
 1

Abstract—We study target tracking with wireless sensor

networks in its most basic form, assuming the binary

sensing model in which each sensor can return only 1-bit

information regarding target’s presence or absence in its

sensing range. A novel, real-time and distributed target

tracking algorithm for imperfect binary sensing model is

proposed, which is an extension of our previous work on

ideal binary sensing model. The algorithm estimates the

target velocity and trajectory in a distributed and

asynchronous manner. Extensive simulations show that our

algorithm achieves high performance and outperform other

algorithms by yielding accurate estimates of the target’s

location, velocity and trajectory.

Index Terms—Target Tracking, Binary Sensor Networks,

Distributed Algorithms, Imperfect Sensing

I. INTRODUCTION

ARGET tracking is a representative and important

application for wireless sensor networks [1,2]. One of the

fundamental studies of target tracking focuses on networks

composed of sensor nodes capable of the most elementary

binary sensing that provides just one bit of information about

the target: whether it is present within the sensing range or not.

These so-called binary sensor networks constitute the simplest

type of sensor networks that can be used for target tracking.

There are two kinds of binary sensing model for binary sensor

networks: ideal binary sensing model and imperfect binary

sensing model. In ideal binary sensing model, each node can

detect exactly if the target falls in to its sensing range R (as

shown in Fig. 1(a)). In real world, detection ranges often vary

depending on the environmental conditions, such as the relative

orientation of the target and the sensor. These factors make

target detection near the boundary of the sensing range

Manuscript received March 31, 2008.

Zijian Wang. Author is with the Department of Computer Science and the

Center for Pervasive Computing and Networking, Rensselaer Polytechnic

Institute, Troy, NY 12180 USA. (e-mail: wangz@cs.rpi.edu, phone:

518-944-1156).

Eyuphan Bulut and Boleslaw Szymanski. Co-authors are with the

Department of Computer Science and the Center for Pervasive Computing and

Networking, Rensselaer Polytechnic Institute, Troy, NY 12180 USA. (e-mail:

{bulute, szymansk}@cs.rpi.edu).

much less predictable. The above observations give rise to an

imperfect binary sensing model in which the target is always

detected within an inner disk of radius Rin but is detected only

with some nonzero probability in an annulus between the inner

disk and an outer disk of radius Rout. Targets outside the outer

disk are never detected (as shown in Fig. 1(b)).

Fig. 1. Binary sensing model

A number of approaches using binary sensor networks for

target tracking have been proposed in recent years. The

algorithms presented in [3,4] first route the binary information

to a central node and then the central node applies particle filters

on information gathered from all sensors to update the target’s

track. But particle filters are expensive to compute and

transmitting data from each node to a central one is very costly

in terms of the energy needed for communication for any

non-trivial size network. In [5], each point on the target’s path is

estimated by the weighted average of the detecting sensors’

locations. Then, a line that fits best this point and the points on

the trajectory established in the recent past is used as the target

trajectory. Kim et al [6] improved the weight calculation for

each sensor node that detected the target by using the estimated

velocity to get the estimated target location. However, these two

methods require time synchronization of the entire network and

assume that the target moves at a constant velocity on a linear

trajectory. Furthermore, they only use positions of the sensor

nodes that detected the target. Actually, the absence of detection

can also provide information that can be used to improve the

tracking accuracy. In [7], both the presence and absence of the

target within the node’s sensing range were used to form local

regions that the target had to pass. These regions are bounded by

the intersecting arcs of the circles defined by the sensing ranges

of the relevant nodes. The trajectory is estimated as a piecewise

linear path with the fewest number of linear segments that

traverses all the regions in the order in which the target passed

them. However, the algorithm is centralized and complex to

compute. It also requires a designated tracker node to fuse data.

