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Recall from previous lecture

For a contingency table resulting from a prospective study, we
derived

Eij =
[i th row total] · [j th column total]

[total sample size (n1 + n2) ]

and the corresponding likelihood ratio test

G 2 = 2

2∑

i=1

2∑

j=1

Oij log

(
Oij

Eij

)

where Oij is the observed cell count in cell i , j
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PEARSON’S CHI-SQUARE

Another Statistic which is a function of the Oij ’s and Eij ’s is
PEARSON’S CHI-SQUARE.

However, as we will see, Pearson’s Chi-Square is actually just
a Z−statistic for testing

H0:p1 = p2 = p versus HA:p1 6= p2 ,

where the standard error is calculated under the null.
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Recall, the WALD statistic is

ZW =
(p̂1 − p̂2)− 0√

n−1
1 p̂1(1− p̂1) + n−1

2 p̂2(1− p̂2)

Note that we used the variance of (p̂1 − p̂2) calculated under
the alternative p1 6= p2.

Under the null p1 = p2 = p, the variance simplifies to

Var(p̂1 − p̂2) = p1(1−p1)
n1

+ p2(1−p2)
n2

= p(1− p)
[

1
n1

+ 1
n2

]
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Then, we can use the following test statistic (with the
variance estimated under the null),

ZS =
(p̂1 − p̂2)− 0√

p̃(1− p̃)[n−1
1 + n−1

2 ]
∼ N(0, 1)

where the pooled estimate is used in the variance

p̃ =

(
Y1 + Y2

n1 + n2

)
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If we square ZS , we get

X 2 = Z 2
S =


 p̂1 − p̂2√

p̃(1− p̃)[n−1
1 + n−1

2 ]




2

∼ χ2
1

under the null hypothesis.

After some algebra (i.e., pages), we can write X 2 in terms of
the Oij ’s and Eij ’s .

Instead of pages of algebra, how about an empirical proof?
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Consider the following example
Success Failure

Group 1 15 135 150
Group 2 10 40 50

Totals 25 175 200

Here
p̃ = (15 + 10)/200 = 0.125

With SE under the null as

ŜE0(p̂2−p̂1) =
√

0.125 ∗ (1− 0.125) ∗ (150−1 + 50−1) = 0.054006

Then

Zs =
(10/50 − 15/150)

0.054006
=

0.1

0.054006
= 1.8516402

and
Z 2 = 3.428571
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Pearson Chi Square

Likewise, we can use the previous definition of the observed
(Oij) and expected (Eij) to calculate

X 2 =
2∑

i=1

2∑

j=1

(Oij − Eij )
2

Eij

,

which is known as ‘Pearson’s Chi-Square’ for a (2× 2)
table.

Note, ‘Pearson’s Chi-Square’ measures the discrepancy
between the observed counts, and the estimated expected
counts under the null; if they are similar, you would expect
the statistic to be small, and the null not to be rejected.
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For our example, the matrix of expected counts is
Expected Total

18.75 131.25 150
6.25 43.75 50

25 175 200

and

X 2 = (15 − 18.75)2/18.75 + (135 − 131.25)2/131.25+
(10 − 6.25)2/6.25 + (40 − 43.75)2/43.75

= 0.75 + 0.107142857 + 2.25 + 0.321428571
= 3.428571

While not a true proof, this does indeed confirm that
Pearson’s Chi Square is simply the score test for the difference
in proportions.
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SAS– MI Example

Recall our MI example from the previous lecture

Myocardial Infarction
Fatal Attack or No
Nonfatal attack Attack

Placebo 189 10845

Aspirin 104 10933

We want to investigate whether or not Aspirin is beneficial in
the prevention of an MI
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Using SAS

SAS code below:

data one;

input trt $ out $ y;

cards;

