Papers
You can find reviews of many of these papers on MathSciNet (subscription required).
Most of my papers are also available on the arxiv.
H-index 14 and 742 citations in Google
Scholar as of 08/12/2020.
Papers Submitted for Publication
- 58.
Vertex Partitions into an Independent Set and a Forest with Each Component Small.
Daniel W. Cranston and Matthew P. Yancey.
- 57. Coloring (P5, gem)-free graphs with Δ - 1 colors.
Daniel W. Cranston, Hudson Lafayette, and Landon Rabern.
Refereed Journal Publications
- 56.
Sparse Graphs are Near-bipartite
Daniel W. Cranston and Matthew P. Yancey.
SIAM Journal on Discrete Math. To appear.
pdf
- 55. Circular Flows in Planar Graphs.
Daniel W. Cranston and Jiaao Li.
SIAM Journal on Discrete Math. Vol. 34(1), 2020, pp. 497-519.
pdf
- 54. Degeneracy and Colorings of Squares of Planar Graphs without 4-Cycles.
Ilkyoo Choi, Daniel W. Cranston, and Théo Pierron. Combinatorica. To appear.
pdf
- 53. A Note on Bootstrap Percolation
Thresholds in Plane Tilings using Regular Polygons.
Neal Bushaw and Daniel W. Cranston. Australasian J. Combinatorics. Vol. 74(3), 2019, pp. 486-497.
pdf
- 52. The Hilton-Zhao Conjecture is True
for Graphs with Maximum Degree 4. Daniel W. Cranston and Landon Rabern. SIAM Journal on Discrete Math. 33(3),
2019, pp. 1228-1241.
(12pp)
pdf
- 51. A Characterization of (4,2)-Choosable Graphs. Daniel W.
Cranston. Journal of Graph Theory. To appear.
pdf
- 50. Acyclic Edge-coloring of Planar Graphs: Δ
Colors Suffice when Δ is Large.
Daniel W. Cranston. SIAM Journal on Discrete Math. Vol. 33(2), 2019, pp. 614-628. (14pp)
pdf
- 49. Proper Distinguishing Colorings with Few Colors for Graphs with Girth
at Least 5
Daniel W. Cranston. Electronic Journal of Combinatorics. Vol. 25(3), 2018, #P3.5.
(15pp)
pdf
- 48. Planar Graphs of Girth at least Five are Square (Δ + 2)-Choosable. Marthe Bonamy,
Daniel W. Cranston, and Luke Postle. Journal of Combinatorial Theory, Series B. Vol. 134, 2019, pp. 218-238.
(18pp) pdf
- 47. Planar Graphs are 9/2-colorable. Daniel W. Cranston and Landon
Rabern. Journal of Combinatorial Theory, Series B. Vol. 133, 2018, pp. 32-45.
pdf
slides
- 46. Beyond Degree Choosability.
Daniel W. Cranston and Landon Rabern. Electronic Journal of Combinatorics. Vol. 24(3), 2017, #P3.29.
(14pp) pdf
- 45. Short Fans and the 5/6 Bound for
Line Graphs. Daniel W. Cranston and Landon Rabern. SIAM Journal on
Discrete Math. Vol. 31(3), 2017, pp. 2039-2063.
pdf
- 44. List-coloring Claw-free Graphs with
Δ-1 colors. Daniel W. Cranston and Landon Rabern. SIAM Journal
on Discrete Math. Vol. 31(2), 2017, pp. 726-748.
(24pp) pdf
- 43. Edge Lower Bounds for List Critical Graphs, via Discharging. Daniel
W. Cranston and Landon Rabern. Combinatorica. Vol. 38(5), October 2018, pp. 1045-1065.
(17pp) pdf
- 42. Subcubic Edge Chromatic Critical Graphs have Many Edges. Daniel W.
Cranston and Landon Rabern. Journal of Graph Theory. Vol. 86(1), September 2017, pp. 122-136.
(15pp) pdf
- 41. An Introduction to the Discharging Method via Graph Coloring.
Daniel W. Cranston and Douglas B. West. Discrete Math. Vol. 340, no. 4,
April 2017, pp. 766-793. (50pp)
pdf
Extended version: A Guide to the Discharging Method. (77pp)
pdf
- 40. Coloring Squares of Planar Graphs with no 4-cycles and no 5-cycles.
Daniel W. Cranston and Robert Jaeger. Journal of Graph Theory. Vol. 85(4), August 2017, pp. 721-737. (15pp)
pdf
- 39. Modified Linear Programming and Class 0 Bounds for Graph Pebbling.
Daniel W. Cranston, Luke Postle, Chenxiao Xue, and Carl Yerger.