Additionally, the designated node has to accumulate

information from tracking sensors to form all regions needed to

Distributed Target Tracking with Imperfect

Binary Sensor Networks

Zijian Wang, Eyuphan Bulut, and Boleslaw K. Szymanski

Department of Computer Science and Center for Pervasive Computing and Networking, RPI, Troy, NY

T

 2

compute the estimated trajectory, which means that the tracking

is not real-time but delayed. In our previous work [8], we

proposed a distributed target tracking algorithm for ideal binary

sensing model. Each active node computes the target’s location

locally but uses cooperation to collect the sensing bits of its

neighbors. Furthermore, the algorithm tracks the target in

real–time, does not require time synchronization between

sensor nodes and can be applied to target moving in random

directions and with varied velocities.

In this paper, we extend our previous work and propose a

distributed target tracking algorithm that can be used for

imperfect binary sensing model while keeping all the other

properties of its predecessor.

The remainder of the paper is organized as follows. We

describe the network model and our assumptions in Section II.

In Section III, we first give a brief overview of our previous work

and then introduce our distributed target tracking algorithm for

imperfect binary sensing model. Section IV presents the

simulation results. Finally, we provide conclusions in section V.

II. NETWORK MODEL AND ASSUMPTIONS

The sensor network comprises N nodes placed randomly with

uniform distribution over a finite, two-dimensional planar

region to be monitored. Each node has a unique identifier and

the union of sensing regions of all network nodes guarantees

redundant coverage of the region to be monitored. Each node

generates one bit of information (“1” for target’s presence and

“0” for its absence) only at the moment when there is a change in

the presence/absence status of the target. Each time a new bit of

information is generated, the node communicates it to its

neighbors that are defined as nodes whose sensing ranges

intersect its sensing range. Each node knows its location and the

locations of its neighbors (possibly through communication at

the network deployment stage, not discussed here). Each node

has its own local timer and can time stamp sent or received

messages.

III. DISTRIBUTED TARGET TRACKING ALGORITHM

A. Overview of Algorithm for Ideal Binary Sensing Model

Basic Idea

To illustrate our basic idea, we use an example from Fig. 2,

which shows a target moving through an area covered by three

nodes with ideal binary sensing model. Initially, the target is

outside of the sensing ranges of all three nodes. Later, it moves

within the sensing range of node X at the system time t BB1BB, and

then sensing ranges of nodes Y at time tBB2BB and Z at time t BB3BB. Finally,

it leaves sensing ranges of nodes X, Y and Z, in that order, at

times t BB4BB, tBB5 BB, tBB6BB, respectively. With the ideal binary sensing model,

each node will generate a bit “1” at the time of first sensing the

target’s presence and later a bit “0” at the time of first lacking to

sense its presence and those are the times at which the target

enters and then exits sensing range of that node. Consequently,

at the transition time tBBj BB, the target must be on arc ABBjBB which is a

part of the border circle of the sensing range of the node

reporting the bit information and which can be determined

cooperatively from presence and absence bits of neighbors of

that node. Let’s consider arc ABB2BB defined at time tBB2 BB as an example.

At time t BB2BB, node Y senses the target presence within its sensing

range for the first time, so the arc is a part of the sensing range

border circle of node Y. At that time, node Y knows that the

target is within the sensing range of node X, so the target must

be on arc “abc”. Node Y knows also that the target is not within

the sensing range of node Z, so the target can not be on arc

“bcd”. Hence, node Y concludes that the target must be on arc

denoted as ABB2BB. It is important to observe that, by using this

method, the two-dimensional uncertainty of the target’s location

on the plane is reduced to a one-dimensional uncertainty within

the circle section. Shorter this circle section is, smaller the

uncertainty becomes.

Fig. 2. Illustration of the basic idea behind the algorithm

Target Tracking Algorithm

At the network deployment stage, each node establishes a list

of its neighbors. Each element of the list stores the following

information: neighbor node identifier, intersection points of the

sensing circles of the node and its neighbor, an angle

corresponding to the arc defined by these intersection points and

one-bit information generated by the neighbor, initialized to “0”.