1(P) HA 189

1(P) NHA 10845

2(A) HA 104

2(A) NHA 10933

;

proc freq;

table trt*out / expected chisq measures;

weight y; /* tells SAS how many obs. */

/* in each cell of 2x2 table */

run;
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TABLE OF TRT BY OUT

TRT OUT

Frequency|

Expected |

Percent |

Row Pct |

Col Pct |HA |NHA | Total

---------+--------+--------+

1(P) | 189 | 10845 | 11034

| 146.48 | 10888 |

| 0.86 | 49.14 | 49.99

| 1.71 | 98.29 |

| 64.51 | 49.80 |

---------+--------+--------+

2(A) | 104 | 10933 | 11037

| 146.52 | 10890 |

| 0.47 | 49.54 | 50.01

| 0.94 | 99.06 |

| 35.49 | 50.20 |

---------+--------+--------+

Total 293 21778 22071

1.33 98.67 100.00

The second row in each cell is Eij
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Estimated Expected Cell Counts

If you work thru the (2× 2) table, you will see

E11 = 146.48

=
[1st row total] · [1st column total]

[total sample size (n1 + n2) ]

= (11034)(293)
22071

E12 = 10888

=
[1st row total] · [2nd column total]

[total sample size (n1 + n2) ]

= (11034)(21778)
22071
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E21 = 146.52

=
[2nd row total] · [1st column total]

[total sample size (n1 + n2) ]

= (11037)(293)
22071

and
E21 = 10890

=
[2nd row total] · [2nd column total]

[total sample size (n1 + n2) ]

= (11037)(21778)
22071

14 / 57



More SAS PROC FREQ OUTPUT

STATISTICS FOR TABLE OF TRT BY OUT

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 25.014 0.000<=(Pearson’s,Score)

Likelihood Ratio Chi-Square 1 25.372 0.000<=LR STAT

Continuity Adj. Chi-Square 1 24.429 0.000

Mantel-Haenszel Chi-Square 1 25.013 0.000

Fisher’s Exact Test (Left) 1.000

(Right) 3.25E-07

(2-Tail) 5.03E-07

Phi Coefficient 0.034

Contingency Coefficient 0.034

Cramer’s V 0.034
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Estimates of the Relative Risk (Row1/Row2)

95%

Type of Study Value Confidence Bounds

-----------------------------------------------------

Case-Control 1.832 1.440 2.331 <=(OR, using logOR)

Cohort (Col1 Risk) 1.818 1.433 2.306 <=(RR, using logRR)

Cohort (Col2 Risk) 0.992 0.989 0.995

Sample Size = 22071
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Comparing Test Statistics

We want to compare test statistics for

H0:p1 = p2 = p versus HA:p1 6= p2

Recall our results from the previous lecture,

Estimated Z−Statistic
Parameter Estimate Standard Error (Est/SE)

RISK DIFF .0077 .00154 5.00

log(RR) .598 .1212 4.934
(RR=1.818)

log(OR) .605 .1228 4.927
(OR=1.832)
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Looking at the (square of the) WALD statistics from earlier,
as well as the Likelihood Ratio and Pearson’s Chi-Square
calculated by SAS, we have

STATISTIC VALUE

WALD

RISK DIFF 25.00

log(RR) 24.34

log(OR) 24.28

LR 25.37

Pearson’s 25.01
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We see that all of the statistics are almost identical. We
would reject the null using any of them (the .05 quantile is
3.84 = 1.962.

All of the test statistics are approximately χ2
1 under the null,

and are actually equivalent at n1 = ∞ and n2 = ∞.

Under a given alternative, all will have high power (although
not exactly identical).

Note, the likelihood ratio and Pearson’s Chi-Square statistic
just depend on the predicted probabilities (i.e., the ‘Estimated
Expected Cell Counts’). and not how we measure the
treatment difference.

However, the WALD statistic does depend on what treatment
difference (Risk Difference, log OR, or log RR) we use in the
test statistic.

In other words, the WALD test statistics using the Risk
Difference, log OR, and log RR will usually be slightly
different (as we see in the example).
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Empirical Logits

Recall, we can write the estimated log-odds ratio as

log ÔR = log
(

p̂1
1−p̂1

)
− log

(
p̂2

1−p̂2

)

= log
(

y1/n1
(n1−y1)/n1

)
− log

(
y2/n2

(n2−y2)/n2

)

= log
(

y1
n1−y1

)
− log

(
y2

n2−y2

)

= log(y1)− log(n1 − y1)
− log(y2) + log(n2 − y2)

Question: What happens if y1 = 0, or y1 = n1, (n1 − y1 = 0)

or y2 = 0, or y2 = n2, (n2 − y2 = 0), so that log ÔR is
indeterminate ?