J. Combinatorial Optimization. 34(1), July 2017, pp. 114-132.
(19pp) pdf
- 38. Planar Graphs have Independence Ratio at least 3/13. Daniel
W. Cranston and Landon Rabern. Electronic Journal of Combinatorics. Vol. 23(3), 2016, #P3.45.
pdf
- 37. Painting Squares in Δ2-1 Shades. Daniel W.
Cranston and Landon Rabern. Electronic Journal of Combinatorics. Vol. 23(2), 2016, #P2.50.
pdf
slides
- 36. Graphs with χ=Δ have Big Cliques. Daniel W. Cranston and
Landon Rabern. SIAM Journal on Discrete Math. Vol. 29(4), 2015, pp. 1792-1814.
(24pp)
pdf
slides
- 35. The Fractional Chromatic Number of the Plane. Daniel W. Cranston and
Landon Rabern. Combinatorica. Vol. 37(5), October 2017, pp. 837-861. (20pp)
pdf
slides
- 34. A Note on Coloring Vertex-transitive Graphs. Daniel W. Cranston and
Landon Rabern. Electronic Journal of Combinatorics. Vol. 22(2), 2015, #P2.1. (8pp)
pdf
- 33. Brooks' Theorem and Beyond. Daniel W. Cranston and Landon
Rabern. J. Graph Theory. Vol. 80(3), November 2015, pp. 199-225. (25pp)
pdf
- 32.
On the Boundedness of Positive Solutions of the Reciprocal Max-Type
Difference Equation
xn=max1≤i≤t(Ain-1/xn-i)
with Periodic Parameters.
Daniel W. Cranston and Candace M. Kent. Applied Mathematics and
Computations.
Vol. 221 (2013) pp. 144-151.
pdf
slides
- 31.
The 1, 2, 3-Conjecture and 1, 2-Conjecture for Sparse Graphs.
Daniel W. Cranston, Sogol Jahanbekam, and Douglas B. West.
Discussiones Mathematicae Graph Theory.
Vol. 34(4), 2014, pp. 769–799. (29pp)
pdf
- 30.
Regular graphs of odd degree are antimagic.
Daniel W. Cranston, Yu-Chang Liang, and Xuding Zhu.
Journal of Graph Theory. Vol. 80(1), September 2015, pp. 28--33.
(5pp) pdf
- 29.
Sufficient sparseness conditions for G2 to be
(Δ+1)-choosable, when Δ ≥ 5.
Daniel W. Cranston and Riste Skrekovski. Discrete Applied Math.
Vol. 162(10), January 2014, pp. 167-176.
pdf
- 28.
Choosability of the square of a planar graph with maximum degree
four.
Daniel W. Cranston, Rok Erman, and Riste Skrekovski.
Australasian Journal of Combinatorics. Vol 59(1), June 2014, pp. 86-97.
pdf
- 27.
Game matching number of graphs.
Daniel W. Cranston, William B. Kinnersley, Suil O, and Douglas B.
West. Discrete Applied Math. Vol. 161(13-14), 2013, pp. 1828-2836.
pdf
- 26.
Coloring claw-free graphs with Δ-1 colors.
Daniel W. Cranston and Landon Rabern.
SIAM J. Discrete Math. 27(1) (2013), 534-549.
pdf
slides
- 25.
Hamiltonicity in Connected Regular Graphs.
Daniel W. Cranston and Suil O.
Information Processing Letters Vol. 113, 2013, pp. 858-860.
(5pp) pdf
- 24.
Conjectures equivalent to the Borodin-Kostochka conjecture that a priori
seem weaker.
Daniel W. Cranston and Landon Rabern. Submitted. (45pp) pdf slides
- 23.
Revolutionaries and Spies: Spy-good and Spy-bad graphs.
Jane V. Butterfield, Daniel W. Cranston, Gregory J. Puleo, Douglas B. West,
and Reza Zamani.
Theoretical Computer Science. Vol. 463 (2012), pp. 35-53. pdf
slides
- 22.
Revolutionaries and Spies on Trees and Unicyclic Graphs.
Daniel W. Cranston, Clifford Smyth, and Douglas B. West.
Journal of Combinatorics. Vol. 3(2) pp. 195-206. pdf slides
- 21.
New Results in t-tone Coloring of Graphs.
Daniel W. Cranston, Jaehoon Kim, and William B. Kinnersley.
Electronic Journal of Combinatorics. Vol. 20, (2013) #P17. (13pp) pdf
E-JC
- 20.
Chain-making Games in Grid-like Posets.
Daniel W. Cranston, Bill Kinnersley, Kevin Milans, Greg Puleo, and Douglas B.
West.
Journal of Combinatorics. Vol. 3(4) pp. 633-650.
pdf
slides
- 19.
List Colorings of K5-minor-free Graphs with Special List
Assignments.
Daniel W. Cranston, Anja Pruchnewski, Zsolt Tuza, Margit Voigt.