Each time a node receives one-bit information from a neighbor,

it updates the status list. At the moment at which the node

discovers the change in the target’s presence within its sensing

range, it identifies the arc of its sensing range border circle that

the target is crossing. The target location is estimated as the

middle point of the corresponding arc.

We combine all angles corresponding to arcs defined by the

neighbor list to determine the arc that the target is crossing. The

four instances of this process are shown in Fig. 3. If the

neighbors both generated bits equal to “1”, the corresponding

central angles are combined by “&” operation that returns the

intersection of these two angles. As shown in Fig. 3(a), the

common angle of 1 3o∠ and 2 4o∠ is 2 3o∠ , so the node Y

estimates the target location as the middle point of arc “23”

when it senses that the target just moved within its sensing range.

One special instance is shown in Fig. 3(b), where the common

angle is just one of the two angles. If one neighbor status is set to

“1” while the other is set to “0”, the corresponding central

angles are combined with “-” operation that returns the angle

 3

formed from the first angle by excluding from it the second

angle. For example, in Fig. 3(c) 1 3o∠ - 2 4o∠ is equal to 1 2o∠ .

In a special case shown in Fig. 3(d), the result may consist of

two angles, 1 2o∠ and 3 4o∠ . The correct angle in this case is

chosen by considering the recent estimate of the target location.

Let FA be the sought arc’s central angle initialized to 2π (the
entire circle of the sensing border of a node). Let IN be the set of

neighbor nodes with status set to “1” and let OUT be the set of

neighbor nodes with status set to “0”. Then, the final angle

whose corresponding arc is the one that the target is crossing can

be expressed as:

& i j
j OUTi IN

FA FA angle angle
∈∈

= − (1)

where angle BBi BB is the central angle corresponding to neighbor i.

Fig. 3 Instances of angle combinations

B. Tracking Algorithm for Imperfect Binary Sensing Model

In order to make our algorithm robust, as in [7], we take a

worst-case approach to the information provided by the

imperfect binary sensing model: if a sensor output is “1”, then

we assume that the target is somewhere inside the large disk of

radius Rout; if a sensor output is “0”, then we assume that the

target is somewhere outside the small disk of radius Rin.

The main influence of the imperfect binary sensing model is

that we can no longer identify circular arcs that the target

crosses (as was possible in the ideal binary sensing model) when

there is a change in the status of the target sensed by a node.

Instead, we can only identify that the target must be within the

ring determined by Rin and Rout. However, we can use a thin ring

section which is determined by the neighbor output to

approximate the circular arcs and then estimate the position of

the target. Although this will make the one-dimensional

uncertainty of the target’s location expand to a two-dimensional

uncertainty, if the resulting ring section is short and thin, the

error still will be small.

Initialization

In the initialize procedure, each node establishes a list of its

neighbors and calculates the exact angle corresponding to a

neighbor depending on the output and the relative position of

that neighbor.

The three instances for neighbor (node Y) that outputs bit “1”

are shown in Fig. 4. As described previously, if node Y outputs

bit “1”, we can only be sure that the target is within sensing

range Rout. When node X senses there is a change in the status of

the target, it knows that the target is within the ring determined

by Rin and Rout. Depending on the relative position of node Y to

node X, there would be up to two angles corresponding to node

Y resulting from the intersection of Rin and Rout circle of node X

and Rout circle of node Y. If there are two angles existing for

node Y, we choose the angle that makes sure that the target must

fall in this angle, for example we choose 1 2b ob∠ and 1 2a oa∠

in Fig. 4 (a) and (b) as the corresponding angle to neighbor Y. If

there is only one angle existing for node Y, then it is the

corresponding angle, as shown in Fig. 4 (c).

oo

a1

a2

b1

b2

oo

a1

a2

b1

b2

oo

a1

a2

(a) (b)

(c)

