Inference for Binomial Parameters

Dipankar Bandyopadhyay, Ph.D.

Department of Biostatistics,
Virginia Commonwealth University

Inference for a probability

- Phase II cancer clinical trials are usually designed to see if a new, single treatment produces favorable results (proportion of success), when compared to a known, "industry standard").
- If the new treatment produces good results, then further testing will be done in a Phase III study, in which patients will be randomized to the new treatment or the "industry standard".
- In particular, n independent patients on the study are given just one treatment, and the outcome for each patient is usually

$$
Y_{i}=\left\{\begin{array}{l}
1 \text { if new treatment shrinks tumor (success) } \\
0 \text { if new treatment does not shrinks tumor (failure) }
\end{array}\right.
$$

$i=1, \ldots, n$

- For example, suppose $n=30$ subjects are given Polen Springs water, and the tumor shrinks in 5 subjects.
- The goal of the study is to estimate the probability of success, get a confidence interval for it, or perform a test about it.
- Suppose we are interested in testing

$$
H_{0}: p=.5
$$

where .5 is the probability of success on the "industry standard"
As discussed in the previous lecture, there are three ML approaches we can consider.

- Wald Test (non-null standard error)
- Score Test (null standard error)
- Likelihood Ratio test

Wald Test

For the hypotheses

$$
\begin{aligned}
& H_{0}: p=p_{0} \\
& H_{A}: p \neq p_{0}
\end{aligned}
$$

The Wald statistic can be written as

$$
\begin{aligned}
z_{W} & =\frac{\widehat{p}-p_{0}}{S E} \\
& =\frac{\widehat{p}-p_{0}}{\sqrt{\widehat{p}(1-\widehat{p}) / n}}
\end{aligned}
$$

Score Test

Agresti equations 1.8 and 1.9 yield

$$
\begin{gathered}
u\left(p_{0}\right)=\frac{y}{p_{0}}-\frac{n-y}{1-p_{0}} \\
\iota\left(p_{0}\right)=\frac{n}{p_{0}\left(1-p_{0}\right)} \\
\begin{aligned}
z_{S} & =\frac{u\left(p_{0}\right)}{\left[\iota\left(p_{0}\right)\right]^{1 / 2}} \\
& =(\text { some algebra }) \\
& =\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}
\end{aligned}
\end{gathered}
$$

Application of Wald and Score Tests

- Suppose we are interested in testing

$$
\mathrm{H}_{0}: p=.5
$$

- Suppose $Y=2$ and $n=10$ so $\widehat{p}=.2$
- Then,

$$
Z_{W}=\frac{(.2-.5)}{\sqrt{.2(1-.8) / 10}}=-2.37171
$$

and

$$
Z_{S}=\frac{(.2-.5)}{\sqrt{.5(1-.5) / 10}}=-1.89737
$$

- Here, $Z_{W}>Z_{S}$ and at the $\alpha=0.05$ level, the statistical conclusion would differ.

Notes about Z_{W} and Z_{S}

- Under the null, Z_{W} and Z_{S} are both approximately $N(0,1)$. However, Z_{S} 's sampling distribution is closer to the standard normal than Z_{W} so it is generally preferred.
- When testing $\mathrm{H}_{0}: p=.5$,

$$
\left|Z_{W}\right| \geq\left|Z_{S}\right|
$$

i.e.,

$$
\left|\frac{(\widehat{p}-.5)}{\sqrt{\widehat{p}(1-\widehat{p}) / n}}\right| \geq\left|\frac{(\widehat{p}-.5)}{\sqrt{.5(1-.5) / n}}\right|
$$

- Why ? Note that $\widehat{p}(1-\widehat{p}) \leq .5(1-.5)$, i.e., $p(1-p)$ takes on its maximum value at $p=.5$:

$$
\begin{array}{cccccccccc}
\mathrm{p} & .10 & .20 & .30 & .40 & .50 & .60 & .70 & .80 & .90 \\
\mathrm{p}(1-\mathrm{p}) & .09 & .16 & .21 & .24 & .25 & .24 & .21 & .16 & .09
\end{array}
$$

- Since the denominator of Z_{W} is always less than the denominator of $Z_{S},\left|Z_{W}\right| \geq\left|Z_{S}\right|$
- Under the null, $p=.5$,

$$
\widehat{p}(1-\widehat{p}) \approx .5(1-.5)
$$

so

$$
\left|Z_{S}\right| \approx\left|Z_{W}\right|
$$

- However, under the alternative,

$$
\mathrm{H}_{A}: p \neq .5,
$$

Z_{S} and Z_{W} could be very different, and, since

$$
\left|Z_{W}\right| \geq\left|Z_{S}\right|
$$

the test based on Z_{W} is more powerful (when testing against a null of $0.5)$.

