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Abstract—We study target tracking with wireless sensor 

networks in its most basic form, assuming the binary 

sensing model in which each sensor can return only 1-bit 

information regarding target’s presence or absence in its 

sensing range. A novel, real-time and distributed target 

tracking algorithm for imperfect binary sensing model is 

proposed, which is an extension of our previous work on 

ideal binary sensing model. The algorithm estimates the 

target velocity and trajectory in a distributed and 

asynchronous manner. Extensive simulations show that our 

algorithm achieves high performance and outperform other 

algorithms by yielding accurate estimates of the target’s 

location, velocity and trajectory. 

 
Index Terms—Target Tracking, Binary Sensor Networks, 

Distributed Algorithms, Imperfect Sensing  

 

I. INTRODUCTION 

ARGET tracking is a representative and important 

application for wireless sensor networks [1,2]. One of the 

fundamental studies of target tracking focuses on networks 

composed of sensor nodes capable of the most elementary 

binary sensing that provides just one bit of information about 

the target: whether it is present within the sensing range or not. 

These so-called binary sensor networks constitute the simplest 

type of sensor networks that can be used for target tracking.   

There are two kinds of binary sensing model for binary sensor 

networks: ideal binary sensing model and imperfect binary 

sensing model. In ideal binary sensing model, each node can 

detect exactly if the target falls in to its sensing range R (as 

shown in Fig. 1(a)). In real world, detection ranges often vary 

depending on the environmental conditions, such as the relative 

orientation of the target and the sensor. These factors make 

target detection near the boundary of the sensing range  
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much less predictable. The above observations give rise to an 

imperfect binary sensing model in which the target is always 

detected within an inner disk of radius Rin but is detected only 

with some nonzero probability in an annulus between the inner 

disk and an outer disk of radius Rout. Targets outside the outer 

disk are never detected (as shown in Fig. 1(b)). 

 
Fig. 1.  Binary sensing model 

A number of approaches using binary sensor networks for 

target tracking have been proposed in recent years. The 

algorithms presented in [3,4] first route the binary information 

to a central node and then the central node applies particle filters 

on information gathered from all sensors to update the target’s 

track. But particle filters are expensive to compute and 

transmitting data from each node to a central one is very costly 

in terms of the energy needed for communication for any 

non-trivial size network. In [5], each point on the target’s path is 

estimated by the weighted average of the detecting sensors’ 

locations. Then, a line that fits best this point and the points on 

the trajectory established in the recent past is used as the target 

trajectory. Kim et al [6] improved the weight calculation for 

each sensor node that detected the target by using the estimated 

velocity to get the estimated target location. However, these two 

methods require time synchronization of the entire network and 

assume that the target moves at a constant velocity on a linear 

trajectory. Furthermore, they only use positions of the sensor 

nodes that detected the target. Actually, the absence of detection 

can also provide information that can be used to improve the 

tracking accuracy. In [7], both the presence and absence of the 

target within the node’s sensing range were used to form local 

regions that the target had to pass. These regions are bounded by 

the intersecting arcs of the circles defined by the sensing ranges 

of the relevant nodes. The trajectory is estimated as a piecewise 

linear path with the fewest number of linear segments that 

traverses all the regions in the order in which the target passed 

them. However, the algorithm is centralized and complex to 

compute. It also requires a designated tracker node to fuse data. 

Additionally, the designated node has to accumulate 

information from tracking sensors to form all regions needed to 
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compute the estimated trajectory, which means that the tracking 

is not real-time but delayed. In our previous work [8], we 

proposed a distributed target tracking algorithm for ideal binary 

sensing model. Each active node computes the target’s location 

locally but uses cooperation to collect the sensing bits of its 

neighbors. Furthermore, the algorithm tracks the target in 

real–time, does not require time synchronization between 

sensor nodes and can be applied to target moving in random 

directions and with varied velocities. 

In this paper, we extend our previous work and propose a 

distributed target tracking algorithm that can be used for 

imperfect binary sensing model while keeping all the other 

properties of its predecessor. 

The remainder of the paper is organized as follows. We 

describe the network model and our assumptions in Section II. 