X Y X Y

X Y

Fig. 4 Angle corresponding to neighbor’s output “1”

The three instances for neighbor (node Y) that outputs bit “0”

are shown in Fig. 5. As described previously, if node Y outputs

bit “0”, we can only know that the target is outside sensing range

Rin. Depending on the relative position of node Y to node X,

there would be up to two angles corresponding to node Y

resulting from the intersection of Rin and Rout circle of node X

and Rin circle of node Y. If there are two angles existing for

node Y, we choose the angle that makes sure that the target must

fall out of this angle, for example we choose
1 2a oa∠ and

1 2b ob∠ in Fig. 5 (a) and (b) as the corresponding angle to

neighbor Y. For the instance shown in Fig. 5(c), we can not

determine that the target is outside
1 2a oa∠ because the target

could be within
1 2a oa∠ no matter what node X outputs. So, if

node Y outputs bit “0”, it will be considered as a neighbor of

node X only if its Rin circle intersects with the Rin circle of node

X.

Fig. 5 Angle corresponding to neighbor’s output “0”

Location Estimate

At the moment at which the node discovers the change in the

target’s presence, it calculates the final angle corresponding to

the ring section that the target is crossing using the same angle

combination method as in the ideal binary sensing model. Then,

the thickness of the ring section is recalculated to make the

 4

estimation of target position more accurate.

We calculate the intersection points of each pair of node X’s

neighbor that output bit “1”. The intersection point that falls into

the final angle and is most far away from the center of node X

determines one of the boundaries of the ring section, which will

make the ring section as thin as possible. A new thinner ring

section is determined by this intersection point, Rout circle and

final angle, for example ring section “abcd” shown in Fig. 6 (a).

Please note that the neighbor node that outputs bit “0”

contributes only to the angle combination but not to the

thickness calculation. As shown in Fig. 6 (b), the recalculated

ring section may exclude some area into which the target may

fall, although with small probability because this area is near

Rout circle of node X. But when the final angle is small, this area

will be negligible in size. The target position is estimated as the

center point of this ring section.

Fig. 6 Ring section thickness calculation

Velocity Estimate

We use a distributed, asynchronous algorithm to estimate the

target velocity. As shown in Fig. 7, three nodes X, Y and Z work

in asynchronous time. At time tBBY1BB on node Y’s local clock, node

Y senses target’s presence for the first time and generates a bit

“1” message. The estimated location of the target is also

included in this message to save energy and bandwidth. Since

the elapsed time of radio transmission is negligible, node Z

receives this message at time t BBZ1BB on its local clock. Node Z will

also receive the message from node X at time tBBZ2 BB. Then, node Z

can use the time difference tBBZ1 BB-tBBZ2 BB and the difference of locations

reported in these two messages to estimate the target velocity.

To estimate velocity accurately, only location estimates with

relatively high accuracy are used (those are locations at the

middle points of the short and thin ring sections).

Fig. 7 Velocity estimation

Trajectory Estimate

A weighted line fitting method is used to get the target

trajectory and the weight of each estimate is defined as:

1

ring section / ring
w =

 (2)

where ring section is the area of corresponding ring section

whose middle point is the estimated target location and ring is

the area of the ring determined by circles Rin and Rout. Each

node finds the line (or two or more line sections if the target

turns around) that best fits these weighted estimated locations.

This line can be expressed as y a x b= ⋅ + allowing us to define

the corresponding minimization metric Q as:
2()i i i

i E

Q w y a x b
∈

= − ⋅ −∑ (3)

where E=[(y BB0 BB,x BB0 BB),…(y BBiBB,x BBiBB)…(y BBk BB,x BBk BB)] is a list of the estimated

target locations for which the line is fitted.

IV. SIMULATION

A. Location Estimate

The first metric that we consider is the location estimation

error, measured as the ratio of the distance between the

estimated and real target locations to the sensing range R BBoutBB.

