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Overview

Over the next few lectures, we will examine the 2× 2 contingency
table

Some authors refer to this as a “four fold table”

We will consider various study designs and their impact on the
summary measures of association
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Rows Fixed: Product Binomial Case - [Prospective]

Question of interest: Does treatment affect outcome?

OUTCOME

NO

|COLD | COLD | Total

T ---------+--------+--------+

R VITAMIN | | |

E C | 17 | 122 | 139 <--|

A | | | | (fixed

T ---------+--------+--------+ |-- by

M NO | | | | design)

E VITAMIN | 31 | 109 | 140 <--|

N C | | |

T ---------+--------+--------+

Total 48 231 279
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Columns Fixed: Also Product Binomial - [Retrospective]
Question of interest: Does alcohol exposure vary among cases and
controls?

STATUS

|CASE |CONTROL | Total

A ---------+--------+--------+

L 80+ | | |

C (gm/day) | 96 | 109 | 205

O | | |

H ---------+--------+--------+

O 0-79 | | |

L (gm/day) | 104 | 666 | 770

| | |

---------+--------+--------+

Total 200 775 975

^ ^

| |
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N Fixed: Multinomial Case - [Cross-Sectional]

Question: Is there an association among cancer stage and smoking status?

CANCER STAGE

NOT

|SPREAD |SPREAD | Total

S ---------+--------+--------+

M YES | | |

O | 300 | 600 | 900

K | | |

E ---------+--------+--------+

NO | | |

| 500 | 3000 | 3500

| | |

---------+--------+--------+

Total 800 3600 4400 <---(fixed

by design)

D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 5 / 46



Rows and Columns Fixed: Hypergeometric Case
Question of Interest: Is there gender bias in juror selection?

SELECTED

FOR JURY

|YES |NO | Total

G ---------+--------+--------+

E | | |

N FEMALE | 1 | 9 | 10

D | | |

E ---------+--------+--------+

R | | |

MALE | 11 | 9 | 20

| | |

---------+--------+--------+

Total 12 18 30

This distribution is will be used in Fisher’s Exact testing.
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Prospective Studies

We are going to begin examining contingency tables first by looking at
prospective studies.

Number on each treatment (or experimental) arm fixed by design.

Rows are independent binomials.

Question of interest: Does treatment affect outcome ?

Usually the design for Experimental Studies, Clinical Trials.

In general, the 2× 2 table is written as

Outcome
1 2

Treatment 1 Y1 n1 − Y1 n1
2 Y2 n2 − Y2 n2
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Facts about the distribution

n1 and n2 are fixed by design

Y1 and Y2 are independent with distributions:

Y1 ∼ Bin(n1, p1)

Y2 ∼ Bin(n2, p2)

The distribution is the product of 2 independent binomials; often
called the ‘product binomial’:

P(yi , y2|p1, p2) = P(Y1 = y1|p1)P(Y2 = y2|p2)

=

(
n1
y1

)(
n2
y2

)
p
y1
1 (1− p1)

n1−y1p
y2
2 (1− p2)

n2−y2
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Question of interest (all the same)

Does treatment affect outcome ?

Are treatment and outcome associated ?

Is the probability of success the same on both treatments ?

How do we quantify treatment differences?

Also, what test statistics can we use for

H0:p1 = p2 = p

and the alternative is
HA:p1 6= p2
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MLE and estimated SEs of treatment differences

To estimate these treatment differences, we must estimate the
success probabilities p1 and p2.

Intuitively, thinking of the two groups separately, the MLE’s should be
the proportion of successes in the two groups, i.e.,

p̂1 =
Y1

n1

and

p̂2 =
Y2

n2
.

However, we will derive these based on the likelihood of the product
binomial.
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The Likelihood for (p1, p2) is the product binomial distribution of
(y1, y2, p1, p2).