In Section III, we first give a brief overview of our previous work 

and then introduce our distributed target tracking algorithm for 

imperfect binary sensing model. Section IV presents the 

simulation results. Finally, we provide conclusions in section V. 

II. NETWORK MODEL AND ASSUMPTIONS 

The sensor network comprises N nodes placed randomly with 

uniform distribution over a finite, two-dimensional planar 

region to be monitored. Each node has a unique identifier and 

the union of sensing regions of all network nodes guarantees 

redundant coverage of the region to be monitored. Each node 

generates one bit of information (“1” for target’s presence and 

“0” for its absence) only at the moment when there is a change in 

the presence/absence status of the target. Each time a new bit of 

information is generated, the node communicates it to its 

neighbors that are defined as nodes whose sensing ranges 

intersect its sensing range. Each node knows its location and the 

locations of its neighbors (possibly through communication at 

the network deployment stage, not discussed here). Each node 

has its own local timer and can time stamp sent or received 

messages.  

III. DISTRIBUTED TARGET TRACKING ALGORITHM 

A. Overview of Algorithm for Ideal Binary Sensing Model 

 

Basic Idea 

To illustrate our basic idea, we use an example from Fig. 2, 

which shows a target moving through an area covered by three 

nodes with ideal binary sensing model. Initially, the target is 

outside of the sensing ranges of all three nodes. Later, it moves 

within the sensing range of node X at the system time t BB1BB, and 

then sensing ranges of nodes Y at time tBB2BB and Z at time t BB3BB. Finally, 

it leaves sensing ranges of nodes X, Y and Z, in that order, at 

times t BB4BB, tBB5 BB, tBB6BB, respectively. With the ideal binary sensing model, 

each node will generate a bit “1” at the time of first sensing the 

target’s presence and later a bit “0” at the time of first lacking to 

sense its presence and those are the times at which the target 

enters and then exits sensing range of that node. Consequently, 

at the transition time tBBj BB, the target must be on arc ABBjBB which is a 

part of the border circle of the sensing range of the node 

reporting the bit information and which can be determined 

cooperatively from presence and absence bits of neighbors of 

that node. Let’s consider arc ABB2BB defined at time tBB2 BB as an example. 

At time t BB2BB, node Y senses the target presence within its sensing 

range for the first time, so the arc is a part of the sensing range 

border circle of node Y. At that time, node Y knows that the 

target is within the sensing range of node X, so the target must 

be on arc “abc”. Node Y knows also that the target is not within 

the sensing range of node Z, so the target can not be on arc 

“bcd”. Hence, node Y concludes that the target must be on arc 

denoted as ABB2BB. It is important to observe that, by using this 

method, the two-dimensional uncertainty of the target’s location 

on the plane is reduced to a one-dimensional uncertainty within 

the circle section. Shorter this circle section is, smaller the 

uncertainty becomes. 

 
Fig. 2.  Illustration of the basic idea behind the algorithm 

 

Target Tracking Algorithm 

At the network deployment stage, each node establishes a list 

of its neighbors. Each element of the list stores the following 

information: neighbor node identifier, intersection points of the 

sensing circles of the node and its neighbor, an angle 

corresponding to the arc defined by these intersection points and 

one-bit information generated by the neighbor, initialized to “0”. 

Each time a node receives one-bit information from a neighbor, 

it updates the status list. At the moment at which the node 

discovers the change in the target’s presence within its sensing 

range, it identifies the arc of its sensing range border circle that 

the target is crossing. The target location is estimated as the 

middle point of the corresponding arc. 

We combine all angles corresponding to arcs defined by the 

neighbor list to determine the arc that the target is crossing. The 

four instances of this process are shown in Fig. 3. If the 

neighbors both generated bits equal to “1”, the corresponding 

central angles are combined by “&” operation that returns the 

intersection of these two angles. As shown in Fig. 3(a), the 

common angle of 1 3o∠  and 2 4o∠  is 2 3o∠ , so the node Y 

estimates the target location as the middle point of arc “23” 

when it senses that the target just moved within its sensing range. 

