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The Multinomial Distribution

Suppose we are sampling from a population Ω which contains c types of
objects for which πi equals the probability an object selected at random is
of type i for i = 1, 2, . . . , c .

Now, suppose we draw a simple random sample of size n from Ω and
classify the objects into the c categories.

Then, we could summarize our sample using the following table.

Population Categories
1 2 · · · c Totals

Cell Probabilities π1 π2 · · · πc 1
Obs. Frequencies n1 n2 · · · nc n

We will want to develop statistical tests to draw inference on the
parameters πi .
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Inference for a Multinomial Parameter

Suppose n observations are classified into c categories according to
the probability vector ~π = (π1, π2, · · · , πc).

The joint distribution for n1, n2, · · · , nc is given by

P(n1, n2, · · · , nc−1) =

(
n!

n1!n2! · · · nc !

)
πn11 π

n2
2 · · ·π

nc
c

subject to the following constraints

c∑
i=1

ni = n

c∑
i=1

πi = 1

We want to find the MLE of ~π.
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Multinomial Coefficient

The coefficient
(

n!
n1!n2!···nc !

)
is the number of ways to group n objects into c

categories.

You can easily “prove” this coefficient by considering the following:

P

 Arranging n
objects into
c categories

 = P

 Selecting
n1 objects
from n

× P

 Selecting
n2 objects
from n − n1

×
· · · × P

 Selecting
nc objects
from n − n1 − · · · − nc−1


=

(
n
n1

)(
n − n1
n2

)
· · ·
(

n − n1 − · · · − nc−1

nc

)

= n!
n1!(n−n1)!

(n−n1)!
n2!(n−(n1+n2))

· · · (n−n1−n2−···nc−1)!
nc !(n−n)!

= n!
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Multinomial Likelihood

Let the multinomial likelihood be defined as

L(n1, n2, · · · , nc−1, π1, · · · , πc) =

(
n!

n1!n2! · · · nc !

)
πn11 π

n2
2 · · ·π

nc
c

with a log likelihood of

l(·) = log{
(

n!
n1!n2!···nc !

)
πn11 π

n2
2 · · ·πncc }

= k +
c∑

i=1
ni log{πi}

To maximize l(·) subject to the constraint
∑
πi = 1, we will use

Lagrange’s multiplier.

D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 5 / 40



Lagrange’s Multiplier in a nut shell

Suppose you want to maximize function f (n, y) subject to the
constraint h(n, y) = 0

You can define a new function G (n, y , λ) to be

G (n, y , λ) = f (n, y)− λh(n, y)

λ is called Lagrange’s Multiplier

You take differentials of G w.r.t. both the π and λ.
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Lagrange’s Applied to the Multinomial

Let

G =
c∑

i=1

ni log{πi} − λ(
n∑

i=1

πi − 1)

where the first part of G represents the kernel of the likelihood and λ is
the Lagrange multiplier.

To maximize G , we will take the partial derivatives and set them to zero.

∂G

∂πj
=

nj
πj
− λ

∂G

∂λ
= −(

n∑
i=1

πi − 1)
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Setting
∂G

∂πj
=
∂G

∂λ
= 0

yields
nj
π̂j
− λ̂ = 0 (

∑
π̂i − 1) = 0

π̂j =
nj

λ̂

∑
π̂i = 1

or nj = π̂j λ̂
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Since
∑

ni = n and nj = π̂j λ̂,

c∑
i=1

ni =
c∑

i=1
π̂j λ̂ = n

λ̂
c∑

i=1
π̂j = n

λ̂ = n

∴ π̂j =
nj
n
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Exact Multinomial Test (EMT)

Suppose you want to test the hypothesis

H0 : πj = πj0, ∀j ∈ {1, 2, . . . , c}

where
∑
πj = 1.

Let ~n be the vector of observed counts. To calculate the exact probability
of observing this configuration, use the multinomial PDF.

That is,

P(~n) =

(
n!

n1!n2! · · · nc !

)
πn11 π

n2
2 · · ·π

nc
c

The exact P-value is then defined as the sum of all of the probabilities as
extreme or more extreme than the observed sample when all possible
configurations are enumerated.
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Example EMT

Suppose you have a population with 3 categories (c = 3)

Let the true population probabilities be ~π = {0.1, 0.2, 0.7}
We want to test H0 : ~π = {0.1, 0.2, 0.7} by drawing a random sample
of size 3 (n = 3).

Let ~n = {2, 0 , 1}, then the P(~n) = 0.0210

We will want to calculate the probabilities of the other configurations.

