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Key Issues

Is there spatial pattern? Spatial pattern implies that
observations from units closer to each other are more
similar than those recorded in units farther away. If no
pattern, i.e. i.i.d data, values are randomly arranged.
Do we want to smooth the data? Perhaps to adjust for low
population sizes (or sample sizes) in certain units? A
surface of expected counts, the higher values are pulled
down, and lower up! How much do we want to smooth?
Inference for new areal units? Is prediction meaningful
here? If we modify the areal units to new units (e.g. from
zip codes to county values), what can we say about the
new counts we expect for the latter given those for the
former? This is the Modifiable Areal Unit Problem (MAUP)
or Misalignment.
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Areal unit data
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Proximity matrices

W (proximity matrix), entries wij , (wii = 0); choices for wij :

wij = 1 if i, j share a common boundary (possibly a
common vertex)
wij is an inverse distance between units
wij = 1 if distance between units is ≤ K
wij = 1 for m nearest neighbors.

W need not be symmetric.

W̃ : standardize row i by wi+ =
∑

j wij (row stochastic but
need not be symmetric).

W elements often called ‘weights’; nicer interpretation?
Larger W if j is closer to i.

Could also define first-order neighbors W (1), second-order
neighbors W (2), etc.
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Proximity matrices

Note that proximity matrices are user-defined.

We can define distance intervals, (0, d1], (d1, d2], and so
on.

First order neighbors: all units within distance d1.

First order proximity matrix W (1). Analogous to W , w(1)
ij = 1

if i and j are first order neighbors; 0 otherwise.

Second order neighbors: all units within distance d2, but
separated by more than d1.

Second order proximity matrix W (2); w(2)
ij = 1 if i and j are

second order neighbors; 0 otherwise

And so on...
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Measures of spatial association

There are analogues for areal data of the empirical
correlation function and the variogram.

Moran’s I: essentially an “areal covariogram”

I =
n
∑

i

∑
j wij(Yi − Ȳ )(Yj − Ȳ )

(
∑

i 6=j wij)
∑

i(Yi − Ȳ )2

I is not supported on [−1, 1].

Geary’s C: essentially an “areal variogram”

C =
(n− 1)

∑
i

∑
j wij(Yi − Yj)2

(
∑

i 6=j wij)
∑

i(Yi − Ȳ )2

Both are asymptotically normal if Yi are i.i.d., the first with
mean −1/(n− 1) and the second with mean 1.

Ratios of quadratic forms
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Measures of spatial association

Relates to ‘Exploratory measure of spatial association’,
rather than ‘test of spatial significance’.
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Measures of spatial association

Choropleth map of 1999 average verbal SAT scores across the
48 US (lower) contiguous states.
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Measures of spatial association

For these data, the spatial.cor function in
S+SpatialStats gives a Moran’s I of 0.5833, with
associated standard error estimate 0.0920⇒ very strong
evidence against H0 : no spatial correlation.
spatial.cor also gives a Geary’s C of 0.3775, with
associated standard error estimate 0.1008⇒ again, very
strong evidence against H0 (departure from 1)
Warning: These data have not been adjusted for
covariates, such as the proportion of students who take the
exam (Midwestern colleges have historically relied on the
ACT, not the SAT; only the best and brightest students in
these states would bother taking the SAT)
⇒ the map, I, and C all motivate the search for spatial
covariates!
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Correlogram (via Moran’s I)

Correlogram (via Moran’s I)
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Correlogram (via Moran’s I)

The areal correlogram is a useful tool to study spatial
association with areal data.

Working with I, we can replace wij with w(1)
ij taken from

W (1) and compute→ I(1)

Next replace wij with w(2)
ij taken from W (2) and compute

→ I(2), etc.

Plot I(r) vs. r

If there is spatial pattern, we expect I(r) to decline in r
initially and then vary about 0.

spatial analogue of the temporal lag autocorrelation plot
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Rasterized binary data map

With large regular grids, we may want to study directional
association (say, east-west, north-south, etc).
Rasterized maps of binary land use in eastern
Madagascar, with 25,000 1km X 1km pixels.
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Rasterized binary data map

Rasterized binary data map
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Binary data correlogram

A version for a binary map, using two-way tables and log
odds ratios at the pixel level.
Note strongest pattern is to the north (N), but in no
direction are the values ≈ 0 even at 40 km.
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Spatial smoothers

Spatial smoothers

To smooth Yi, replace with Ŷi =
∑

i wijYj
wi+

Note: K-nearest
neighbors (KNN) regression falls within this framework.