L(p1, p2) = P(Y1 = y1|p1)P(Y2 = y2|p2)

=

(
n1
y1

)(
n2
y2

)
p
y1
1 (1− p1)

n1−y1p
y2
2 (1− p2)

n2−y2
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Then the log-likelihood is the sum of the two pieces,

log L(p1, p2) =

log

[(
n1
y1

)
p
y1
1 (1− p1)

n1−y1

]
+ log

[(
n2
y2

)
p
y2
2 (1− p2)

n2−y2

]

Similar to before, to find the MLE, we set the partial derivatives of
log L(p1, p2) with respect to p1 and p2 to 0, and solve for p̂1 and p̂2 :

Note: Agresti (and most statisticians) simply denote the natural logarithm
as log instead of the ln as you would see in mathematics or physics. In this
class, all references of log are consider the log to base e.
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Now,

log L(p1, p2) =

log

[(
n1
y1

)
p
y1
1 (1− p1)

n1−y1

]
+ log

[(
n2
y2

)
p
y2
2 (1− p2)

n2−y2

]

The derivative of the log-likelihood with respect to p1 is

d log L(p1,p2)
dp1

= d
dp1

log

[(
n1
y1

)
p
y1
1 (1− p1)

n1−y1

]
+

d
dp1

log

[(
n2
y2

)
p
y2
2 (1− p2)

n2−y2

]

= d
dp1

log

[(
n1
y1

)
p
y1
1 (1− p1)

n1−y1

]
+ 0

since the the second part is not a function of p1.
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Note, though,

d log L(p1, p2)

dp1
=

d

dp1
log

[(
n1
y1

)
p
y1
1 (1− p1)

n1−y1

]

is just the derivative of a binomial log-likelihood with respect to its
parameter p1. From before, we have

p̂1 =
y1

n1

To explicitly show this, in the single binomial section, we showed that

d log L(p1, p2)

dp1
=

d

dp1
log

[(
n1
y1

)
p
y1
1 (1− p1)

n1−y1

]
=

y1 − n1p1

p1(1− p1)

Similarly,
d log L(p1, p2)

dp2
=

y2 − n2p2

p2(1− p2)
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Then, the MLE’s are found by simultaneously solving

d log L(p1, p2)

dp1
=

y1 − n1p̂1

p̂1(1− p̂1)
= 0

and

d log L(p1, p2)

dp2
=

y2 − n2p̂2

p̂2(1− p̂2)
= 0

which gives

p̂1 =
y1

n1

and
p̂2 =

y2

n2
.

provided that p̂1, p̂2 6= 0, 1
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Since Y1 and Y2 are independent binomials we know that

Var(p̂1) =
p1(1− p1)

n1

and

Var(p̂2) =
p2(1− p2)

n2
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Estimating treatment differences
To obtain the MLE of the log-odds ratio, we just plug p̂1 and p̂2 in to get

log(ÔR) = log
(
p̂1/(1−p̂1)
p̂2/(1−p̂2)

)

= logit(p̂1)− logit(p̂2)

Now, suppose we want to estimate the variance of log(ÔR).
Since the treatment groups are independent, logit(p̂1) and logit(p̂2) are
independent, so that

Cov [logit(p̂1), logit(p̂2)] = 0,

The variance of differences of independent random variables is

Var [log(ÔR)] = Var [logit(p̂1)− logit(p̂2)]

= Var [logit(p̂1)] + Var [logit(p̂2)]
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Delta Method approximation
The Var [log(ÔR)] can be approximated by the delta method
To do so we need to calculate

d
d p

[log(p)− log(1− p)] = 1
p
− −1

1−p

= 1
p(1−p)

Therefore,

Var
(
log( p

1−p
)
)

=
(

1
p(1−p)

)2
p(1−p)

n

= 1
np(1−p)

= 1
np

+ 1
n(1−p)