Simulation Setup

When evaluating the impact of network density on the

location estimation accuracy, we kept the number of nodes fixed

at 800 and varied the sensing range RBBoutBB from 40 to 150 units.

The velocity of the target was adjusted proportionally to the

sensing range, making it constant if measured in sensing range

units.

Several types of trajectories have been considered: linear,

circular, and a piece-wise linear trajectory with random turns. In

order to exclude the boundary effect, all the trajectories are

confined within the square area with length of 800-RBBmaxBB in the

middle, where RBBmax BB is the maximum sensing range (150 units) in

the simulation. For the random trajectory, the length of the

trajectory is proportional to the sensing range R BBout BB . As in [5], we

set R BBin BB =0.9*R BBout BB.

Detection Probability

Two kinds of detection probabilities for imperfect binary

sensing models are used. The first one is a constant distribution

as defined in formula (4), where d is the distance between the

sensing node and the target.

out
in out

out in

in

out

R d
 R d R

R R

1 d R

0 R d

−
≤ ≤ −


≤

 ≤



 (4)

The second one is an exponential distribution defined in

formula (5), where α is its exponent parameter. In order to

make the detection probability approximately 0 when d=R BBout BB,

 5

we let out in- (R -R)
e 0.01%

α = , yielding

in out

ln(0.01%)

R R
α =

−
.

in- (d-R)

in out

in

out

e R d R

1 d R

0 d R

α ≤ ≤


≤
 ≥

 (5)

Algorithms to be Compared

We compare our algorithm with the following other four

algorithms introduced in [5] and [6]:

(1) Equal weight: target’s position is estimated as the average

of the detecting sensors’ positions.

(2) Distance weight: target’s position is estimated as the

weighted average of the detecting sensors’ positions. The

weight for each node is set at 2 2
1/ 0.25(v t)outR − ⋅ , where v is the

target velocity and t is the time expired since the target has been

detected.

(3) Duration weight: target’s position is estimated as the

weighted average of the detecting sensors’ positions. Given the

time t that expired since the node has detected the target, the

weight for each node is ln(1+t).

(4) Line fit: the initial estimate of the target position is made

as in algorithm (2), and then a line that fits the history target

position point is found and the current target position is refined

using this line and the target velocity.

Because algorithms (2) (3) and (4) are design for linear

trajectory with constant velocity, we only compare our

algorithm with them for the linear trajectory.

Simulation Results and Discussion

Fig. 8 shows the location estimate accuracy results under both

of the two detection probabilities. We can see that in both cases,

our algorithm gets the best result compared with all four other

algorithms. Additionally, the location estimate accuracies for all

the three trajectories of our algorithm are nearly the same, which

demonstrates that our algorithm works well for all kinds of

trajectories. Even for the sparse network with sensing range R BBout BB

= 40, which means that there are only five neighbor nodes

within each sensing range, the algorithm still performs well.

40 50 60 70 80 90 100 110 120 130 140 150

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
v
e
ra

g
e
 L

o
c
a
ti
o
n
 E

rr
o
r/
S
e
n
s
in

g
 R

a
n
g
e

Sensing Range

 (4)-linear

 (3)-linear

 (2)-linear

 (1)-random

 (1)-circular

 (1)-linear

 our-random

 our-circular

 our-linear

(a) The results under the first detection probability

40 50 60 70 80 90 100 110 120 130 140 150

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
 (4)-linear

 (3)-linear

 (2)-linear

 (1)-random

 (1)-circular

 (1)-linear

 our-random

 our-circular

 our-linear

A
v
e
ra

te
 L

o
c
a
ti
o
n
 E

rr
o
r/
S
e
n
s
in

g
 R

a
n
g
e

Sensing Range

(b) The results under the second detection probability

Fig. 8 The location estimate accuracy

B. Velocity Estimate

We tested the performance of velocity estimation under the

configuration of 800 nodes with RBBout BB=40 unit and R BBin BB=0.9*RBBoutBB

unit sensing ranges using the first detection probability in two

scenarios in which target moves along a linear trajectory. In the

first scenario, the target moves at a constant velocity which is

R BBoutBB/15 unit/second. In the second scenario, the velocity of the

target changes suddenly to a random value that is a multiple of

R BBoutBB/15 unit/second several times during simulation.