One special instance is shown in Fig. 3(b), where the common 

angle is just one of the two angles. If one neighbor status is set to 

“1” while the other is set to “0”, the corresponding central 

angles are combined with “-” operation that returns the angle 
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formed from the first angle by excluding from it the second 

angle. For example, in Fig. 3(c) 1 3o∠  - 2 4o∠  is equal to 1 2o∠ . 

In a special case shown in Fig. 3(d), the result may consist of 

two angles, 1 2o∠  and 3 4o∠ . The correct angle in this case is 

chosen by considering the recent estimate of the target location.  

Let FA be the sought arc’s central angle initialized to 2π  (the 
entire circle of the sensing border of a node). Let IN be the set of 

neighbor nodes with status set to “1” and let OUT be the set of 

neighbor nodes with status set to “0”. Then, the final angle 

whose corresponding arc is the one that the target is crossing can 

be expressed as: 

& i j
j OUTi IN

FA FA angle angle
∈∈

= −                           (1) 

where angle BBi BB is the central angle corresponding to neighbor i. 

 
Fig. 3 Instances of angle combinations 

B. Tracking Algorithm for Imperfect Binary Sensing Model 

In order to make our algorithm robust, as in [7], we take a 

worst-case approach to the information provided by the 

imperfect binary sensing model: if a sensor output is “1”, then 

we assume that the target is somewhere inside the large disk of 

radius Rout; if a sensor output is “0”, then we assume that the 

target is somewhere outside the small disk of radius Rin. 

The main influence of the imperfect binary sensing model is 

that we can no longer identify circular arcs that the target 

crosses (as was possible in the ideal binary sensing model) when 

there is a change in the status of the target sensed by a node. 

Instead, we can only identify that the target must be within the 

ring determined by Rin and Rout. However, we can use a thin ring 

section which is determined by the neighbor output to 

approximate the circular arcs and then estimate the position of 

the target. Although this will make the one-dimensional 

uncertainty of the target’s location expand to a two-dimensional 

uncertainty, if the resulting ring section is short and thin, the 

error still will be small.  

 

Initialization 

In the initialize procedure, each node establishes a list of its 

neighbors and calculates the exact angle corresponding to a 

neighbor depending on the output and the relative position of 

that neighbor. 

The three instances for neighbor (node Y) that outputs bit “1” 

are shown in Fig. 4. As described previously, if node Y outputs 

bit “1”, we can only be sure that the target is within sensing 

range Rout. When node X senses there is a change in the status of 

the target, it knows that the target is within the ring determined 

by Rin and Rout. Depending on the relative position of node Y to 

node X, there would be up to two angles corresponding to node 

Y resulting from the intersection of Rin and Rout circle of node X 

and Rout circle of node Y. If there are two angles existing for 

node Y, we choose the angle that makes sure that the target must 

fall in this angle, for example we choose 1 2b ob∠ and 1 2a oa∠  

in Fig. 4 (a) and (b) as the corresponding angle to neighbor Y. If 

there is only one angle existing for node Y, then it is the 

corresponding angle, as shown in Fig. 4 (c). 
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Fig. 4 Angle corresponding to neighbor’s output “1” 

The three instances for neighbor (node Y) that outputs bit “0” 

are shown in Fig. 5. As described previously, if node Y outputs 

bit “0”, we can only know that the target is outside sensing range 

Rin. Depending on the relative position of node Y to node X, 

there would be up to two angles corresponding to node Y 

resulting from the intersection of Rin and Rout circle of node X 

and Rin circle of node Y. If there are two angles existing for 

node Y, we choose the angle that makes sure that the target must 

fall out of this angle, for example we choose
1 2a oa∠ and 

1 2b ob∠ in Fig. 5 (a) and (b) as the corresponding angle to 

neighbor Y. For the instance shown in Fig. 5(c), we can not 

determine that the target is outside 
1 2a oa∠  because the target 

could be within 
1 2a oa∠  no matter what node X outputs. So, if 

node Y outputs bit “0”, it will be considered as a neighbor of 

node X only if its Rin circle intersects with the Rin circle of node 

X. 