Using these results from the Delta Method, we have

Var [logit(p̂1)] =
1

n1p1
+

1

n1(1− p1)

and

Var [logit(p̂2)] =
1

n2p2
+

1

n2(1− p2)
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Then,

Var [log(ÔR)] = Var [logit(p̂1)] + Var [logit(p̂2)]

= 1
n1p1

+ 1
n1(1−p1)

+ 1
n2p2

+ 1
n2(1−p2)

which we estimate by replacing p1 and p2 with p̂1 and p̂2,

V̂ar [log(ÔR)] = 1
n1p̂1

+ 1
n1(1−p̂1)

+ 1
n2p̂2

+ 1
n2(1−p̂2)

= 1
y1

+ 1
n1−y1

+ 1
y2

+ 1
n2−y2

Note: This is the same result we obtained in the previous lecture; however,
in this case we assumed two independent binomial distributions.

D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 19 / 46



General formula for variance of treatment difference

The MLE of a treatment difference

θ = g(p1)− g(p2)

is
θ̂ = g(p̂1)− g(p̂2)

Also, since p̂1 and p̂2 are independent, so g(p̂1) and g(p̂2) are
independent.

Recall, the variance of a difference of two independent random variables is

Var [g(p̂1)− g(p̂2)] = Var [g(p̂1)] + Var [g(p̂2)]

Then, to obtain the large sample variance, we can apply the delta method
to g(p̂1) to get Var [g(p̂1)] and to g(p̂2) to get Var [g(p̂2)] and then sum
the two.
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The results are summarized in the following table:

TREATMENT
DIFFERENCE ESTIMATE Var(ESTIMATE)

RISK DIFF p̂1 − p̂2
p1(1−p1)

n1
+ p2(1−p2)

n2

log (RR) log
(
p̂1
p̂2

)
1−p1
n1p1

+ 1−p2
n2p2

log (OR) log
(
p̂1/(1−p̂1)
p̂2/(1−p̂2)

) [
1

n1p1
+ 1

n1(1−p1)

]
+

[
1

n2p2
+ 1

n2(1−p2)

]
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ESTIMATES of Standard Error, and LARGE SAMPLE

CONFIDENCE INTERVALS

To estimate the variances, we can replace p1 and p2 with p̂1 and p̂2.

V̂ar(p̂1 − p̂2) =
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
;

V̂ar [log(R̂R)] =
1− p̂1

n1p̂1
+

1− p̂2

n2p̂2
;

V̂ar [log(ÔR)] = 1
n1p̂1

+ 1
n1(1−p̂1)

+ 1
n2p̂2

+ 1
n2(1−p̂2)

= 1
y1

+ 1
n1−y1

+ 1
y2

+ 1
n2−y2
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Then, large sample 95% confidence interval for treatment differences can
be obtained via

(p̂1 − p̂2)± 1.96

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

log(R̂R)± 1.96

√
1− p̂1

n1p̂1
+

1− p̂2

n2p̂2

and

log(ÔR)± 1.96

√
1

y1
+

1

n1 − y1
+

1

y2
+

1

n2 − y2
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Confidence Interval for OR and RR

You want a confidence interval for RR or OR that is assured to be in
the interval (0,∞).

Similar to what we did for a confidence interval for p, it is first better
to get confidence intervals for log(RR) or log(OR), and to
exponentiate the endpoints : i.e.,

exp{log(ÔR)± 1.96

√
V̂ar [log(ÔR)]},

and

exp{log(R̂R)± 1.96

√
V̂ar [log(R̂R)]},
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Example: MI example

Suppose clinical trial participants are randomized to either Placebo or
Aspirin

The subjects are followed prospectively for 5 years to determine
whether or not an MI (or heart attack) occurs

The following table summarizes the results

Myocardial Infarction
Heart or No Total per
Attack Attack Arm

Placebo 189 10845 11,034

Aspirin 104 10933 11,037

◮ About 11035 randomized to each treatment
◮ Overall probability of heart attack in Doctors is low

293

22071
= 1.33%

The disease is ‘rare’.
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Estimates and Test Statistics
The test statistics for H0 : p1 = p2 versus HA : p1 6= p2

Estimated Z−Statistic
Parameter Estimate Standard Error (Est/SE)

RISK DIFF .0077 .00154 5.00

log(RR) .598 .1212 4.934
(RR=1.818)

log(OR) .605 .1228 4.927
(OR=1.832)

In each case, we reject the null, and the Z−statistic is about 5.