- For the general test

$$
\mathrm{H}_{0}: p=p_{o}
$$

for a specified value p_{o}, the two test statistics are

$$
Z_{S}=\frac{\left(\widehat{p}-p_{o}\right)}{\sqrt{p_{o}\left(1-p_{o}\right) / n}}
$$

and

$$
Z_{W}=\frac{\left(\widehat{p}-p_{o}\right)}{\sqrt{\widehat{p}(1-\widehat{p}) / n}}
$$

- For this general test, there is no strict rule that

$$
\left|Z_{W}\right| \geq\left|Z_{S}\right|
$$

Likelihood-Ratio Test

- It can be shown that

$$
2 \log \left\{\frac{L\left(\widehat{p} \mid \mathrm{H}_{A}\right)}{L\left(p_{o} \mid \mathrm{H}_{0}\right)}\right\}=2\left[\log L\left(\widehat{p} \mid \mathrm{H}_{A}\right)-\log L\left(p_{o} \mid \mathrm{H}_{0}\right)\right] \sim \chi_{1}^{2}
$$

where
$L\left(\widehat{p} \mid \mathrm{H}_{A}\right)$ is the likelihood after replacing p by its estimate, \widehat{p}, under the alternative $\left(\mathrm{H}_{A}\right)$, and

$$
L\left(p_{o} \mid H_{0}\right)
$$

is the likelihood after replacing p by its specified value, p_{o}, under the null $\left(\mathrm{H}_{0}\right)$.

Likelihood Ratio for Binomial Data

- For the binomial, recall that the log-likelihood equals

$$
\log L(p)=\log \binom{n}{y}+y \log p+(n-y) \log (1-p)
$$

- Suppose we are interested in testing

$$
\mathrm{H}_{0}: p=.5 \quad \text { versus } \quad \mathrm{H}_{0}: p \neq .5
$$

- The likelihood ratio statistic generally only is for a two-sided alternative (recall it is χ^{2} based)
- Under the alternative,

$$
\log L\left(\widehat{p} \mid H_{A}\right)=\log \binom{n}{y}+y \log \hat{p}+(n-y) \log (1-\widehat{p})
$$

- Under the null,

$$
\log L\left(.5 \mid H_{0}\right)=\log \binom{n}{y}+y \log .5+(n-y) \log (1-.5)
$$

Then, the likelihood ratio statistic is

$$
\begin{aligned}
2\left[\log L\left(\hat{p} \mid H_{A}\right)-\log L\left(p_{0} \mid H_{0}\right)\right] & =2\left[\log \binom{n}{y}+y \log \hat{p}+(n-y) \log (1-\hat{p})\right] \\
& -2\left[\log \binom{n}{y}+y \log .5+(n-y) \log (1-.5)\right] \\
& =2\left[y \log \left(\frac{\hat{p}}{.5}\right)+(n-y) \log \left(\frac{1-\widehat{p}}{1-5}\right)\right] \\
& =2\left[y \log \left(\frac{y}{5 n}\right)+(n-y) \log \left(\frac{n-y}{(1-.5) n}\right)\right],
\end{aligned}
$$

which is approximately χ_{1}^{2}

Example

- Recall from previous example, $Y=2$ and $n=10$ so $\hat{p}=.2$
- Then, the Likelihood Ratio Statistic is

$$
2\left[2 \log \left(\frac{.2}{.5}\right)+(8) \log \left(\frac{.8}{.5}\right)\right]=3.85490(p=0.049601)
$$

- Recall, both Z_{W} and Z_{S} are $N(0,1)$, and $N(0,1)^{2}$ is χ_{1}^{2}
- Then, the Likelihood ratio statistic is on the same scale as Z_{W}^{2} and Z_{S}^{2}, since both Z_{W}^{2} and Z_{S}^{2} are chi-square 1 df
- For this example

$$
\begin{aligned}
& Z_{S}^{2}=\left[\frac{(.2-.5)}{\sqrt{.5(1-.5) / 10}}\right]^{2}=3.6, \text { and } \\
& Z_{W}^{2}=\left[\frac{(.2-.5)}{\sqrt{.2(1-.8) / 10}}\right]^{2}=5.625
\end{aligned}
$$

- The Likelihood Ratio Statistic is between Z_{S}^{2} and Z_{W}^{2}.