 
Fig. 5 Angle corresponding to neighbor’s output “0” 

 

Location Estimate 

At the moment at which the node discovers the change in the 

target’s presence, it calculates the final angle corresponding to 

the ring section that the target is crossing using the same angle 

combination method as in the ideal binary sensing model. Then, 

the thickness of the ring section is recalculated to make the 
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estimation of target position more accurate. 

We calculate the intersection points of each pair of node X’s 

neighbor that output bit “1”. The intersection point that falls into 

the final angle and is most far away from the center of node X 

determines one of the boundaries of the ring section, which will 

make the ring section as thin as possible. A new thinner ring 

section is determined by this intersection point, Rout circle and 

final angle, for example ring section “abcd” shown in Fig. 6 (a). 

Please note that the neighbor node that outputs bit “0” 

contributes only to the angle combination but not to the 

thickness calculation. As shown in Fig. 6 (b), the recalculated 

ring section may exclude some area into which the target may 

fall, although with small probability because this area is near 

Rout circle of node X. But when the final angle is small, this area 

will be negligible in size. The target position is estimated as the 

center point of this ring section. 

 
Fig. 6 Ring section thickness calculation 

 

Velocity Estimate 

We use a distributed, asynchronous algorithm to estimate the 

target velocity. As shown in Fig. 7, three nodes X, Y and Z work 

in asynchronous time. At time tBBY1BB on node Y’s local clock, node 

Y senses target’s presence for the first time and generates a bit 

“1” message. The estimated location of the target is also 

included in this message to save energy and bandwidth. Since 

the elapsed time of radio transmission is negligible, node Z 

receives this message at time t BBZ1BB on its local clock. Node Z will 

also receive the message from node X at time tBBZ2 BB. Then, node Z 

can use the time difference tBBZ1 BB-tBBZ2 BB and the difference of locations 

reported in these two messages to estimate the target velocity. 

To estimate velocity accurately, only location estimates with 

relatively high accuracy are used (those are locations at the 

middle points of the short and thin ring sections). 

 
Fig. 7 Velocity estimation 

 

Trajectory Estimate  

A weighted line fitting method is used to get the target 

trajectory and the weight of each estimate is defined as: 

1

ring section / ring
w =

                                   (2) 

where ring section  is the area of corresponding ring section 

whose middle point is the estimated target location and ring  is 

the area of the ring determined by circles Rin and Rout. Each 

node finds the line (or two or more line sections if the target 

turns around) that best fits these weighted estimated locations. 

This line can be expressed as y a x b= ⋅ +  allowing us to define 

the corresponding minimization metric Q as:   
2( )i i i

i E

Q w y a x b
∈

= − ⋅ −∑                         (3) 

where E=[(y BB0 BB,x BB0 BB),…(y BBiBB,x BBiBB)…(y BBk BB,x BBk BB)] is a list of the estimated 

target locations for which the line is fitted. 

IV. SIMULATION 

A. Location Estimate 

The first metric that we consider is the location estimation 

error, measured as the ratio of the distance between the 

estimated and real target locations to the sensing range R BBoutBB.  

 

Simulation Setup 

When evaluating the impact of network density on the 

location estimation accuracy, we kept the number of nodes fixed 

at 800 and varied the sensing range RBBoutBB from 40 to 150 units. 

The velocity of the target was adjusted proportionally to the 

sensing range, making it constant if measured in sensing range 

units.  

Several types of trajectories have been considered: linear, 

circular, and a piece-wise linear trajectory with random turns. In 

order to exclude the boundary effect, all the trajectories are 

confined within the square area with length of 800-RBBmaxBB in the 

middle, where RBBmax BB is the maximum sensing range (150 units) in 

the simulation. For the random trajectory, the length of the 

trajectory is proportional to the sensing range R BBout BB . As in [5], we 

set R BBin BB =0.9*R BBout BB. 

