allocation problem, ACM SIGCOMM, 2007.

[20] X. Zhang, J. Kurose, B. Levine, D. Towsley, and H. Zhang, Study of a
Bus-Based Disruption Tolerant Network: Mobility Modeling and Impact on
Routing, in Proceedings of ACM Annual Intl. Conf. on Mobile Computing and
Networking (Mobicom), 2007.

[21] J. Widmer and J. Boudec, Network coding for efficient communication in
extreme networks, in Proceeding of the ACM SIGCOMM workshop on Delay
Tolerant Networking (WDTN), 2005

[22] A. Vahdat and D. Becker, Epidemic routing for partially connected ad hoc
networks, Duke University, Tech. Rep. CS-200006, 2000.

[23] X. Zhang, G. Neglia, J. Kurose, D. Towsley, Performance Modeling of
Epidemic Routing, Computer Networks, Vol. 51/10 (2007), pp. 2859-2891.

[24] A. Jindal and K. Psounis, Performance analysis of epidemic routing under
contention, in Proceedings of Workshop on Delay Tolerant Mobile Networking
(DTMN) held in conjunction with IWCMC, 2006.

139

[25] A. Lindgren, A. Doria, and O. Schelen, Probabilistic routing in intermittently
connected networks, SIGMOBILE Mobile Computing and Communication
Review, vol. 7, no. 3, 2003.

[26] Y. Wang, S. Jain, M. Martonosi, and K. Fall, Erasure-coding based routing for
opportunistic networks, in Proceedings of the 2005 ACM SIGCOMM
workshop on Delay-tolerant networking, 2005.

[27] S. Jain, M. Demmer, R. Patra, and K. Fall, Using redundancy to cope with
failures in a delay tolerant network, SIGCOMM Comput. Commun. Rev.,
2005.

[28] Y. Liao, K. Tan, Z. Zhang, and L. Gao, Estimation based erasure-coding
routing in delay tolerant networks, in Proceedings of the 2006 international
conference on Wireless communications and mobile computing, 2006.

[29] Y. Liao, Z. Zhang, B. Ryu, Bo and L. Gao, Cooperative robust forwarding
scheme in DTNs using erasure coding, Military Communications Conference
(MILCOM), 2007.

[30] L. Chen, C. Yu, T. Sun, Y. Chen and H. Chu, A hybrid routing approach for
opportunistic networks, in Proceedings of the 2006 SIGCOMM workshop on
Challenged networks (CHANTS), 2006.

[31] Z. Li, L. Sun, E. C. Ifeachor, Adaptive Multi-Copy Routing for Intermittently
Connected Mobile Ad Hoc Networks in Proceedings of GLOBECOM, 2006.

[32] C. Liu, and J. Wu, Routing in a cyclic mobispace, in Proceedings of the 9th
ACM international symposium on Mobile ad hoc networking and computing
(MobiHoc), 2008.

[33] T. Small and Z. Haas, Resource and performance tradeoffs in delay tolerant
wireless networks, in Proceedings of ACM SIGCOMM workshop on Delay
Tolerant Networking (WDTN), 2005.

[34] W. Zhao, M. Ammar, and E. Zegura, A message ferrying approach for data
delivery in sparse mobile ad hoc networks, In Proceedings of MobiHoc04, May
2004.

[35] K. Harras, K. Almeroth, and E. Belding-Royer, Delay Tolerant Mobile
Networks (DTMNs): Controlled Flooding Schemes in Sparse Mobile Networks,
In IFIP Networking, Waterloo, Canada, May 2005.

[36] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, MaxProp: Routing for
Vehicle-Based Disruption- Tolerant Networks, In Proc. IEEE Infocom, April
2006.

140

[37] T. Spyropoulos, K. Psounis,C. S. Raghavendra, Spray and Wait: An Efficient
Routing Scheme for Intermittently Connected Mobile Networks, ACM
SIGCOMM Workshop, 2005.

[38] M. Musolesi, S. Hailes and C. Mascolo, Adaptive routing for intermittently
connected mobile ad hoc networks, in Proceedings of WoWMoM 2005, pp.
183-189, 2005.

[39] Z. Li, L. Sun and E. Ifeachor, Adaptive Multi-Copy Routing for Intermittently
Connected Mobile Ad Hoc Networks, in Proceedings of IEEE Globecom 2006,
27 Nov - 1 Dec 2006, San Francisco, USA.