How will you adjust?
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Instead of (
yt

nt − yt

)

use (
yt + a

(nt − yt) + a

)

where the constant a > 0 is chosen so that, as nearly as
possible,

E

(
yt + a

(nt − yt) + a

)
=

pt

1− pt
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Haldane (1956) showed by a first order Taylor Series
approximation,

a = .5

The quantity

log

(
yt + .5

(nt − yt) + .5

)

is called an “empirical logit”,

The “empirical logit” has smaller finite sample bias than the
usual logit.
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Using empirical logits is like adding .5 to each cell of the
(2× 2) table, and get

ÔR
E
=

(Y1 + .5)(n2 − Y2 + .5)

(Y2 + .5)(n1 − Y2 + .5)

and

V̂ar{log[ÔR
E
]} =

1

y1 + .5
+

1

n1 − y1 + .5
+

1

y2 + .5
+

1

n2 − y2 + .5

The empirical logit was used more before exact computer
methods became available (we will discuss these later).

Not always liked because, some investigators feel that you are
adding ‘fake’ data, even though, it does have smaller finite
sample bias, and, is asymptotically the same as the usual
estimate of the log odds ratio.
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Case-Control Studies: Probability Structure

Alcohol Consumption and occurrence of esophageal cancer
(Tuyms et al., Bulletin of Cancer, 1974)
It is not ethical to randomize patients in a prospective study

STATUS

|CASE |CONTROL | Total

A ---------+--------+--------+

L 80+ | | |

C (gm/day) | 96 | 109 | 205

O | | |

H ---------+--------+--------+

O 0-79 | | |

L (gm/day) | 104 | 666 | 770

| | |

---------+--------+--------+

Total 200 775 975

^ ^

| |

----------

(fixed by design)
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Cases in this study were 200 male esophageal cancer patients
in regional hospitals; 775 controls were randomly sampled
from the same regions.

After being selected in the study, the subjects were then
questioned about the consumption of alcohol (as well as other
things) in the previous 10 years.
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Case-Control Design

Number of cases and controls (usually the outcomes) are fixed
by design and exposures are random.

Columns are independent binomials.

Question of interest:
Does alcohol exposure vary among cases and controls?
Is alcohol exposure associated with esophageal cancer?
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Comparison to Prospective Design

Suppose you use SAS as if the data were a prospective study.

Would your analyses be OK ?

data one;

input exp $ ca $ count;

cards;

1 1 96

1 2 109

2 1 104

2 2 666

;

proc freq;

table exp*ca / expected chisq measures;

weight count; /* tells SAS how many obs. */

/* in each cell of 2x2 table */

run;
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Selected Results

EXP CA

Frequency|

Expected |

Percent |

Row Pct |

Col Pct |1 |2 | Total

---------+--------+--------+

1 | 96 | 109 | 205

| 42.051 | 162.95 |

| 9.85 | 11.18 | 21.03

| 46.83 | 53.17 |

| 48.00 | 14.06 |

---------+--------+--------+

2 | 104 | 666 | 770

| 157.95 | 612.05 |

| 10.67 | 68.31 | 78.97

| 13.51 | 86.49 |

| 52.00 | 85.94 |

---------+--------+--------+

Total 200 775 975

20.51 79.49 100.00
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STATISTICS FOR TABLE OF EXP BY CA

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 110.255 0.000 (Pearson’s)

Likelihood Ratio Chi-Square 1 96.433 0.000 (G^2)

Continuity Adj. Chi-Square 1 108.221 0.000

Mantel-Haenszel Chi-Square 1 110.142 0.000

Fisher’s Exact Test (Left) 1.000

(Right) 1.03E-22

(2-Tail) 1.08E-22

Phi Coefficient 0.336

Contingency Coefficient 0.319

Cramer’s V 0.336

Estimates of the Relative Risk (Row1/Row2)

95%

Type of Study Value Confidence Bounds

------------------------------------------------------

Case-Control 5.640 4.001 7.951 (OR)

Cohort (Col1 Risk) 3.467 2.753 4.367

Cohort (Col2 Risk) 0.615 0.539 0.701
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General Case Control Study

Disease Status is known and fixed in advance:

First, you go to a hospital and get patients with lung cancer
(case) and patients without lung cancer (control)