Likelihood Ratio Statistic

For the general test

$$
\mathrm{H}_{0}: p=p_{o}
$$

the Likelihood Ratio Statistic is

$$
2\left[y \log \left(\frac{\widehat{p}}{p_{o}}\right)+(n-y) \log \left(\frac{1-\widehat{p}}{1-p_{o}}\right)\right] \sim \chi_{1}^{2}
$$

asymptotically under the Null.

Large Sample Confidence Intervals

- In large samples, since

$$
\widehat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)
$$

we can obtain a 95% confidence interval for p with

$$
\widehat{p} \pm 1.96 \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}
$$

- However, since $0 \leq p \leq 1$, we would want the endpoints of the confidence interval to be in $[0,1]$, but the endpoints of this confidence interval are not restricted to be in $[0,1]$.
- When p is close to 0 or 1 (so that \widehat{p} will usually be close to 0 or 1), and/or in small samples, we could get endpoints outside of $[0,1]$. The solution would be the truncate the interval endpoint at 0 or 1.

Example

- Suppose $n=10$, and $Y=1$, then

$$
\widehat{p}=\frac{1}{10}=.1
$$

and the 95% confidence interval is

$$
\begin{gathered}
\widehat{p} \pm 1.96 \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}, \\
.1 \pm 1.96 \sqrt{\frac{.1(1-.1)}{10}} \\
{[-.086, .2867]}
\end{gathered}
$$

- After truncating, you get,

$$
[0, .2867]
$$

Exact Test Statistics and Confidence Intervals

Unfortunately, many of the phase II trials have small samples, and the above asymptotic test statistics and confidence intervals have very poor properties in small samples. (A 95\% confidence interval may only have 80\% coverage). In this situation, "Exact test statistics and Confidence Intervals" can be obtained.

One-sided Exact Test Statistic

- The historical norm for the clinical trial you are doing is 50%, so you want to test if the response rate of the new treatment is greater then 50\%.
- In general, you want to test

$$
\mathrm{H}_{0}: p=p_{o}=0.5
$$

versus

$$
\mathrm{H}_{A}: p>p_{o}=0.5
$$

- The test statistic

$Y=$ the number of successes out of n trials

Suppose you observe $y_{o b s}$ successes ;

Under the null hypothesis,

$$
n \widehat{p}=Y \sim \operatorname{Bin}\left(n, p_{o}\right)
$$

i.e.,

$$
P\left(Y=y \mid \mathrm{H}_{0}: p=p_{o}\right)=\binom{n}{y} p_{o}^{y}\left(1-p_{o}\right)^{n-y}
$$

- When would you tend to reject $\mathrm{H}_{0}: p=p_{o}$ in favor of $\mathrm{H}_{A}: p>p_{o}$

Answer

Under $\mathrm{H}_{0}: p=p_{o}$, you would expect $\widehat{p} \approx p_{o}$
$\left(Y \approx n p_{o}\right)$
Under $\mathrm{H}_{A}: p>p_{o}$, you would expect $\widehat{p}>p_{o}$ $\left(Y>n p_{o}\right)$
i.e., you would expect Y to be 'large' under the alternative.

Exact one-sided p-value

- If you observe $y_{o b s}$ successes, the exact one-sided p-value is the probability of getting the observed yobs plus any larger (more extreme) Y

$$
\begin{aligned}
p-\text { value } & =\operatorname{pr}\left(Y \geq y_{o b s} \mid \mathrm{H}_{0}: p=p_{o}\right) \\
& =\sum_{j=y_{o b s}}^{n}\binom{n}{j} p_{o}^{j}\left(1-p_{o}\right)^{n-j}
\end{aligned}
$$

Other one-sided exact p-value

- You want to test

$$
\mathrm{H}_{0}: p=p_{o}
$$

versus

$$
\mathrm{H}_{A}: p<p_{o}
$$

- The exact p-value is the probability of getting the observed $y_{o b s}$ plus any smaller (more extreme) y

$$
\begin{aligned}
p-\text { value } & =\operatorname{pr}\left(Y \leq y_{o b s} \mid \mathrm{H}_{0}: p=p_{o}\right) \\
& =\sum_{j=0}^{y_{o b s}}\binom{n}{j} p_{o}^{j}\left(1-p_{o}\right)^{n-j}
\end{aligned}
$$