[40] T. Camp, J. Boleng, and V. Davies, A Survey of Mobility Models for Ad Hoc
Network Research, Wireless Communication & Mobile Computing (WCMC),
Special Issue on Mobile Ad Hoc Networking: Research, Trends and
Applications, vol. 2, no. 5, pp 483-502, 2002.

[41] A. P. Jardosh, E. M. Belding-Royer, K. C. Almeroth, and S. Suri, Toward
realistic mobility models for mobile ad hoc networks, in Proceedings of ACM
MOBICOM, pp. 217229, San Diego, CA, Sep. 2003.

[42] A. Jindal, K. Psounis, Fundamental Mobility Properties for Realistic
Performance Analysis of Intermittently Connected Mobile Networks, PerCom
Workshops, 2007.

[43] J. W. Byers, M. Luby and M. Mitzenmacher, Accessing Multiple Mirror Sites
in Parallel: Using Tornado Codes to Speed Up Downloads, in Proceedings of
INFOCOM, 1999.

[44] T. Spyropoulos, K. Psounis,C. S. Raghavendra, Performance Analysis of
Mobility-assisted Routing, MobiHoc, 2006.

[45] P. U. Tournoux, J. Leguay, F. Benbadis, V. Conan, M. Amorim, J. Whitbeck,
The Accordion Phenomenon: Analysis, Characterization, and Impact on DTN
Routing, in Proceedings of Infocom, 2009.

[46] T. Spyropoulos, K. Psounis,C. S. Raghavendra, Efficient routing in
intermittently connected mobile networks: The single-copy case, IEEE/ACM
Transactions on Networking, vol. 16, no. 1, Feb. 2008

[47] T. Spyropoulos, K. Psounis,C. S. Raghavendra, Efficient Routing in
Intermittently Connected Mobile Networks: The Multiple-copy Case,
IEEE/ACM Transactions on Networking, 2008.

[48] P. Hui, J. Crowcroft, and E. Yoneki, BUBBLE Rap: Social Based Forwarding
in Delay Tolerant Networks, 9th ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc), HongKong, May, 2008.

141

[49] E. Yoneki, P. Hui, S. Chan and J. Crowcroft, A Socio-Aware Overlay for
Publish/Subscribe Communication in Delay Tolerant Networks, 10th
ACM/IEEE International Symposium on Modeling, Analysis and Simulation
of Wireless and Mobile Systems (MSWiM), Crete, Greece, October, 2007.

[50] E. Bulut, Z. Wang, B. Szymanski Time Dependent Message Spraying for
Routing in Intermittently Connected Networks, in Proceedings of Globecom
08, New Orleans, November 2008.

[51] E. Bulut, Z. Wang, B. Szymanski, Cost Effective Multi-Period Spraying for
Routing in Delay Tolerant Networks, in IEEE/ACM Transactions on
Networking, vol. 18, 2010.

[52] E. Bulut, Z. Wang, B. Szymanski, Minimizing Average Spraying Cost for
Routing in Delay Tolerant Networks, in Proceedings of Second Annual
Conference of International Technology Alliance (ITA), ACITA, Imperial
College London, September 2008.

[53] E. Bulut, Z. Wang, B. Szymanski Cost Efficient Erasure Coding based Routing
in Delay Tolerant Networks, in Proceedings of ICC 2010, South Africa.

[54] S. C. Geyik, E. Bulut, B. Szymanski, PCFG based Synthetic Mobility Trace
Generation, in Proceedings of Globecom 2010, Miami, December 2010.

[55] Z. Wang, E. Bulut, B. Szymanski, Service Discovery for Delay Tolerant
Networks, in workshop on Heterogeneous, Multi-Hop, Wireless and Mobile
Networks (HeterWMN), in conjunction with Globecom 2010, Miami,
December 2010.

[56] E. Daly and M. Haahr, Social network analysis for routing in disconnected
delay-tolerant manets, In Proceedings of ACM MobiHoc, 2007.

[57] S. C. Geyik and B. K. Szymanski, Event Recognition in Sensor Networks by
Means of Grammatical Inference, In Proceedings of INFOCOM 2009, April,
Brazil, 2009.

[58] D. Bertsekas and R. Gallager, Data networks (2nd ed.), 1992.

[59] S. Srinivasa and S. Krishnamurthy, CREST: An Opportunistic Forwarding
Protocol Based on Conditional Residual Time, in Proceedings of SECON,
2009.

[60] I. Psaras, L. Wood and R. Tafazolli, Delay-/Disruption-Tolerant Networking:
State of the Art and Future Challenges, Technical Report, University of
Surrey, UK.