You can calculate all of these by hand, but the following SAS program can
help.
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SAS Code

DATA MULT3;

N=3;

P1=.1; P2=.2; P3=.7;

DO N1=0 TO N;

DO N2=0 TO (N-N1);

N3=N-(N1+N2);

DEN=LGAMMA(N1+1)+LGAMMA(N2+1)+LGAMMA(N3+1);

NUM=(N1*LOG(P1))+(N2*LOG(P2))+(N3*LOG(P3))+LGAMMA(N+1);

PRO=NUM-DEN;

PROB=EXP(PRO);

OUTPUT;

END;

END;
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PROC SORT; BY PROB; RUN;

DATA NEW;

SET MULT3;

CUM+PROB;

RUN;

PROC PRINT NOOBS;

VAR N1 N2 N3 PROB CUM;

FORMAT PROB CUM 7.4;

RUN;
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N1 N2 N3 PROB CUM

3 0 0 0.0010 0.0010

2 1 0 0.0060 0.0070

0 3 0 0.0080 0.0150

1 2 0 0.0120 0.0270

2 0 1 0.0210 0.0480 <--- Observed Sample

0 2 1 0.0840 0.1320

1 1 1 0.0840 0.2160

1 0 2 0.1470 0.3630

0 1 2 0.2940 0.6570

0 0 3 0.3430 1.0000

Therefore, the calculated exact probability is 0.048 and at the α = .05
level of significance, we would reject H0.
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Limitations of EMT

Enumeration of the permutations of the sample size can be cumbersome
for large n or c.

In general, there are

M =

(
n + c − 1
c − 1

)
possible configurations.
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Table of Possible Configurations

Sample Size (n)
c 5 10 20 50

3 21 66 231 1326
5 126 1001 10,626 316,251
10 2002 92,378 100,015,005 > 109

20 42,504 20,030,010 ¿6 x 1010 (too many to count)

The conclusion:
Unless n and c are small, we will need to consider large sample
approximations.
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Pearson Statistic

Suppose you want to test the hypothesis

H0 : πj = πj0, ∀j ∈ {1, 2, . . . , c}

where
∑
πj = 1.

Let µj be the expected count based on the null probability.

That is,
µj = nπj0

Then Pearson’s Statistic is defined as

X 2 =
∑
j

(nj − µj)2

µj
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Notes about X 2

Let X 2
obs be the observed value of X 2

When the Null Hypothesis is true, (nj − µj) should be small. That is,
the expected counts (µj) are similar to the observed counts (nj).

Greater differences in (nj − µj) support the alternative hypothesis.

For large samples, X 2∼̇χ2 with c − 1 degrees of freedom.

The large sample p-value is P(χ2 ≥ X 2
obs)
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Example - Known cell probabilities

Question: Are births uniformly spread out throughout the year?

To answer this question, the number of births in King County,
Washington, from 1968 to 1979 were tabulated by month.

Under the null, the probability of having a birth on any given day is
equally likely

Thus, over this 10 year period, there are 3653 total days of which 310
are in January

Total days = 365 ∗ 10 + 3 leap days = 3653

Thus, in January, you would expect the probability of a birth to be

π01 =
310

3653
= 0.08486

The following table tabulates the remaining probabilities
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Null Prob Actual Expected Squared
Month Days πj0 Births nj µj = n · πj0 Deviation

Jan 310 0.084862 13,016 13,633 27.95778
Feb 283 0.077471 12,398 12,446 0.184791
Mar 310 0.084862 14,341 13,633 36.72786
Apr 300 0.082124 13,744 13,194 22.96163

May 310 0.084862 13,894 13,633 4.982064
June 300 0.082124 13,433 13,194 4.34416
July 310 0.084862 13,787 13,633 1.730962
Aug 310 0.084862 13,537 13,633 0.681361
Sept 300 0.082124 13,459 13,194 5.338968
Oct 310 0.084862 13,144 13,633 17.5667
Nov 300 0.082124 12,497 13,194 36.77873
Dec 310 0.084862 13,404 13,633 3.859317

Total 3653 1 n =160,654 160,654 X 2= 163.1143
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Testing

Since we did not have to estimate any distributional parameters, the
total number of degrees of freedom (DF) are

df = 12− 1 = 11

Thus, X 2 = 163.1143 ∼ χ2(11)

The p−value is

P(χ2 ≥ 163.1143|df = 11) ≤ 0.0001

Thus, based on this study, we would conclude that births are not
equally distributed throughout the year

