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Testing Independence

Previously, we looked at RR = OR = 1 to determine
independence.

Now, lets revisit the Pearson and Likelihood Ratio
Chi-Squared tests.

Pearson’s Chi-Square

X 2 =
2

∑

i=1

2
∑

j=1

(Oij − Eij)
2

Eij

Likelihood Ratio Test

G 2 =

2
∑

i=1

2
∑

j=1

Oij log(
Oij

Eij
)

Since both X 2 and G 2 are distributed as approximately χ2, in
order to draw inference about the significance of both, we
need the degrees of freedom.
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Degrees of Freedom

A way to think about degrees of freedom is to relate it to the
number of “pieces” of information you need to complete a
table.

More specifically, Degrees of Freedom (df ) equals

df = Number of cells - Number of Constraints - Number of
Parameters Estimated

First, lets consider Pearson’s Chi-Square

We will derive df for the Cross Sectional Design using this
definition.
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For the general I × J contingency table, there are a total of IJ cells.

Under the Multinomial sampling design, the only constraint is that
∑

pij = 1 so there is only one constraint.

Under the hypothesis on interest, we are interested in estimating the
marginal probabilities.

Since the sample size is fixed, we only need to estimate I − 1
marginal row probabilities.
Namely p1·, p2·, . . . , p(I−1)·

Likewise, we only need to estimate J − 1 column marginals.

Thus,

df = IJ − Number of Constraints - Number of Parameters Estimated
df = IJ − 1− ((I − 1) + (J − 1)) = IJ − I − J + 1 = (I − 1)(J − 1)
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Degrees of Freedom for the Product binomial Sampling

Again, there are IJ cells in our I × J contingency table

For the Prospective design, we have constraints that each
rows probability sums to 1, so there are I constraints.

Although we did not state it directly before, the hypothesis of
interest is the “Homogeneity” hypothesis. That is, that
H0 = pij = p

·j for j = 1, 2, . . . J. Therefore, there are J − 1
estimated marginal probabilities.

Then the DF equals,

df = IJ − I − (J − 1) = IJ − I − J + 1 = (I − 1)(J − 1)
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In summary for Pearson’s Chi-Square

For the remaining study design (Case-Control), the degrees of
freedom can be shown to be (I − 1)(J − 1).

Therefore, regardless of the sample design, the df for any
I × J contingency table using Pearson’s Chi-Square is
(I − 1)(J − 1).

For the 2× 2 tables we have been studying,

df = (2− 1)× (2− 1) = 1
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Likelihood Ratio Test

If you recall, we described the df for the likelihood ratio test
as the difference in the number of parameters estimated under
the alternative minus the number estimated under the null.

Under the multinomial sampling design, the alternative model
is that pij 6= pi ·p·j and as such,

∑

i

∑

j pij = 1. Thus, there is
only one constraint and we estimate IJ − 1 cell probabilities.

Under the null, we have pij = pi ·p·j which is determined by
(I − 1) and (J − 1) marginals. Thus, we only estimate
[(I − 1) + (J − 1)] marginal probabilities.

Thus, the DF of G 2 is

df = IJ − 1− [(I − 1) + (J − 1)] = (I − 1)(J − 1)

.
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Comparison of X 2 and G
2

Pearson and the LRT have same limiting distribution. (both
converge in distribution to χ2 with df = (I − 1)(J − 1) as
n → ∞)

Pearson’s is score based

LRT combines the information of the null and alternative
hypotheses

So which one is best?
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Choosing X
2 or G 2

X 2 converges in distribution faster than G 2.

When n/IJ < 5 (less than 5 per cell), G 2 usually is not a
good estimate.

When I or J is large, Pearson’s usually is valid when some
Eij < 5 but most are greater than 5.

Therefore, for the general I × J table, you can usually just use
Pearson’s Chi Square.

We will now develop a test for small samples.
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Small Samples

Question: Is there Gender Bias in Jury Selection?

SELECTED

FOR JURY

|YES |NO | Total

G ---------+--------+--------+

E | | |

N FEMALE | 1 | 9 | 10

D | | |

E ---------+--------+--------+

R | | |

MALE | 11 | 9 | 20

| | |

---------+--------+--------+

Total 12 18 30

The sampling distribution for the this study design is the
hypergeometric. However, we will adapt the study design into a
small sample exact test.
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In this study, we COULD consider the column totals fixed by design
(since the jury has to have 12 members), and the row totals random.