The WALD test statistics using the Risk Difference, log OR, and log
RR are slightly different.
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Confidence Intervals Creation

The following are the 95% confidence intervals

Parameter Estimate 95% C.I.

RISK DIFF .0077 [.0047,.0107]

RR 1.818 [1.433,2.306]

OR 1.832 [1.440,2.331]

For the OR and RR , we exponentiated the 95% confidence intervals
for the log(OR) and log(RR), respectively.

None of the confidence intervals contain the null value for no
association (0 for the RISK DIFFERENCE, 1 for the OR and RR).
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Interpretation

The risk difference has the interpretation that the
‘Excess Risk’ of a heart attack on Placebo is .0077. This ‘fraction’ is
not very meaningful for rare diseases, but stated in terms of subjects,
we can say that we would expect 77 more heart attacks in 10000
placebo subjects than in 10000 aspirin users.

The relative risk has the interpretation that
Individuals on Placebo have almost twice (1.8) the risk (or
probability) of a heart attack than individuals on Aspirin

The odds ratio has the interpretation that
Individuals on Placebo have almost twice (1.8) the odds of a heart
attack versus no heart attack than individuals on Aspirin
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Relationship between OR and RR

Recall, OR = p1/(1−p1)
p2/(1−p2)

OR = p1/(1−p1)
p2/(1−p2)

=
(
p1
p2

) [
1−p2
1−p1

]

= RR
[
1−p2
1−p1

]

When the disease is rare (in the example, p̂2 < p̂1 < 2%),

[
1− p2

1− p1

]
≈

1

1
= 1; and OR ≈ RR .

In the example, ÔR = 1.832, R̂R = 1.818; i.e., they are almost
identical.
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LRT

Now, we want to test the null hypothesis

H0:p1 = p2 = p

versus the alternative
HA:p1 6= p2

with the likelihood ratio statistic (the likelihood ratio statistic
generally has a two-sided alternative, i.e., it is χ2 based).

The general likelihood ratio statistic involves the estimate of
p1 = p2 = p under the null and (p1, p2) under the alternative.

Thus, unlike the simple single binomial sample we discussed earlier, in
which the null was H0:p = .5, the parameters are not completely
specified under the null. i.e., we must still estimate a common p

under the null for the likelihood ratio.

D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 30 / 46



General Likelihood Ratio Statistic

The likelihood is a function of the parameter vector p = [p1, p2]
′.

In large samples, it can be shown that

2 log
{

L(p̂1,p̂2|HA)

L(p̃1,p̃2|H0)

}
=

2[log L(p̂1, p̂2|HA)− log L(p̃1, p̃2|H0)] ∼ χ2
df

where L(p̂1, p̂2|HA) is the likelihood after replacing [p1, p2] by its estimate,
[p̂1, p̂2] under HA, and

L(p̃1, p̃2|H0)

is the likelihood after replacing [p1, p2] by its estimate, [p̃1, p̃2], under H0.
(In our case, [p̃1, p̃2] = [p̂, p̂]′ since p1 = p2 = p under the null ).

The degrees-of-freedom df is the difference in the number of parameters
estimated under the alternative and null (In our example, df = 2− 1 = 1).
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MLE under the Null

Thus, to use the likelihood ratio statistic, we need to estimate the common
p under the null hypothesis.