The following slide gives some idea of where the deviation from the
null occured

This is a very basic residual analysis

D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 21 / 40



Month Actual Births Expected Ratio

January 13,016 13633.38 0.954716 –fewer than expect
February 12,398 12445.96 0.996147

March 14,341 13633.38 1.051903 –more than expected
April 13,744 13193.59 1.041718
May 13,894 13633.38 1.019116
June 13,433 13193.59 1.018146
July 13,787 13633.38 1.011268

August 13,537 13633.38 0.992931
September 13,459 13193.59 1.020116

October 13,144 13633.38 0.964104
November 12,497 13193.59 0.947202
December 13,404 13633.38 0.983175

We see that the actual is within ±5% of the expect. Is this clinically
relevant?
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Using SAS

The calculations above are subject to rounding errors if done by hand

It is best to calculate the test value with as little rounding as possible

This can be easily done in Excel, but Excel doesn’t sound that
“professional”

In PROC FREQ in SAS, you can conduct the test.
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data one;

input month $ actual;

cards;

January 13016

February 12398

March 14341

April 13744

May 13894

June 13433

July 13787

August 13537

September 13459

October 13144

November 12497

December 13404

;

run;

proc freq data=one order=data; <--- ORDER=DATA

weight actual; is Important

tables month /chisq testp=(

0.084861757

0.077470572 <--This list needs to be in the same

0.084861757 order as your data

0.082124281

0.084861757

0.082124281

0.084861757

0.084861757

0.082124281

0.084861757

0.082124281

0.084861757

)

;

run;
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Selected Output

The FREQ Procedure

Test Cumulative Cumulative

Month Frequency Percent Percent Frequency Percent

-------------------------------------------------------------------------

January 13016 8.10 8.49 13016 8.10

February 12398 7.72 7.75 25414 15.82

March 14341 8.93 8.49 39755 24.75

April 13744 8.56 8.21 53499 33.30

May 13894 8.65 8.49 67393 41.95

June 13433 8.36 8.21 80826 50.31

July 13787 8.58 8.49 94613 58.89

August 13537 8.43 8.49 108150 67.32

Septembe 13459 8.38 8.21 121609 75.70

October 13144 8.18 8.49 134753 83.88

November 12497 7.78 8.21 147250 91.66

December 13404 8.34 8.49 160654 100.00

Chi-Square Test

for Specified Proportions

--------------------------

Chi-Square 163.1143

DF 11

Pr > ChiSq <.0001

Sample Size = 160654
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Example - Calves with pneumonia

Suppose we have a sample of 156 dairy calves born in Okeechobee County,
Florida

Calves were classified as to whether or not they experienced pneumonia
within 60 days of birth

Calves that did get an infection were then additionally classified as to
whether or not they developed a second infection within 2 weeks of the first
one’s resolution

Primary Secondary Infection
Infection Yes No

Yes 30 63
No – 63

The ”no primary, yes secondary” is know as a structural zero. (i.e., you
can’t have a secondary infection unless you have a primary infection)

We want to test the hypothesis that the probability of primary infection was
the same as the conditional probability of secondary infection, given the calf
got the primary infection.
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Let πab denote the probability that a calf is classified in row a and
column b

Under the null hypothesis that the secondary infection is independent
of the primary, the following probability structure occurs by letter π
be the probability of an infection

Primary Secondary Infection
Infection Yes No

Yes π2 π(1− π)

No – (1− π)

Note that ∑
π = π2 + π − π2 + 1− π = 1

and that
156 = 30 + 63 + 63
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Then the kernel of the likelihood is

L∗ =
[
π2
]n11 [π(1− π)]n12 [1− π]n22

with a log likelihood of

l∗ = n11 log π2 + n12 log
(
π − π2

)
+ n22 log (1− π)

In order to solve for the MLE of π, namely π̂, we need

dl∗

dπ

As a reminder, recall
d log(u)

dx
=

1

u
· du
dx

where log is log base e (all we will talk about in this class)
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dl∗

dπ
=

2n11
π

+
n12(1− 2π)

π(1− π)
− n22

1− π

Setting equal to zero and getting a common demoninator yields

2n11(1− π) + n12(1− 2π)− n22π

π(1− π)
= 0

. . . (some math)
π̂ = 2n11+n12

2n11+2n12+n22

= 2∗30+63
2∗30+2∗63+63

= 0.494

D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 29 / 40



Expected Values

Thus, given n = 156 we would expect

µ̂11 = π̂2 ∗ n = 0.4942 ∗ 156 = 38.1
µ̂12 = (π̂ − π̂2) ∗ n = 39.0
and
µ̂22 = (1− π̂) ∗ n = 78.9

and

X 2 =
∑
i

∑
j

nij − µ̂ij
µ̂ij

Which you can calculate by hand if you so desire

Or, you can use SAS
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Multinomial Goodness of Fit in SAS

data two;

input cell count;

cards;