Then, the columns are independent binomials.

Using SAS

data one;

input sex $ jury $ count;

cards;

1FEMALE 1YES 1

1FEMALE 2NO 9

2MALE 1YES 11

2MALE 2NO 9

;

proc freq;

table sex*jury/expected chisq;

weight count;

run;
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TABLE OF SEX BY JURY

SEX JURY

Frequency|

Expected |

Percent |

Row Pct |

Col Pct |1YES |2NO | Total

---------+--------+--------+

1FEMALE | 1 | 9 | 10

| 4 | 6 |

| 3.33 | 30.00 | 33.33

| 10.00 | 90.00 |

| 8.33 | 50.00 |

---------+--------+--------+

2MALE | 11 | 9 | 20

| 8 | 12 |

| 36.67 | 30.00 | 66.67

| 55.00 | 45.00 |

| 91.67 | 50.00 |

---------+--------+--------+

Total 12 18 30

40.00 60.00 100.00
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STATISTICS FOR TABLE OF SEX BY JURY

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 5.6250 0.0177

Likelihood Ratio Chi-Square 1 6.3535 0.0117

Continuity Adj. Chi-Square 1 3.9063 0.0481

Mantel-Haenszel Chi-Square 1 5.4375 0.0197

Phi Coefficient -0.4330

Contingency Coefficient 0.3974

Cramer’s V -0.4330

WARNING: 25% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.
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A rule of thumb in SAS is that the Large Sample
approximations for the likelihood ratio and Pearson’s
Chi-Square are not very good if the sample size is small

WARNING: 25% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Suppose for a cross sectional, prospective, or case-control
design:
some of the cell counts are small (so that Eij < 5), and you
want to make inferences about the OR.

A popular technique with small samples is to fix both margins
of the (2× 2) table, and use ‘Exact Tests’ and confidence
intervals.
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Exact Tests - For the 2× 2 table

Suppose, then, for:

1 A prospective study (rows margins fixed) we further condition
on the column margins

2 A case-control study (column margins fixed) we further
condition on the rows margins

3 A cross sectional (total fixed) we condition on both row and
column margins.

4 In all cases, we have a conditional distribution with row and
column margins fixed.
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Question

What is the conditional distribution of Y11 given both row and
column margins are fixed.

First note, unlike the other distributions discussed, since the margins
are fixed and known, we will show that this conditional distribution
is a function of only one unknown parameter

This follows from what we have seen:

If the total sample size is fixed (cross sectional), we have 3 unknown
parameters, (p11, p12, p21)

If one of the margins is fixed (prospective, or case-control study),
we have two unknown parameters, (p1, p2) or (π1, π2)

Intuitively, given we know both margins, if we know one cell count
(say Y11), then we can figure out the other 3 cell counts by
subtraction. This implies that we can characterize the conditional
distribution by 1 parameter.

Thus, given the margins are fixed, we only need to consider one cell
count as random, and, by convention Y11 is usually chosen. (you
could have chosen any of the 4 cell counts, though).
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Can you complete all of the observed cell counts given the
information available? Yes.

Column
1 2

Row 1 Y11 Y1·

2 Y2·

Y
·1 Y

·2 N = n
··
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Question: Then, what is the conditional distribution of Y11 given
both row and column margins are fixed.

P[Y11 = y11|y1·, y·1, y··,OR ]

After some tedious algebra, you can show it is non-central
hypergeometric, i.e.,

P[Y11 = y11|y1·, y·1, y··,OR ] =





y
·1

y11









y
··
− y

·1

y1· − y11



(OR)y11

∑y
·1
ℓ=0





y
·1

ℓ









y
··
− y

·1

y1· − ℓ



(OR)ℓ

where, for all designs,

OR =
O11O22

O21O12
,

We denote the distribution of Y11 by

(Y11|y1·, y·1, y··) ∼ HG(y
··
, y

·1, y1·,OR)
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Notes about non-central hypergeometric

Again, unlike the other distributions discussed, since the
margins are fixed and known, the non-central hypergeometric
is a function of only one unknown parameter, the OR.

Thus, the conditional distribution given both margins is called
non-central hypergeometric.