More generally, we can include the actual value Yi

(1− α)Yi + αŶi

Linear (convex) combination, shrinkage

Model-based smoothing, i.e. mean of the predictive
distribution, e.g.,
E(Yi|{Yj , j = 1, 2, ..., n})
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Markov Random Fields

First, consider Y = (y1, y2, ..., yn) and consider the set
{p(yi | yj , j 6= i)}
We know p(y1, y2, ...yn) determines {p(yi|yj , j 6= i)} (full
conditional distributions)
??? Does {p(yi | yj , j 6= i)} determine p(y1, y2, ...yn)? If so,
we call the joint distribution a Markov Random Field.
In general we cannot write down an arbitrary set of
conditionals and assert that they determine the joint
distribution. Example:

Y1 |Y2 ∼ N(α0 + α1Y2, σ
2
1)

Y2 |Y1 ∼ N(β0 + β1Y
3
1 , σ

2
2).

The first equation implies that E[Y1] = α0 + α1E[Y2], i.e.,
E[Y1] is linear in E[Y2]. The second equation implies that
E[Y2] = β0 + β1E[Y 3

1 ], i.e. E[Y2] is linear in E[Y 3
1 ]. Clearly

this isn’t true in general.
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Markov Random Fields

f(y1|y2) and f(y2|y1) are incompatible with regards to
determining f(y1, y2). Hence no joint distribution.
Also p(y1, . . . , yn) may be improper (does not integrate to
1) even if all the full conditionals are proper.

p(y1, y2) ∝ exp

{
−1

2
(y1 − y2)2

}
But p(Y2 |Y1) ∝ N(Y1, 1) and p(Y1 |Y2) ∝ N(Y2, 1). Yet the
joint distribution is improper.
Compatibility: Brook’s Lemma. Let y0 = (y10, . . . , yn0) be
any fixed point in the support of p(·).

p(y1, . . . , yn) =
p(y1 | y2, . . . , yn)

p(y10 | y2, . . . , yn)

p(y2 | y10, y3, . . . , yn)

p(y20 | y10, y3, . . . , yn)

. . .
p(yn | y10, . . . , yn−1,0)
p(yn0 | y10, . . . , yn−1,0)

p(y10, . . . , yn0).

If LHS is proper, the fact that it integrates to 1 determines
the normalizing constant!
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Markov Random Fields

Proof: We can rely on the results from conditional probabilities,
i.e., P (A|B)P (B) = P (AB) = P (B|A)P (A), and proceed via.
induction. Consider the case with 2 arguments. Then, we have:

p(y1, y2) = p(y1|y2)p(y2) = p(y1|y2)
p(y2|y1,0)p(y1,0)

p(y1,0|y2)

=
p(y1|y2)
p(y1,0|y2)

p(y2|y1,0)
p(y2,0|y1,0)

p(y2,0|y1,0)p(y1,0)

=
p(y1|y2)
p(y1,0|y2)

p(y2|y1,0)
p(y2,0|y1,0)

p(y1,0, y2,0)

Following this technique, one can prove this for n arguments,
given that it holds for n− 1 arguments.
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Local specifications

Hence, p(y1, . . . , yn) id determined by the full conditional
distributions, and the joint density is determined up to a
proportionality constant.
Suppose we want:

p(yi | yj , j 6= i) = p(yi | yj ∈ ∂i)

When does the set {p(yi | yj ∈ ∂i)} uniquely determine
p(y1, y2, ...yn)?
To answer this question, we need the following important
concepts:

Clique: A clique is a set of cells such that each element is a
neighbor of every other element. We use notation i ∼ j if i
is a neighbor of j and j is a neighbor of i.
Potential: A potential of order k is a function of k arguments
that is exchangeable in these arguments. The arguments of
the potential would be the values taken by variables
associated with the cells for a clique of size k.
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Local specifications

For clique size say 2, i ∼ j means j ∼ i
For continuous data: Q(yi, yj) = yiyj (⇔ (yi − yj)2)
For binary data:
Q(yi, yj) = I(yi = yj) = yiyj + (1− yi)(1− yj)
Cliques of size 1⇔ independence
Cliques of size 2⇔ pairwise difference form

p(y1, y2, ...yn) ∝ exp

− 1

2τ2

∑
i,j

(yi − yj)2I(i ∼ j)


and therefore p(yi | yj , j 6= i) = N(

∑
j∈∂i yi/mi, τ

2/mi),
where mi is the number of neighbors of i
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Local specifications