Conditional on CASE/CONTROL status, exposure is the
response:
Go back in time to find exposure, i.e., smoked (exposed) and
didn’t smoke (unexposed).
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Summary Counts

DISEASE STATUS
Case Control

YES
EXPOSED

NO

Y1 Y2

n1 − Y1 n2 − Y2

n1 n2
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Setting is similar to a prospective study

n1 and n2 (columns) are fixed by design

Y1 and Y2 are independent with distributions:

Y1 ∼ Bin(n1, π1) and Y2 ∼ Bin(n2, π2)

where

π1 = P [Exposed|Case] and π2 = P [Exposed|Control]

The (2× 2) table of probabilities are

DISEASE
1 2 total

1 π1 π2 (π1 + π2)
EXPOSE

2 (1− π1) (1− π2) [2− (π1 + π2)]

total 1 1 2
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In a case-control study, π1, π2 and any parameters that can
be expressed as functions of π1 and π2 can be estimated.

However, the quantities of interest are not π1, π2 but, instead,
are

p1 = P [Case|Exposed] and p2 = P [Case|Unexposed],

in the (2× 2) table:

DISEASE
1 2

1 p1 (1− p1) 1
EXPOSE

2 p2 (1− p2) 1

In the CASE-CONTROL study, we want to know:
Does exposure affect the risk of (subsequent) disease ?

Problem: p1 and p2 cannot be estimated from this type of
design (i.e., neither can be expressed as functions of the
quantities which can be estimated, π1 and π2).
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Since we are allowed to choose the number of cases and
controls in the study, we could just as easily have chosen 775
cases and 200 controls.

Thus, the proportion of cases is chosen by design, and could
have nothing to do with the real world. Esophageal cancer is
a rare disease. There is no way that the probability of
Esophageal cancer in the population is

P̂ [Case] =
200

975
= .205

Further, the estimates

p̂1 = P̂ [Case|Exposed] =
96

205
= .47

and

p̂2 = P̂ [Case|Unexposed] =
104

770
= .14

are not even close to what they are in the real world.

Bottom line: cannot estimate p1 and p2 with case-control
data.
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ODDS RATIO

However, we will now show that, even though p1 and p2 can
not be estimated, the “odds ratio” as if the study were
prospective, can be estimated from a case-control study, i.e.,
we can estimate

OR =
p1/(1− p1)

p2/(1− p2)
=

p1(1− p2)

p2(1− p1)

We will use Baye’s Rule to show that you can estimate the
OR from a case-control study. Baye’s rule states that

P [A|B] =
P [AB]

P [B]
=

P [B|A]P [A]

P [B]

=
P [B|A]P [A]

P [B|A]P [A] + P [B|not A]P [not A]
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For example, applying Bayes’s rule to

p1 = P [Case|Exposed],

we get

p1 = P [Case|Exposed]

=
P [Exposed|Case]P [Case]

P [Exposed]

= π1

(
P [Case]

P [Exposed]

)
,

where, recall

π1 = P [Exposed|Case]
By applying Baye’s rule to each of the probabilities in the
odds ratio for a prospective study, p1, (1− p1), p2 and
(1− p2), you can show that
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The odds ratio for a prospective study equals

p1/(1−p1)
p2/(1−p2)

=

(
π1
π2

)[
P[Case]

P[Control]

]

(
1−π1
1−π2

)[
P[Case]

P[Control]

]

= π1/(1−π1)
π2/(1−π2)

= OR from case-control (2× 2) table

where
π1/(1 − π1)

is the “odds” of being exposed given a case, and

π2/(1 − π2)

is the “odds” of being exposed given a control.
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Thus, we can estimate OR = p1/(1−p1)
p2/(1−p2)

with an estimate of

OR = π1/(1−π1)
π2/(1−π2)

since the OR can be equivalently defined in terms
of the p’s or the π’s.
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Proof

Using Baye’s Rule, first, let’s rewrite

p1

1− p1
=

P [Case|Exposed]

P [Control|Exposed]

Now,
p1 = P [Case|Exposed]

=
P[Exposed|Case]P[Case]

P[Exposed]

= π1

(
P[Case]

P[Exposed]

)

and

1− p1 = P [Control|Exposed]

=
P[Exposed|Control]P[Control]