142

[61] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot, Pocket
Switched Networks and human mobility in conference environments, in
Proceedings of the ACM SIGCOMM 2005 Workshop on Delay-Tolerant
Networking (W-DTN05), 2005.

[62] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott, Impact of
Human Mobility on the Design of Opportunistic Forwarding Algorithms, in
Proceedings of INFOCOM, 2006.

[63] T. Karagiannis, J. Boudec, and M. Vojnovic, Power Law and Exponential
Decay of Inter Contact Times Between Mobile Devices, in Proceedings of
MobiCom, 2007.

[64] H. Dubois-Ferriere, M. Grossglauser, and M. Vetterli, Age Matters: Efficient
Route Discovery in Mobile Ad Hoc Networks Using Encounter Ages, In
Proceedings of ACM MobiHoc, 2003.

[65] M. Grossglauser and M. Vetterli, Locating Nodes with Ease: Last Encounter
Routing in Ad Hoc Networks through Mobility Diffusion, In Proceedings of
IEEE INFOCOM, 2003.

[66] T. Spyropoulos, K. Psounis, and C. Raghavendra, Spray and Focus: Efficient
Mobility-Assisted Routing for Heterogeneous and Correlated Mobility, In
Proceedings of IEEE PerCom, 2007.

[67] T. Spyropoulos, T. Turletti, and K. Obrazcka, Routing in Delay Tolerant
Networks Comprising Heterogeneous Populations of Nodes, IEEE Transaction
on Mobile Computing, Vol. 8, No. 8, Aug. 2009.

[68] E. Daly and M. Haahr, Social network analysis for routing in disconnected
delay-tolerant manets, In Proceedings of ACM MobiHoc, 2007.

[69] J. Link, N. Viol, A. Goliath and K. Wehrle, SimBetAge: utilizing temporal
changes in social networks for pocket switched networks, Proc ACM Workshop
on User-provided Networking, Rome, Italy, 2009.

[70] E. Bulut, B. Szymanski, Friendship based Routing in Delay Tolerant Mobile
Social Networks, in Proceedings of Globecom 2010, Miami, December 2010.

[71] E. Bulut, B. Szymanski, Exploiting Friendship Relations for Efficient Routing
in Delay Tolerant Mobile Social Networks, submitted to Elsevier Ad hoc
Networks Journal - Special Issue on Social-Based Routing in Mobile and
Delay-Tolerant Networks, 2010.

[72] E. Bulut, S. C. Geyik, B. Szymanski, Conditional Shortest Path Routing in
Delay Tolerant Networks, in Proceedings of WoWMoM 2010.

143

[73] E. Bulut, S. Geyik and B. Szymanski, Efficient Routing in Delay Tolerant
Networks with Correlated Node Mobility, in Proceedings of 7th IEEE
International Conference on Mobile Ad-hoc and Sensor Systems (MASS),
Nov, 2010.

[74] E. Bulut, S. Geyik, B. Szymanski, Efficient Routing in DTNs with Correlated
Node Mobility, submitted to IEEE Transactions on Mobile Computing
(TMC), 2010.

[75] E. Bulut, Z. Wang, B. Szymanski, Impact of Social Networks on Delay
Tolerant Routing, in Proceedings of IEEE Global Telecommunications
Conference (GLOBECOM), pp.1-6, Nov. 30-Dec. 4, Honolulu, HI, 2009.

[76] F. Li and J. Wu, LocalCom: a community-based epidemic forwarding scheme
in disruption-tolerant networks, in Proceedings of SECON, p.574-582, June
22-26, 2009.

[77] T. Zhou, R. R. Choudhury, K. Chakrabarty, Diverse Routing: Exploiting
Social Behavior for Routing in Delay-Tolerant Networks, Pro. Conf.
Computational Science and Engineering, Canada, 2009.

[78] Q. Li, S. Zhu and G. Cao, Routing in Selfish Delay Tolerant Networks, Proc.
IEEE Infocom 2010.

[79] P. Hui and J. Crowcroft, Predictability of Human Mobility and Its Impact on
Forwarding, Communications and Networking in China, 2008.

[80] N. Eagle, A. Pentland, and D. Lazer, Inferring Social Network Structure using
Mobile Phone Data, Proc. National Academy of Sciences, 106(36), pp.
15274-15278, 2009.

[81] C. liu, J. Wu and I. Cardei Message Forwarding in Cyclic Mobispace: the
Multi-copy case, In Proceedings of MASS, 2009.