Two-sided exact p-value

- The general definition of a 2 -sided exact p-value is

$$
P\left[\begin{array}{l|l}
\text { seeing a result as likely or } \\
\text { less likely than the observed result }
\end{array} \quad \mathrm{H}_{0}\right] .
$$

It is easy to calculate a 2 -sided p-value for a symmetric distribution, such as $Z \sim N(0,1)$. Suppose you observe $z>0$,

```
fontsize=
fontsize=
fontsize= 0.4 +
Standard Normal Density
fontsize= ।
fontsize=
fontsize=
fontsize=
fontsize=
fontsize=
fontsize=
fontsize= 0.1+
fontsize= ।
fontsize=
fontsize=
fontsize=
fontsize=
fontsize= 0.0+
fontsize=
fontsize=
fontsize=
fontsize=
fontsize=
fontsize=
fontsize=
``` fontsize= fontsize= fontsize= fontsize= fontsize= fontsize= fontsize= \(0.1+\) fontsize= fontsize= fontsize= fontsize= fontsize= fontsize= \(0.0+\) fontsize= fontsize= fontsize= fontsize= fontsize= fontsize= fontsize= \(0.4+\) -
******** Graph Modified to Fit on Slide

```

fontsize= fontsize=

```

\section*{Symmetric distributions}
- If the distribution is symmetric with mean 0 , e.g., normal, then the exact 2 -sided \(p\)-value is
\[
p-\text { value }=2 \cdot P(Z \geq|z|)
\]
when \(z\) is positive or negative.
- In general, if the distribution is symmetric, but not necessarily centered at 0 , then the exact 2 -sided \(p\)-value is
\[
p-\text { value }=2 \cdot \min \left\{P\left(Y \geq y_{o b s}\right), P\left(Y \leq y_{o b s}\right)\right\}
\]
- Now, consider a symmetric binomial. For example, suppose \(n=4\) and \(p_{o}=.5\), then,
```

Binomial PDF for N=4 and P=0.5

```

Number of
Successes
\(P(Y=y)\)
\(P(Y<=y)\)
\(P(Y>=y)\)
\begin{tabular}{llll}
0 & 0.0625 & 0.0625 & 1.0000 \\
1 & 0.2500 & 0.3125 & 0.9375 \\
2 & 0.3750 & 0.6875 & 0.6875 \\
3 & 0.2500 & 0.9375 & 0.3125 \\
4 & 0.0625 & 1.0000 & 0.0625
\end{tabular}

Suppose you observed \(y_{o b s}=4\), then the exact two-sided \(p\)-value would be
\[
\begin{aligned}
p-\text { value } & =2 \cdot \min \left\{\operatorname{pr}\left(Y \geq y_{o b s}\right), \operatorname{pr}\left(Y \leq y_{o b s}\right)\right\} \\
& =2 \cdot \min \{\operatorname{pr}(Y \geq 4), \operatorname{pr}(Y \leq 4)\} \\
& =2 \cdot \min \{.0625,1\} \\
& =2(.0625) \\
& =.125
\end{aligned}
\]
- The two-sided exact \(p\)-value is trickier when the binomial distribution is not symmetric
- For the binomial data, the exact 2 -sided \(p\)-value is
\[
P\left[\left.\begin{array}{l|l}
\text { seeing a result as likely or } \\
\text { less likely than the observed } \\
\text { result in either direction }
\end{array} \right\rvert\, \mathrm{H}_{0}: p=p_{o}\right] .
\]
- Essentially the sum of all probabilities such that \(P\left(Y=y \mid P_{0}\right) \leq P\left(y_{o b s} \mid P_{0}\right)\)

\section*{In general, to calculate the 2 -sided \(p\)-value}
(1) Calculate the probability of the observed result under the null
\[
\pi=P\left(Y=y_{o b s} \mid p=p_{o}\right)=\binom{n}{y_{o b s}} p_{o}^{y_{o b s}}\left(1-p_{o}\right)^{n-y_{o b s}}
\]
(2) Calculate the probabilities of all \(n+1\) values that \(Y\) can take on:
\[
\pi_{j}=P\left(Y=j \mid p=p_{o}\right)=\binom{n}{j} p_{o}^{j}\left(1-p_{o}\right)^{n-j}
\]
\(j=0, \ldots, n\).
(3) Sum the probabilities \(\pi_{j}\) in (2.) that are less than or equal to the observed probability \(\pi\) in (1.)
\[
\begin{gathered}
p-\text { value }=\sum_{j=0}^{n} \pi_{j} l\left(\pi_{j} \leq \pi\right) \text { where } \\
I\left(\pi_{j} \leq \pi\right)=\left\{\begin{array}{l}
1 \text { if } \pi_{j} \leq \pi \\
0 \text { if } \pi_{j}>\pi
\end{array}\right.
\end{gathered}
\]
- Suppose \(n=5\), you hypothesize \(p=.4\) and we observe \(y=3\) successes.
- Then, the PDF for this binomial is Binomial PDF for \(\mathrm{N}=5\) and \(\mathrm{P}=0.4\)