Gibbs distribution: p(y1, . . . , yn) is a Gibbs distribution if it is
a function of the yi’s only through potentials on cliques:

p(y1, . . . , yn) ∝ exp

−γ∑
k

∑
α∈Mk

φ(k)(yα1 , . . . , yαk
)

 ,

where φ(k) is a potential of order k, Mk is the set of all
cliques of size k and is indexed by α, and γ > 0 is a scale
parameter.
Hammersley-Clifford Theorem: If we have a Markov
Random Field (i.e., {p(yi | yj ∈ ∂i)} uniquely determine
p(y1, y2, ...yn)), then the latter is a Gibbs distribution
Geman and Geman (1984) result: (Converse of HC) If we
have a joint Gibbs distribution, then we have a Markov
Random Field
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CAR models

Conditionally Auto-Regressive (CAR) models

Gaussian (autonormal) case

p(yi | yj , j 6= i) = N

∑
j

bijyj , τ
2
i


Using Brook’s Lemma we can obtain

p(y1, y2, ...yn) ∝ exp

{
−1

2
y′D−1(I −B)y

}
where B = {bij} and D is diagonal with Dii = τ2i .
Suggests a multivariate normal distribution with µy = 0 and
ΣY = (I −B)−1D

D−1(I −B) symmetric requires

bij
τ2i

=
bji
τ2j

for all i, j
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CAR models

Clearly, B is not symmetric.
Returning to W (assumed to be symmetric), choose
bij = wij/wi+ and τ2i = τ2/wi+, so

p(y1, y2, ...yn) ∝ exp{− 1

2τ2
y′(Dw −W )y}

where Dw is diagonal with (Dw)ii = wi+ and thus ,with a
little algebra,

p(y1, y2, ...yn) ∝ exp

− 1

2τ2

∑
i 6=j

wij(yi − yj)2


Caution: (Dw −W )1 = 0. Intrinsic autoregressive (IAR)
model; improper, so requires a constraint (e.g.,

∑
i yi = 0)

Not a valid data model, but only as a random effects model!
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CAR models

The impropriety can be remedied in an obvious way.
Redefine the CAR as:

p(y1, y2, ...yn) ∝ |Dw − ρW |1/2 exp{− 1

2τ2
y′(Dw − ρW )y},

where ρ is chosen to make Dw − ρW non-singular. This is
guaranteed if ρ ∈

(
1/λ(1), 1

)
, where λ(1) is the minimum

eigenvalue of D−1/2WD−1/2. In practice, the bound
ρ ∈ (0, 1) is often preferred.

Proper: D − ρW ⇔ yi | yj , j 6= i ∼ N
(
ρ
∑

j
wij

wi+
yj ,

τ2

wi+

)
ρ
∑

j
wij

wi+
yj is defined as the ‘reaction function’, i.e. ρ is the

expected proportional ‘reaction’ of Yi to
∑

j
wij

wi+
Yj .
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CAR models

To ρ or not to ρ?

Advantages:
makes distribution proper
adds parametric flexibility
ρ = 0 interpretable as independence

Disadvantages:
why should we expect yi to be a proportion of average of
neighbors - sensible spatial interpretation?
calibration of ρ as a correlation, e.g.,

ρ = 0.80 yields 0.1 ≤ I ≤ 0.15,

ρ = 0.90 yields 0.2 ≤ I ≤ 0.25,

ρ = 0.99 yields I ≤ 0.5

So, used with random effects, scope of spatial pattern
limited
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Example of a CAR model in disease mapping

Example of a hierarchical model with CAR effects.

Consider the areal data disease mapping model:

Yi | µi
ind∼ Po (Ei e

µi) , where
Yi = observed disease count,
Ei = expected count (known), and
µi = x′iβ + φi; the xi are explanatory variables

The φi capture regional clustering via a conditionally
autoregressive (CAR) prior,

φi | φj 6=i ∼ N
(
φ̄i ,

τ2

mi

)
, where φ̄i =

1

mi

∑
j∈∂i

φj ;

∂i is the set of “neighbors” of region i, and mi is the
number of these neighbors.
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