When H0 : p1 = p2 = p,

E (Y1) = n1p

and
E (Y2) = n2p

Then,

E (Y1 + Y2) = E (Y1) + E (Y2) = n1p + n2p = (n1 + n2)p

The ‘pooled’ estimate of p is

p̂ =

(
Y1 + Y2

n1 + n2

)
=

(
total # successes

total sample size

)

which is unbiased and the MLE.

Intuitively, when the probability of success is the same on both treatments,
the best estimate (MLE) of p is obtained by pooling over the treatments.
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Using the likelihood to obtain the MLE under the null

Under the null H0:p1 = p2 = p, the MLE of p is obtained from the
likelihood

L(p) =

(
n1
y1

)(
n2
y2

)
py1(1− p)n1−y1py2(1− p)n2−y2

=

(
n1
y1

)(
n2
y2

)
py1+y2(1− p)(n1+n2)−(y1+y2),

Then,

d log L(p)

dp
=

d

dp1
log

[(
n1
y1

)(
n2
y2

)]

+
d

dp1
log[py1+y2(1 − p)(n1+n2)−(y1+y2)]

=
y1 + y2 − (n1 + n2)p

p(1− p)
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This is the same first derivative as a single binomial sample, in fact,
under the null,

Y1 + Y2 ∼ Bin(n1 + n2, p),

and it is easily shown that the solution is

p̂ =
Y1 + Y2

n1 + n2
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Using the Estimates to obtain the Likelihood Ratio

Statistic

Under the alternative,

p̂1 =
Y1

n1
and p̂2 =

Y2

n2
,

and

log[L(p̂1, p̂2|HA)] =

log

(
n1
y1

)
+ y1 log(p̂1) + (n1 − y1) log(1− p̂1)+

log

(
n2
y2

)
+ y2 log(p̂2) + (n2 − y2) log(1− p̂2)
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Then,

log[L(p̂, p̂|H0)] =

log

(
n1
y1

)
+ y1 log(p̂) + (n1 − y1) log(1− p̂)+

log

(
n2
y2

)
+ y2 log(p̂) + (n2 − y2) log(1− p̂)

Under the alternative, we estimate 2 parameters, under the null, we
estimated 1, so df = 2− 1 = 1.

Then, we take 2 times the differences in the log-likelihoods and
compare it to a chi-square with 1 df.
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Simplification of the LR statistic

Then, the likelihood ratio statistic equals 2 times the difference in the
log-likelihoods under the alternative and null, or

G 2 = 2[y1 log
(

p̂1
p̂

)
+ (n1 − y1) log

(
(1−p̂1)
(1−p̂)

)

+y2 log
(

p̂2
p̂

)
+ (n2 − y2) log

(
(1−p̂2)
(1−p̂)

)
]

= 2[y1 log
(

y1
n1p̂

)
+ (n1 − y1) log

(
n1−y1
n1(1−p̂)

)
+

+y2 log
(

y2
n2p̂

)
+ (n2 − y2) log

(
n2−y2
n2(1−p̂)

)
]

∼ χ2
1

under the null, in large samples
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‘OBSERVED’ and ‘EXPECTED’ Cell Counts

First, let’s look at the (2× 2) table of ‘OBSERVED’ Cell Counts.
OUTCOME

1 2

1 Y1 (n1 − Y1) n1
TRT

2 Y2 (n2 − Y2) n2
total Y1 + Y2 [(n1 + n2) (n1 + n2)

−(Y1 + Y1)]
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If we look at the likelihood ratio statistic,

G 2 = 2[y1 log
(

y1
n1p̂

)
+ (n1 − y1) log

(
n1−y1

n1(1−p̂)

)
+

+y2 log
(

y2
n2p̂

)
+ (n2 − y2) log

(
n2−y2

n2(1−p̂)

)
]

In the numerator of the log’s, we have the observed cell counts for the
4 cells in the table.