Number of
Successes \(\quad P(Y=y) \quad P(Y<=y) \quad P(Y>=y)\)
\begin{tabular}{lllll}
0 & 0.07776 & 0.07776 & 1.00000 & \\
1 & 0.25920 & 0.33696 & 0.92224 & \\
2 & 0.34560 & 0.68256 & 0.66304 & \\
3 & 0.23040 & 0.91296 & 0.31744 & <----Y obs \\
4 & 0.07680 & 0.98976 & 0.08704 & \\
5 & 0.01024 & 1.00000 & 0.01024 &
\end{tabular}

\section*{Exact p-value by hand}
- Step 1: Determine \(P\left(Y=3 \mid n=5, P_{0}=.4\right)\). In this case \(P(Y=3)=.2304\).
- Step 2: Calculate Table (see previous slide)
- Step 3: Sum probabilities less than or equal to the one observed in step 1. When \(Y \in\{0,3,4,5\}, P(Y) \leq 0.2304\).
\begin{tabular}{lll}
ALTERNATIVE & EXACT & PROBS \\
\(\mathrm{H}_{A}: p>.4\) & .317 & \(P[Y \geq 3]\) \\
\(\mathrm{H}_{A}: p<.4\) & .913 & \(P[Y \leq 3]\) \\
& & \\
\(\mathrm{H}_{A}: p \neq .4\) & .395 & \(P[Y \geq 3]+\) \\
& & \(P[Y=0]\)
\end{tabular}

\section*{Comparison to Large Sample Inference}

Note that the exact and asymptotic do not agree very well:
\begin{tabular}{lll}
& & LARGE \\
ALTERNATIVE & EXACT & SAMPLE \\
\(\mathrm{H}_{A}: p>.4\) & .317 & .181 \\
\(\mathrm{H}_{A}: p<.4\) & .913 & .819 \\
\(\mathrm{H}_{A}: p \neq .4\) & .395 & .361
\end{tabular}

We will look at calculations by
(1) STATA (best)
(2) \(R\) (good)
(3) SAS (surprisingly poor)

The following STATA code will calculate the exact \(p\)-value for you From within STATA at the dot, type
bitesti 53.4
\begin{tabular}{|c|c|c|c|c|c|}
\hline & N & Observed k & Expected & Assumed p & Observed p \\
\hline & 5 & 3 & 2 & 0.40000 & 0.60000 \\
\hline \(\operatorname{Pr}(\mathrm{k}\) & >= & & \(=0.317440\) & (one-sided t & \\
\hline \(\operatorname{Pr}(\mathrm{k}\) & <= & & \(=0.912960\) & (one-sided t & \\
\hline \(\operatorname{Pr}(\mathrm{k}\) & & or \(k>=3\)) & \(=0.395200\) & (two-sided t & \\
\hline
\end{tabular}

To perform an exact binomial test in R Use the binom.test function available in R package stats
```

> binom.test(3, 5, p = 0.4, alternative = "two.sided")
Exact binomial test
data: 3 and 5
number of successes = 3, number of trials = 5, p-value = 0.3952
alternative hypothesis: true probability of success is not equal to
95 percent confidence interval:
0.1466328 0.9472550
sample estimates: probability of success
0.6

```

This gets a score of good since the output is not as descriptive as the STATA output.