Given both margins are fixed, if you know one of the 4 cells of
the table, then you know all 4 cells (only one of the 4 counts
in the table is non-redundant).

Under the null H0 OR=1, the non-central hypergeometric is
called the central hypergeometric or just the hypergeometric.

We will use the hypergeometric distribution (i.e., the
non-central hypergeometric under H0 OR=1) to obtain an
‘Exact’ Test for H0 OR=1. This test is appropriate in small
samples.
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Fisher’s Exact Test

Let’s consider the following table with both Row and Column
totals fixed.

Column
1 2

Row 1 Y11 Y12 Y1·

2 Y21 Y22 Y2·

Y
·1 Y

·2 N = Y
··

Many define the {1, 1} cell as the “Pivot Cell”.

Before we consider the sampling distribution, lets consider the
constraints on the Pivot Cell.
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The Values L1 and L2

We know that Y11 must not exceed the marginal totals, Y
·1 or

Y1·

That is,

Y11 ≤ Y
·1 and Y11 ≤ Y1·

Therefore, the largest value Y11 can assume can be denoted
as L2 in which

L2 = min(Y
·1,Y1·)

Similarly, the minimum value of Y11 is also constrained.

It is harder to visualize, but the minimum value Y11 can
assume, denoted as L1, is

L1 = max(0,Y1· + Y
·1 − Y

··
)
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Example

Suppose you observe the following marginal distribution.

Column
1 2

Row 1 y11 6
2 3

5 4 9

We want to determine L1 and L2

So that we can determine the values the Pivot Cell can
assume.

The values in which the Pivot Cell can assume are used in the
significance testing.
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Based on the previous slide’s table, L1 and L2 are

L1 = max(0,Y1· + Y
·1 − Y

··
)

= max(0, 6 + 5− 9)
= max(0, 2)
= 2

and
L2 = min(Y1·,Y·1)

= min(6, 5)
= 5

Therefore, the values that Y11 can assume are {2, 3, 4, 5}.
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All Possible Contingency Tables

Since each table is uniquely defined by the pivot cell, the following
tables are all of the possible configurations.

ORE = 0.078 Column
1 2

Row 1 2 4 6
2 3 0 3

5 4 9

OR = 0.5 Column
1 2

Row 1 3 3 6
2 2 1 3

5 4 9

OR = 4 Column
1 2

Row 1 4 2 6
2 1 2 3

5 4 9

ORE = 25.7 ** Column
1 2

Row 1 5 1 6
2 0 3 3

5 4 9

Suppose the table observed is flagged with “**”.

How do we know if the Rows and Columns are independent?

Note, as Y11 increases, so does the OR. 24 / 50



Test Statistics

The probability of observing any given table is

P[Y11 = y11|Y1·,Y2·,Y·1,Y·2] =





y
·1

y11









y
·2

y12









y
··

y1·





The probability of observing our table is

P[Y11 = 5|6, 3, 5, 4] =





5
5









4
1









9
6





= 4
84

= 0.0476

We now need to develop tests to determine whether or not this
arrangement supports or rejects independence.
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One-sided Tests

Suppose we want to test

HO :OR = 1 or E (Y11) = y1·y·1/y··

versus

HA:OR > 1 or E (Y11) > y1·y·1/y··

Let y11,obs be the observed value of Y11; we will reject the null
in favor of the alternative if y11,obs is large (recall from the
example, as Y11 increases, so does the OR).

Then, the exact p−value (one-sided) is the sum of the table
probabilities in which the pivot cell is greater than or equal to
the Y11,obs .

26 / 50



Or more specifically, The exact p−value looks at the upper
tail:

p − value = P [Y11 ≥ y11,obs |HO :OR = 1]

=
∑L2=min(y

·1,y1·)
ℓ=y11,obs





y
·1

ℓ









y
·2

y1· − ℓ









y
··

y1·





Note that ℓ increments the values of Y11 to produce the tables
as extreme (ℓ = Y11,obs and more extreme (approaching L2)

Note y1· = y11 + y12 so y12 = y1· − y11.
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Suppose we want to test

HO :OR = 1 or E (Y11) = y1·y·1/y··

versus

HA:OR < 1 or E (Y11) < y1·y·1/y··

We will reject the null in favor of the alternative if y11,obs is small.