[82] S. Jain, K. Fall, and R. Patra, Routing in a delay tolerant network, in
Proceedings of ACM SIGCOMM, Aug. 2004.

[83] E. P. C. Jones, L. Li, and P. A. S. Ward, Practical routing in delay tolerant
networks, in Proceedings of ACM SIGCOMM workshop on Delay Tolerant
Networking (WDTN), 2005.

[84] J. Leguay, T. Friedman, and V. Conan, DTN Routing in a Mobility Pattern
Space, In Proceedings of ACM WDTN, 2005.

[85] C. Liu and J. Wu, An Optimal Probabilistically Forwarding Protocol in Delay
Tolerant Networks, in Proceedings of MobiHoc, 2009.

144

[86] J. Leguay, A. Lindgren, J. Scott, T. Friedman, J. Crowcroft and P. Hui,
CRAWDAD data set upmc/content (v. 2006-11-17), downloaded from
http://crawdad.cs.dartmouth.edu/upmc/content, 2006.

[87] CRAWDAD data set, http://crawdad.cs.dartmouth.edu..

[88] Y. Wang, P. Zhang, T. Liu, C. Sadler and M. Martonosi,
http://crawdad.cs.dartmouth.edu/princeton/zebranet, CRAWDAD data set
princeton/zebranet (v. 2007-02-14), 2007.

[89] A European Union funded project in Situated and Autonomic
Communications, www.haggleproject.org.

[90] J. M. Pujol, A. L. Toledo, and P. Rodriguez, Fair routing in delay tolerant
networks, Proc. IEEE INFOCOM, 2009.

[91] C. Mascolo and M. Musolesi, CAR: Context-aware Adaptive Routing for
Delay Tolerant Mobile Networks, in IEEE Transactions on Mobile Computing.
Vol. 8(2). pp. 246-260. February 2009.

[92] A. Balasubramanian, B. N. Levine, A. Venkataramani, Replication Routing in
DTNs: A Resource Allocation Approach, IEEE Transactions on Networking,
Vol. 18, No. 2. (April 2010), pp. 596-609.

[93] Y. Wang and H. Wu, Delay/Fault-Tolerant Mobile Sensor Network
(DFT-MSN): A New Paradigm for Pervasive Information Gathering, IEEE
Transactions on Mobile Computing, vol. 6, no. 9, pp. 10211034, 2007.

[94] C. Chen and Z. Chen, Exploiting Contact Spatial Dependency for
Opportunistic Message Forwarding, in IEEE Transactions on Mobile
Computing, vol. 8, no.10, October 2009.

[95] V. Erramilli, M. Crovella, A. Chaintreau, and C. Diot, Delegation forwarding,
in Proceedings of ACM MobiHoc, pp. 251260, 2008.

[96] Y. Wang, X. Li, and J. Wu, Multicasting in delay tolerant networks:
delegation forwarding, in Proceedings of IEEE Global Communications
Conference (GLOBECOM), 2010.

[97] W. Gao, Q. Li, B. Zhao, and G. Cao, Multicasting in delay tolerant networks:
a social network perspective, in Proceedings of ACM MobiHoc, pp. 299308,
2009.

[98] R. Lu, X. Lin, and X. Shen, SPRING: A Social-based Privacy-preserving
Packet Forwarding Protocol for Vehicular Delay Tolerant Networks, The 29th
IEEE International Conference on Computer Communications (INFOCOM
2010), San Diego, California, USA, March 14- 19, 2010.

145

[99] Y. Ren, M. C. Chuah, J. Yang, Y. Chen, Detecting Wormhole Attacks in
Delay Tolerant Networks, in IEEE Wireless Communications Magazine,
special issue on Security & Privacy, October 2010.

[100] N. Li and S. K. Das, RADON: Reputation-Assisted Data forwarding in
Opportunistic Network, in Proceedings of the Second International Workshop
on Mobile Opportunistic Networking (Mobiopp 2010), pp 8-14, Feb 22-23,
2010.

[101] S. C. Nelson, M. Bakht and R. Kravets, Encounter-based Routing in DTNs,
in Proceedings of IEEE Infocom, Rio De Janeiro, Brazil, pp.846-854, Apr.
2009.

[102] U. Shevade, H. Song, L. Qiu, and Y. Zhang, Incentive-Aware Routing in
DTNs, in Proceedings of IEEE International Conference on Network
Protocols, Orlando, FL, USA, Oct. 2008.