P[Exposed]

= π2

(
P[Control]
P[Exposed]

)
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Then
p1

1−p1
=

(
π1
π2

) [
P[Case]/P[Exposed]

P[Control]/P[Exposed]

]

=
(
π1
π2

) [
P[Case]

P[Control]

]

Similarly, you can show that

p2
1−p2

=
(
1−π1
1−π2

) [
P[Case]/P[Unexposed]

P[Control]/P[Unexposed]

]

=
(
1−π1
1−π2

) [
P[Case]

P[Control]

]
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Then, the odds ratio is

p1/(1−p1)
p2/(1−p2)

=

(
π1
π2

)[
P[Case]

P[Control]

]

(
1−π1
1−π2

)[
P[Case]

P[Control]

]

= π1/(1−π1)
π2/(1−π2)

= OR from case-control (2× 2) table,

where
π1/(1 − π1)

is the “odds” of being exposed given a case, and

π2/(1 − π2)

is the “odds” of being exposed given a control.
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Notes

OR in terms of (p1, p2) is the same as OR in terms of (π1, π2)

OR, which measures how much p1 and p2 differ, can be
estimated from a case-control study, even though p1 and p2
cannot.

We can make inferences about OR, without being able to
estimate p1 and p2.

If we have additional information on P [Case] or P [Exposed],
then we can estimate p1 and p2.

Then for a case-control study, we usually are only interested in
estimating the OR and testing if it equals some specified value
(usually 1).
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Estimates

The likelihood is again product binomial (the 2 columns are
independent binomials):

L(π1, π2) = P(Y1 = y1|π1)P(Y2 = y2|π2)

=

(
n1
y1

)(
n2
y2

)
πy1
1 (1− π1)

n1−y1πy2
2 (1− π2)

n2−y2
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Question of interest

Are exposure and case control status associated?

Estimating the OR to look at this association is of the most
interest, but to estimate the

OR =
π1/(1 − π1)

π2/(1 − π2)
,

we must first estimate

π1 = P [Exposed|Case]

and
π2 = P [Exposed|Control]
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Going thru the same likelihood theory as we did for estimating
(p1, p2) from two independent binomials in a prospective
study, the MLE’s of (π1, π2) are the proportions exposed given
case and control, respectively,

π̂1 =
Y1

n1
and π̂2 =

Y2

n2

Then,

ÔR =
π̂1/(1− π̂1)

π̂2/(1− π̂2)

=
(y1/n1)/[1 − (y1/n1)]

(y2/n2)/[1 − (y2/n2)]

=
y1(n2 − y2)

y2(n1 − y1)
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Estimated Odds ratio

Looking at the (2× 2) table of observed counts,

DISEASE STATUS
1 2

1 Y1 Y2 Y1 + Y2

EXPOS
2 (n1 − Y1) (n2 − Y2) [(n1 + n2)

−(Y1 + Y1)]

total n1 n2 (n1 + n2)

and again letting Oij be the count in the ij th cell of the (2× 2)
table, we can rewrite the table as

DISEASE STATUS
1 2

1 O11 O12 O11 + O12

EXPOS
2 O21 O22 O21 + O22

total O11 + O21 O12 + O22
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The estimated odds ratio equals

ÔR =
y1(n2 − y2)

y2(n1 − y1)

=
O11O22

O12O21
,

which is the same thing we would get if we treated the
case-control data as if it was prospective data.
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Testing

The null hypothesis of no association is or, usually,

H0:OR = 1

and the alternative is
HA:OR 6= 1

Where,

ÔR =
y1(n2 − y2)

y2(n1 − y1)
=

O11O22

O12O21
,

(which is the same as if the study was a prospective study.)
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Wald Statistic based on estimated OR

Again, the log(ÔR) is often used is test statistics since it goes
from −∞ to ∞ and is more approximately normal than the
OR , which is strictly positive.