 

Detection Probability 

Two kinds of detection probabilities for imperfect binary 

sensing models are used. The first one is a constant distribution 

as defined in formula (4), where d is the distance between the 

sensing node and the target.  

out
in out

out in

in

out

R d
       R d R

R R

1                        d R

0                        R d

−
≤ ≤ −


≤

 ≤



                                   (4) 

The second one is an exponential distribution defined in 

formula (5), where α  is its exponent parameter.  In order to 

make the detection probability approximately 0 when d=R BBout BB, 
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we let out in- (R -R )
e 0.01%

α = , yielding   

in out

ln(0.01%)

R R
α =

−
. 

in- (d-R )

in out

in

out

e        R d R

1                        d R

0                        d R                  

α ≤ ≤


≤
 ≥

                        (5) 

 

Algorithms to be Compared 

We compare our algorithm with the following other four 

algorithms introduced in [5] and [6]:  

(1) Equal weight: target’s position is estimated as the average 

of the detecting sensors’ positions. 

(2) Distance weight: target’s position is estimated as the 

weighted average of the detecting sensors’ positions. The 

weight for each node is set at 2 2
1/ 0.25(v t)outR − ⋅ , where  v is the 

target velocity and t is the time expired since the target has been 

detected. 

(3) Duration weight: target’s position is estimated as the 

weighted average of the detecting sensors’ positions. Given the 

time t that expired since the node has detected the target, the 

weight for each node is ln(1+t). 

(4) Line fit: the initial estimate of the target position is made 

as in algorithm (2), and then a line that fits the history target 

position point is found and the current target position is refined 

using this line and the target velocity.  

Because algorithms (2) (3) and (4) are design for linear 

trajectory with constant velocity, we only compare our 

algorithm with them for the linear trajectory. 

 

Simulation Results and Discussion 

Fig. 8 shows the location estimate accuracy results under both 

of the two detection probabilities. We can see that in both cases, 

our algorithm gets the best result compared with all four other 

algorithms. Additionally, the location estimate accuracies for all 

the three trajectories of our algorithm are nearly the same, which 

demonstrates that our algorithm works well for all kinds of 

trajectories. Even for the sparse network with sensing range R BBout BB 

= 40, which means that there are only five neighbor nodes 

within each sensing range, the algorithm still performs well. 
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(a) The results under the first detection probability 
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(b) The results under the second detection probability 

Fig. 8 The location estimate accuracy   

B. Velocity Estimate 

We tested the performance of velocity estimation under the 

configuration of 800 nodes with RBBout BB=40 unit and R BBin BB=0.9*RBBoutBB 

unit sensing ranges using the first detection probability in two 

scenarios in which target moves along a linear trajectory. In the 

first scenario, the target moves at a constant velocity which is 

R BBoutBB/15 unit/second. In the second scenario, the velocity of the 

target changes suddenly to a random value that is a multiple of 

R BBoutBB/15 unit/second several times during simulation.  
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(a) The results for the constant velocity  
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(b) Random velocity 

Fig. 9 The estimated velocity versus the real velocity 

Fig. 9 shows the estimated versus real velocities as a function 

of time in these two scenarios. Clearly, the estimated velocity is 

very close to the real velocity in the first scenario. These two 

agree also well in the second scenario, although there is some 
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delay before the change of real velocity is reflected in its 

estimate so there are some large deviations in the brief moments 

immediately after the velocity change. 

C. Trajectory Estimate 

Fig. 10 shows the typical estimations for three trajectories 

under the configuration of 800 nodes with RBBoutBB=40 units and 

RBBin BB=0.9*R BBout BB using the first detection probability. We measure 

the accuracy of estimated trajectory using the average 

difference between the estimated and real trajectories. It is 

calculated using the area of a polygon formed by these two 

trajectories divided by the length of the real target trajectory. 

The average accuracies are 0.287, 1.811 and 2.873, for linear, 

circular and piece-wise linear trajectories with random turns, 

respectively. 

 

 
(a) Linear trajectory 

    
(b) Circular trajectory 

 
(c) Random trajectory 

Fig. 10 Examples of trajectory estimation 

V. CONCLUSION 

Target tracking is a typical and important application of 

sensor network usually using cooperative sensing. In this paper, 

we extend our study of target tracking problem under the ideal 

binary sensing model and introduce a real- time distributed 

target tracking algorithm without time synchronization for 

imperfect binary sensing. Extensive simulations of this 

algorithm performed under different configurations and 

scenarios are reported. We observe that our algorithm yields 

good performance and outperform other algorithms by 

estimating accurately the target location, velocity and trajectory. 
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