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

V
e
lo

c
it
y
 (
u
n
it
/s

)

Time

 estimate

 real

(a) The results for the constant velocity

0 10 20 30 40 50 60

0

2

4

6

8

10

12

14

16

V
e
lo

c
it
y
 (
u
n
it
/s

)

Time

 estimate

 real

(b) Random velocity

Fig. 9 The estimated velocity versus the real velocity

Fig. 9 shows the estimated versus real velocities as a function

of time in these two scenarios. Clearly, the estimated velocity is

very close to the real velocity in the first scenario. These two

agree also well in the second scenario, although there is some

 6

delay before the change of real velocity is reflected in its

estimate so there are some large deviations in the brief moments

immediately after the velocity change.

C. Trajectory Estimate

Fig. 10 shows the typical estimations for three trajectories

under the configuration of 800 nodes with RBBoutBB=40 units and

RBBin BB=0.9*R BBout BB using the first detection probability. We measure

the accuracy of estimated trajectory using the average

difference between the estimated and real trajectories. It is

calculated using the area of a polygon formed by these two

trajectories divided by the length of the real target trajectory.

The average accuracies are 0.287, 1.811 and 2.873, for linear,

circular and piece-wise linear trajectories with random turns,

respectively.

(a) Linear trajectory

(b) Circular trajectory

(c) Random trajectory

Fig. 10 Examples of trajectory estimation

V. CONCLUSION

Target tracking is a typical and important application of

sensor network usually using cooperative sensing. In this paper,

we extend our study of target tracking problem under the ideal

binary sensing model and introduce a real- time distributed

target tracking algorithm without time synchronization for

imperfect binary sensing. Extensive simulations of this

algorithm performed under different configurations and

scenarios are reported. We observe that our algorithm yields

good performance and outperform other algorithms by

estimating accurately the target location, velocity and trajectory.

REFERENCES

[1] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V.

Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni,

U. Arumugam, M. Nesterenko, A. Vora and M. Miyashita, “A line in the

sand: A wireless sensor network for target detection, classification, and

tracking,” The International J. of Computer and Telecom. Networking,

46:605-634, Dec. 2004.

[2] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus,

“Tracking a moving object with a binary sensor network,” Proc. ACM

SenSys, 2003.

[3] P. M. Djuric, M. Vemula, and M. F. Bugallo, “Signal processing by

particle filtering for binary sensor networks,” Proc. 11th IEEE Digital

Signal Processing Workshop & IEEE Signal Processing Education

Workshop, pp. 263-267, 2004.

[4] T. Jing, S. Hichem, and R. Cedric, “Binary variational filtering for target

tracking in sensor networks,” Proc. IEEE/SP 14th Workshop on

Statistical Signal Processing, pp. 685-689, 2007.

[5] K. Mechitov, S. Sundresh, Y. Kwon, and G. Agha, “Cooperative tracking

with binary-detection sensor networks,” Technical Report

UIUCDCS-R-2003-2379, University of Illinois at Urbana-Champaign,

September 2003.

[6] W. Kim, K. Mechitov, J.-Y. Choi, and S. Ham, “On target tracking with

binary proximity sensors,” Proc. IPSN, 2005.

[7] N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri, “Target tracking

with binary proximity sensors: Fundamental limits, minimal descriptions,

and algorithms,” Proc. ACM SenSys, 2006.

[8] Z. Wang, E. Bulut, and B. K. Szymanski, “A distributed cooperative

target tracking with binary sensor networks,” Proc. ICC2008 CoopNet

Workshop, to appear.