Then, the exact p−value looks at the lower tail:

p − value = P[Y11 ≤ y11,obs |HO :OR = 1]

=
∑y11,obs

ℓ=L1=max(0,y1·+y
·1−y

··
)





y
·1

ℓ









y
·2

y1· − ℓ









y
··

y1·
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Fisher’s Exact (2-sided) Test

Suppose we want to test

HO :OR = 1 or E (Y11) = y1·y·1/y··

versus

HA:OR 6= 1 or E (Y11) 6= y1·y·1/y··

The exact p−value here is the exact 2-sided p-value is

P





seeing a result as likely or
less likely than the observed
result in either direction

∣

∣

∣

∣

∣

H0 : OR = 1



 .

29 / 50



In general, to calculate the 2-sided p−value,

1 Calculate the probability of the observed result under the null

π = P [Y11 = y11,obs |HO :OR = 1]

=





y
·1

y11,obs









y
··
− y

·1

y1· − y11,obs









y
··

y1·
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1 Recall, Y11 can take on the values

max(0, y1· + y
·1 − y

··
) ≤ Y11 ≤ min(y1·, y·1),

Calculate the probabilities of all of these values,

πℓ = P [Y11 = ℓ|HO :OR = 1]

2 Sum the probabilities πℓ in (2.) that are less than or equal to
the observed probability π in (1.)

p − value =

min(y1·,y·1)
∑

ℓ=max(0,y1·+y
·1−y

··
)

πℓI (πℓ ≤ π)

where

I (πℓ ≤ π) =

{

1 if πℓ ≤ π
0 if πℓ > π
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Using our example “By Hand”

Recall, P(Y11,obs = 5) = 0.0476. Below are the calculations of the
other three tables.

P [Y11 = 2|6, 3, 5, 4] =





5
2









4
4









9
6





= 10
84

= 0.1190

P [Y11 = 3|6, 3, 5, 4] =





5
3









4
3









9
6





= 40
84

= 0.4762
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P [Y11 = 4|6, 3, 5, 4] =





5
4









4
2









9
6





= 30
84

= 0.3571

Then, for HA:OR < 1,
p−value = 0.1190 + 0.4762 + 0.3571 + 0.0476 = 1.0

for HA:OR > 1,
p−value = 0.0476

For HA:OR 6= 1,
p−value = 0.0476 (we observed the most extreme
arrangement)
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Using SAS

data test;

input row $ col$ count;

cards;

1row 1col 5

1row 2col 1

2row 1col 0

2row 2col 3

;

run;

proc freq;

tables row*col/exact;

weight count;

run;
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Frequency|

Percent |

Row Pct |

Col Pct |1col |2col | Total

-----------------------------------

1row | 5 | 1 | 6

| 55.56 | 11.11 | 66.67

| 83.33 | 16.67 |

| 100.00 | 25.00 |

----------------------------

2row | 0 | 3 | 3

| 0.00 | 33.33 | 33.33

| 0.00 | 100.00 |

| 0.00 | 75.00 |

---------|------------------

Total 5 4 9

55.56 44.44 100.00
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Statistics for Table of row by col

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 5.6250 0.0177

Likelihood Ratio Chi-Square 1 6.9586 0.0083

Continuity Adj. Chi-Square 1 2.7563 0.0969

Mantel-Haenszel Chi-Square 1 5.0000 0.0253

Phi Coefficient 0.7906

Contingency Coefficient 0.6202

Cramer’s V 0.7906

WARNING: 100% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.
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Fisher’s Exact Test

----------------------------------

Cell (1,1) Frequency (F) 5

Left-sided Pr <= F 1.0000

Right-sided Pr >= F 0.0476

Table Probability (P) 0.0476

Two-sided Pr <= P 0.0476

Sample Size = 9
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General Notes about Fisher’s Exact Test

Fisher’s Exact p−values is one of the most frequently used
p−values you will find in the medical literature (for “good
studies”)

However, Cruess (1989) reviewed 201 scientific articles
published during 1988 in The American Journal of Tropical

Medicine and Hygiene and found 148 articles with at least one
statistical error. The most common error was found to be the
use of a large sample χ2 p−value when the sample was too
small for the approximation.

Since the values of Y11 is discrete (highly discrete given a
small sample size such as in our example), the actual number
of possible p−values is limited.