Sometimes, statisticians let Oij denote the observed count in row i ,

column j ,

O11 = Y1, O12 = n1 − Y1, O21 = Y2, O22 = n2 − Y2
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Then, we can rewrite the observed table as

OUTCOME
1 2

1 O11 O12 O11 + O12

TRT
2 O21 O22 O21 + O22

total O11 + O21 O12 + O22

We will show that the likelihood ratio statistic is often written as

G 2 = 2[y1 log
(

y1
n1p̂

)
+ (n1 − y1) log

(
n1−y1

n1(1−p̂)

)
+

+y2 log
(

y2
n2p̂

)
+ (n2 − y2) log

(
n2−y2

n2(1−p̂)

)
]

= 2
∑2

i=1

∑2
j=1Oij log

(
Oij

Eij

)
,
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Simple Form of the Estimated Expected Counts

First, suppose p1 6= p2,

Then, the (2× 2) table of expected cell counts is

OUTCOME
1 2

1 n1p1 n1(1− p1) n1
TRT

2 n2p2 n2(1− p2) n2
total n1p1 + n2p2 [(n1 + n2) (n1 + n2)

−(n1p1 + n2p2)]

If we look at the n1 subjects in the first row, we expect n1p1 subjects
to have outcome 1, and n1(1− p1) of them to have outcome 2.

Similarly, if we look at the n2 subjects in the second row, we expect
n2p2 subjects to have outcome 1, and n2(1− p2) of them to have
outcome 2.
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Under the null, when the probability of success is the same on both
treatments, p1 = p2 = p, the table of expected counts looks like

OUTCOME
1 2

1 n1p n1(1− p) n1
TRT

2 n2p n2(1− p) n2
total (n1 + n2)p [(n1 + n2)(1− p)] (n1 + n2)

Here, if we look at the n1 subjects in the first row, we expect n1p
subjects to have outcome 1, and n1(1− p) of them to have outcome
2.

Similarly, if we look at the n2 subjects in the second row, we expect
n2p subjects to have outcome 1, and n2(1− p) of them to have
outcome 2.
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Under H0 : p1 = p2 = p, the table of estimated expected counts looks
like

OUTCOME
1 2

1 n1p̂ n1(1− p̂) n1
TRT

2 n2p̂ n2(1− p̂) n2
total (n1 + n2)p̂ [(n1 + n2)(1− p̂)] (n1 + n2)

where, recall, p̂ is the ‘pooled’ estimate of p,

p̂ =

(
Y1 + Y2

n1 + n2

)
=

(
total # successes

total sample size

)
.

These estimated expected counts are denoted Eij , (i
th row, j th

column), and are found in the denominator of the likelihood ratio
statistic, with

E11 = n1p̂, E12 = n1(1− p̂), E21 = n2p̂, E22 = n2(1− p̂)
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Simplification of Expected Cell Counts

Substituting

p̂ =
Y1 + Y2

n1 + n2
,

and

1− p̂ = 1−
Y1 + Y2

n1 + n2
=

(n1 + n2)− (Y1 + Y2)

n1 + n2
,

in the table, we get the Eij ’s,

OUTCOME
1 2

1 n1(Y1+Y2)
n1+n2

n1[(n1+n2)−(Y1+Y2)]
n1+n2

n1

TRT

2 n2(Y1+Y2)
n1+n2

n2[(n1+n2)−(Y1+Y2)]
n1+n2

n2

total (Y1 + Y2) [(n1 + n2) (n1 + n2)
−(Y1 + Y2)]
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From this table, you can see that

Eij =
[i th row total] · [j th column total]

[total sample size (n1 + n2) ]
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Summary

We did all this to show that

G 2 = 2
2∑

i=1

2∑

j=1

Oij log

(
Oij

Eij

)

Note that, we can also write this as

G 2 = 2

2∑

i=1

2∑

j=1

Oij [log(Oij)− log(Eij)]

Writing it this way, we see that the likelihood ratio measures the
discrepancy between the log of the observed counts, and the log of
estimated expected counts under the null; if they are similar, you
would expect the statistic to be small, and the null not to be rejected.
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