Journal of Graph Theory. Vol. 71(1), September 2012,
pp. 18--30. pdf
slides
- 18.
Linear Choosability of Sparse Graphs.
Daniel W. Cranston and Gexin Yu.
Discrete Math. Vol. 311, no. 17, 6 September 2011, pp. 1910-1917.
pdf
slides
- 17.
Overlap Number of Graphs.
Daniel W. Cranston, Nitish Korula, Tim LeSaulnier, Kevin Milans, Chris
Stocker, Jennifer Vandenbussche, and Douglas B. West.
Journal of Graph Theory. Vol. 70(1), May 2012, pp. 10-28.
pdf
slides
- 16.
Injective Colorings of Graphs with Low Average Degree.
Daniel W. Cranston, Seog-Jin Kim, and Gexin Yu.
Algorithmica. Vol. 60(3), July 2011, pp. 553-568.
pdf
- 15.
Injective Colorings of Sparse Graphs.
Daniel W. Cranston, Seog-Jin Kim, and Gexin Yu.
Discrete Math. Vol. 310, no. 21, 6 November 2010, pp. 2965-2973.
pdf
slides
- 14.
A New Lower Bound on the Density of Vertex Identifying Codes for the Infinite
Hexagonal Grid.
Daniel W. Cranston and Gexin Yu.
Electronic Journal of Combinatorics. Vol. 16, (2009) #R113. (15pp)
pdf
slides
E-JC
- 13.
Crossings, Colorings, and Cliques.
Michael O. Albertson, Daniel W. Cranston, and Jacob Fox.
Electronic Journal of Combinatorics. Vol. 16, (2009) #R45. (11pp)
pdf
slides
E-JC
- 12.
(7,2)-edge-choosability of 3-regular graphs.
Daniel W. Cranston and Douglas B. West.
SIAM Journal of Discrete Math. Vol. 23(2), April 2009, pp. 872-881.
pdf
- 11.
Star Coloring of Sparse Graphs.
Yuehua Bu, Daniel W. Cranston, Mickael Montassier, Andre Raspaud, and Weifan
Wang.
Journal of Graph Theory. Vol. 62(3), November 2009, pp. 201-219.
pdf
slides
- 10.
Mulitgraphs with Δ ≥ 3 are Totally-(2Δ-1)-Choosable.
Daniel W. Cranston.
Graphs and Combinatorics. Vol. 25(1), May 2009, pp. 35-40.
pdf
- 9.
Edge-choosability and Total-choosability of Planar Graphs with no Adjacent
3-cycles.
Daniel W. Cranston.
Discussiones Mathematicae Graph Theory. Vol. 29 (1), pp. 163-178.
pdf
slides
- 8.
Research at ASMSA Based on the DIMACS Biomath Program.
Charles Mullins and Daniel W. Cranston.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science. (6pp) pdf
- 7.
Regular Bipartite Graphs are Antimagic.
Daniel W. Cranston.
Journal of Graph Theory. Vol. 60, March 2009, pp. 173-182.
pdf
slides
- 6.
Choice number of complete multipartite graphs K3*3,2*(k-5),1*2 and
K4,3*2,2*(k-6),1*3.
Wenjie He, Lingmin Zhang, Daniel W. Cranston, Yufa Shen, and Guoping
Zheng.
Discrete Math. Vol 308, no. 23, 6 December 2008, pp. 5871-5877.
pdf
- 5.
Nomadic Decompositions of Bidirected Complete Graphs.
Daniel W. Cranston.
Discrete Math. Vol. 308, no. 17, 6 September 2008, pp. 3982-3985.
pdf
- 4.
Pebbling and Optimal Pebbling in Graphs.
David Bunde, Erin Chambers, Daniel W. Cranston, Kevin Milans, and Douglas
West.
Journal of Graph Theory. Vol. 57, March 2008, pp. 215-238.
pdf
- 3.
List-coloring the Square of a Subcubic Graph.
Daniel W. Cranston and Seog-Jin Kim.
Journal of Graph Theory. Vol. 57, January 2008, pp. 65-87.
pdf
slides
more slides
- 2.
Short Proofs for Cut-and-Paste Sorting of Permutations.
Daniel W. Cranston, Hal Sudborough, and Douglas West.
Discrete Math. Vol. 307, no. 22, 28 October 2007, pp. 2866-2870.
pdf
slides
- 1.
Strong Edge-Coloring of Graphs with Maximum Degree 4 using 22 Colors.
Daniel W. Cranston.
Discrete Math. Vol. 306, no. 21, 6 November 2006, pp. 2772-2778.
pdf
- 0.
Coloring and Labeling Problems in Graphs.
Daniel W. Cranston.
Doctoral Thesis, May 2007.
pdf
Back to my homepage.