For example, Given our example margins,
{0.0476, 0.1666, 0.5237, 1.0} are our only potential values.
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The hypergeometric (when OR = 1) is symmetrically defined in the rows and columns.

Variable (Y )
1 2

1
Variable (X )

2

Y11 Y12 Y1·

Y21 Y22 Y2·

Y
·1 Y

·2 Y
··
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In particular, under H0 : OR = 1

P [Y11 = y11|OR = 1] =





y
·1

y11









y
·2

y21









y
··

y1·





=





y1·
y11









y2·
y21









y
··

y
·1
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Expected Value of Y11 under the null

Recall, for the hypergeometric distribution, the margins Yi ·,
Y
·j and Y

··
are assumed known and fixed.

From the theory of the hypergeometric distribution, under the
null of no association, the mean is

E (Yij |OR = 1) =
yi ·y·j

y
··

For other distributions, we could not write the expected value
in terms of the possibly random Yi · and/or Y·j . Since
(Yi ·,Y·j ,Y··

) are known for the hypergeometric, we can write
the expected value in terms of them.
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Thus, the null H0:OR = 1 can be rewritten as

H0:E (Yij |OR = 1) =
yi ·y·j

y
··

,

Recall, for all other distribution discussed, under no
association,

Eij =
[i th row total (yi ·)] · [j

th column total (y
·j)]

[total sample size (y
··
) ]

,

is the estimate of E (Yij) under the null of no association

However, under independence, Eij is the exact conditional
mean (not an estimate) since yi · and y

·j are both fixed.
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Miscellaneous notes regarding X
2 Test

Suppose we have the following

p1 = .4

and
p2 = .6

where p1 and p2 are the true success rates for a prospective
study.

Thus, the true odds ratio is

OR =
.40 · .80

.20 · .60
= 2

2

3
= 2.666
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Potential Samples

Suppose we randomized 50 subjects (25 in each group) and
observe the following table

Success Failure Total

Group 1 10 15 25
Group 2 5 20 25

Total 15 35 50

And use SAS to test p1 = p2
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options nocenter;

data one;

input row col count;

cards;

1 1 10

1 2 15

2 1 5

2 2 20

;

run;

proc freq data=one;

tables row*col/chisq measures;

weight count;

run;
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Selected Results

The FREQ Procedure

Fisher’s Exact Test

----------------------------------

Cell (1,1) Frequency (F) 10

Left-sided Pr <= F 0.9689

Right-sided Pr >= F 0.1083

Table Probability (P) 0.0772

Two-sided Pr <= P 0.2165

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits

-----------------------------------------------------------------

Case-Control (Odds Ratio) 2.6667 0.7525 9.4497

Cohort (Col1 Risk) 2.0000 0.7976 5.0151

Cohort (Col2 Risk) 0.7500 0.5153 1.0916

Sample Size = 50
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Example Continued

For this trial, we would fail to reject the null hypothesis
(p=0.2165).

However, our estimated odds ratio is 2.6666 and relative risk
is 2.0

What would happen if our sample size was larger?
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data two;

input row col count;

cards;

1 1 40

1 2 60

2 1 20

2 2 80

;

run;

proc freq data=two;

tables row*col/chisq measures;

weight count;

run;
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Fisher’s Exact Test

----------------------------------

Cell (1,1) Frequency (F) 40

Left-sided Pr <= F 0.9995

Right-sided Pr >= F 0.0016

Table Probability (P) 0.0010

Two-sided Pr <= P 0.0032

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits

-----------------------------------------------------------------

Case-Control (Odds Ratio) 2.6667 1.4166 5.0199

Cohort (Col1 Risk) 2.0000 1.2630 3.1670

Cohort (Col2 Risk) 0.7500 0.6217 0.9048

Sample Size = 200
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Moral of the Story?

Both examples have the exact same underlying probability
distribution

Both examples have the exact same estimates for OR and RR

The statistical significance differed

A Chi-square (or as presented Fisher’s exact)’s p−value does
not indicate how strong an association is in the data (i.e., a
smaller p-value, say < 0.001, does not mean there is a
”strong” treatment effect)

It simply indicates that you have evidence for the alternative
(i.e., p1 6= p2).

You must use a measure of association to quantify this
difference

50 / 50