The MLE of logOR is log ÔR

Similar to a prospective study,

Var [log(ÔR)] =
1

n1π1
+

1

n1(1− π1)
+

1

n2π2
+

1

n2(1− π2)

which is estimated by

V̂ar [log(ÔR)] = 1
n1π̂1

+ 1
n1(1−π̂1)

+ 1
n2π̂2

+ 1
n2(1−π̂2)

= 1
y1

+ 1
n1−y1

+ 1
y2

+ 1
n2−y2

= 1
O11

+ 1
O12

+ 1
O21

+ 1
O22

,

which is identical to what we would get if we had assumed the
study was a prospective study.
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The WALD statistic for H0 : OR = 1, i.e.,
H0 : log(OR) = 0, is

Z =
log(ÔR)− 0√
V̂ar(log(ÔR))

,

Also, a 95% confidence interval for the odds ratio is

exp{log(ÔR)± 1.96

√
V̂ar [log(ÔR)]}

The bottom line here is that you could treat case-control data
as if it came from a prospective study and get the same test
statistic and confidence interval described here.
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Double Dichotomy or Cross-sectional

Job Satisfaction
Dissatisfied Satisfied

Income < $15, 000 104 391 495
≥ $15, 000 66 340 406

170 731 901

Neither margin is fixed by design, although the total sample
size n (901) is fixed
Study Design–Randomly select n (fixed) independent
subjects and classify each subject on 2 variables, say X and
Y , each with two levels
For example,

X = Income =

{
1 if < $15, 000
2 if ≥ $15, 000

Y = JOB SATISFACTION =

{
1 if Not Satisfied
2 if Satisfied
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Question of interest

Are X and Y associated or are they independent ?

Under independence,

P [(X = i), (Y = j)] = P [X = i ] · P [Y = j],

i.e.,

pij = pi ·p·j

Then, the null hypothesis is

H0:pij = pi ·p·j for i , j = 1, 2.

and the alternative is

HA:pij 6= pi ·p·j
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Parameters of interest

We are interested in the association between X and Y .
We may ask: Are X and Y independent ?
In the Double Dichotomy, if one variable is thought of as an
outcome (say Y ), and the other as a covariate, say X , then
we can condition on X , and look at the risk difference, the
relative risk and the odds ratio, just as in the prospective
study.
In the prospective study, p1 was the probability of outcome 1
(Y = 1) given treatment 1 (X = 1), which, in terms of the
probabilities for the Double Dichotomy, is

p1 = P [Y = 1|X = 1] =
P [(X = 1), (Y = 1)]

P [X = 1]
=

p11

p1·

Similarly,

p2 = P [Y = 1|X = 2] =
P [(X = 2), (Y = 1)]

P [X = 2]
=

p21
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The RELATIVE RISK

Then, the RELATIVE RISK is

RR =
p1

p2
=

[p11/p1·]

[p21/p2·]

Now, suppose X and Y are independent, i.e.,

pij = pi ·p·j

then
p1
p2

= [p11/p1·]
[p21/p2·]

= [p1·p·1/p1·]
[p2·p·1/p2·]

= p
·1

p
·1

= 1

Then, when X and Y are independent (the null), the relative
risk is

RR = 1.
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The Odds Ratio

In general, if X and Y are not independent, the odds ratio, in
terms of p1 and p2, is

OR = p1/(1−p1)
p2/(1−p2)

= (p11/p1·)/(1−(p11/p1·)
(p21/p2·)/(1−(p21/p2·)

= (p11/p1·)/(p12/p1·)
(p21/p2·)/((p22/p2·)

= p11p22
p21p12
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Similarly, if we instead condition on the columns, as would
result from a case-control study,

π1 = P [X = 1|Y = 1] =
P [(X = 1), (Y = 1)]

P [Y = 1]
=

p11

p·1

and

π2 = P [X = 1|Y = 2] =
P [(X = 1), (Y = 2)]

P [Y = 2]
=

p12

p·2
,

then
OR = π1/(1−π1)

π2/(1−π2)

= (p11/p·1)/(1−(p11/p·1))
(p12/p·2)/(1−(p12/p·2))

= (p11/p·1)/(p21/p·1)
(p12/p·2)/((p22/p·2)

= p11p22
p21p12
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Thus, if we condition on the rows or columns, we get the same
odds ratio (as seen in prospective and case-control studies).

If we do not make the analogy to the prospective or
case-control studies, then the odds ratio can be thought of as
a ‘measure of association’ for a cross-sectional, and is
sometimes called a ‘cross-product ratio’, since it is formed
from the cross products of the (2× 2) table.

OR =
p11p22

p21p12
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