1 30

2 63

3 63

;

proc freq data=two order =data;

weight Count;

tables cell / nocum testf=(

38.1

39.0

78.9

);

run;
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Correct X 2 wrong p-value and degrees of freedom

Test

Cell Frequency Frequency Percent

------------------------------------------

1 30 38.1 19.23

2 63 39 40.38

3 63 78.9 40.38

Chi-Square Test

for Specified Frequencies

--------------------------

Chi-Square 19.6955 <--- This is correct

DF 2 <--- NEEDS TO BE ADJUSTED

Pr > ChiSq <.0001 on account of estimating

estimating pi!!!!

Sample Size = 156

The correct degrees of freedom are 3 - 1 (for the constraint) - 1 (for the
estimated π) = 1. However, p is still less than 0.0001.
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Likelihood Ratio Test

The ‘kernel’ of the multinomial likelihood is L(·) =
∏
j

(πj)
nj

and as such the kernel under the null is L(~n, πj) =
∏
j

(πj0)nj .

Under the observed sample using the MLE of ~π is L(~n, πa) =
∏
j

(nj/n)nj ,

so the likelihood ratio statistic is written as

G 2 = 2
c∑

j=1

nj log(
nj
nπj0

)

Here G 2∼̇χ2 with c − 1 degrees of freedom.
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Goodness of Fit [GOF]

These three tests (EMT, X 2 and G 2) are generally classified as GOF tests.

As opposed to inference on a probability, we are not interested in
calculating a confidence interval for ~π.

We can use these test to test the fit of data to a variety of distributions.
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Example: GOF for Poisson Data

Suppose the following table represents the number of deaths per year that
result from a horse kick in the Prussian army.

We want to know if we can model the data using a Poisson distribution.

Number of deaths
0 1 2 3 4

Deaths per year per corp 0 1 2 3 4
Frequency of Occurrence 144 91 32 11 2

The mean number of deaths per year is

λ̂ =
0(144) + 1(91) + 2(32) + 3(11) + 4(2)

280
=

196

280
= 0.70
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If the number of deaths were distributed as Poisson with λ = .7, then

P(Y = 0) =
e−.7(0.7)0

0!
= 0.4966

Thus, given n = 280, you would expect n(0.4966) = 139.048 deaths.

The following table summarizes the remaining expectations:

Number of deaths
0 1 2 3 >4

Observed Frequency 144 91 32 11 2
Expected Frequency 139.048 97.328 34.076 7.952 1.596
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X 2 =
∑
j

(nj−µj )2
µj

= (144− 139.048)2/139.048 + · · ·+ (2− 1.596)2/1.596
= 1.9848; p = .5756

G 2 = 2
∑
j
nj log(nj/µj)

= 2(144 log(144/139.048) + · · ·+ 2 log(2/1.596))
= 1.86104; p = .39826[NOTE :g2 calculated with the natural log]

Note: The degrees of freedom for these tests are 3 (5 - 1 - 1). 5 is the
number of categories and the first “-1” is for the constraint. The second
“-1” is for the estimation of λ.
Conclusion: There is insufficient evidence to reject the null hypothesis
that the data are Poisson. (i.e., the model fits)

D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 37 / 40



Pearson’s in SAS using expected frequencies

Presently, fitting the likelihood ratio statistic in SAS for a one-way
table is not “canned”

That is, you would need to program the calculations directly

However, PROC FREQ does allow for the specification of expected
counts instead of probabilities as we used previously
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data one;

input deaths count;

cards;

0 144

1 91

2 32

3 11

4 2

;

proc freq data=one order=data;

weight count;

tables deaths /chisq testf=(

139.048

97.328

34.076

7.952

1.596

);

run;

D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 39 / 40



Test

deaths Frequency Frequency Percent

----------------------------------------------

0 144 139.048 51.43

1 91 97.328 32.50

2 32 34.076 11.43

3 11 7.952 3.93

4 2 1.596 0.71

Chi-Square Test

for Specified Frequencies

-------------------------

Chi-Square 1.9848

DF 4 <-- Just note, this is wrong

Pr > ChiSq 0.7385 b/c we estimated mu

Sample Size = 280
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