Interestingly, SAS Proc Freq gives the wrong 2-sided \(p\)-value
```

data one;
input outcome \$ count;
cards;
1succ 3
2fail 2
;
proc freq data=one;
tables outcome / binomial(p=.4);
weight count;
exact binomial;
run;

```

\section*{Binomial Proportion for outcome = 1succ}

Test of HO: Proportion = 0.4
```

ASE under HO
0.2191
Z
0.9129
One-sided Pr > Z 0.1807
Two-sided Pr > |Z| 0.3613
Exact Test
One-sided Pr >= P 0.3174
Two-sided = 2 * One-sided 0.6349

```
Sample Size = 5

\section*{Better Approximation using the normal distribution}
- Because \(Y\) is discrete, a 'continuity-correction' is often applied to the normal approximation to more closely approximate the exact \(p\)-value.
- To make a discrete distribution look more approximately continuous, the probability function is drawn such that \(\operatorname{pr}(Y=y)\) is a rectangle centered at \(y\) with width 1 , and height \(\operatorname{pr}(Y=y)\), i.e.,
- The area under the curve between \(y-0.5\) and \(y+0.5\) equals
\[
[(y+0.5)-(y-0.5)] \cdot P(Y=y)=1 \cdot P(Y=y)
\]

For example, suppose as before, we have \(n=5\) and \(p_{o}=.4\),
Then on the probability curve,
\[
\operatorname{pr}(Y \geq y) \approx \operatorname{pr}(Y \geq y-.5)
\]
which, using the continuity corrected normal approximation is
\[
\operatorname{pr}\left(\left.Z \geq \frac{(y-.5)-n p_{o}}{\sqrt{n p_{o}\left(1-p_{o}\right)}} \right\rvert\, \mathrm{H}_{0}: p=p_{o} ; Z \sim N(0,1)\right)
\]
and
\[
\operatorname{pr}(Y \leq y) \approx \operatorname{pr}(Y \leq y+.5)
\]
which, using the continuity corrected normal approximation
\[
\operatorname{pr}\left(\left.Z \leq \frac{(y+.5)-n p_{o}}{\sqrt{n p_{o}\left(1-p_{o}\right)}} \right\rvert\, \mathrm{H}_{0}: p=p_{o} ; Z \sim N(0,1)\right)
\]

With the continuity correction, the above \(p\)-values becomes
\begin{tabular}{rrrr}
& & \begin{tabular}{r}
Continuity \\
Corrected
\end{tabular} \\
ALTERNATIVE & EXACT & SAMPGE & \begin{tabular}{r}
LARGE \\
SAMPLE
\end{tabular} \\
\(\mathrm{H}_{A}: p>.4\) & .317 & .181 & .324 \\
\(\mathrm{H}_{A}: p<.4\) & .913 & .819 & .915 \\
\(\mathrm{H}_{A}: p \neq .4\) & .395 & .361 & .409
\end{tabular}

Then, even with the small sample size of \(n=5\), the continuity correction does a good job of approximating the exact \(p\)-value.

Also, as \(n \rightarrow \infty\), the exact and asymptotic are equivalent under the null; so for large \(n\), you might as well use the asymptotic.

However, given the computational power available, you can easily calculate the exact p -value.

\section*{Exact Confidence Interval}

A \((1-\alpha)\) confidence interval for \(p\) is of the form
\[
\left[p_{L}, p_{U}\right],
\]
where \(p_{L}\) and \(p_{U}\) are random variables such that
\[
\operatorname{pr}\left[p_{L} \leq p \leq p_{U}\right]=1-\alpha
\]

For example, for a large sample \(95 \%\) confidence interval,
\[
p_{L}=\widehat{p}-1.96 \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}},
\]
and
\[
p_{U}=\widehat{p}+1.96 \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}},
\]

It can be shown that, to obtain a \(95 \%\) exact confidence interval \(\left[p_{L}, p_{U}\right]\), the endpoints \(p_{L}\) and \(p_{U}\) satisfy
\[
\begin{aligned}
\alpha / 2=.025 & =\operatorname{pr}\left(Y \geq y_{o b s} \mid p=p_{L}\right) \\
& =\sum_{j=y_{o b s}}^{n}\binom{n}{j} p_{L}^{j}\left(1-p_{L}\right)^{n-j}
\end{aligned}
\]
and
\[
\begin{aligned}
\alpha / 2=.025 & =\operatorname{pr}\left(Y \leq y_{o b s} \mid p=p_{U}\right) \\
& \left.=\sum_{j=0}^{y_{o b s}}\binom{n}{j} p_{U}^{j}\left(1-p_{U}\right)\right)^{n-j}
\end{aligned}
\]
- In these formulas, we know \(\alpha / 2=.025\) and we know \(y_{o b s}\) and \(n\). Then, we solve for the unknowns \(p_{L}\) and \(p_{U}\).
- Can figure out \(p_{L}\) and \(p_{U}\) by plugging different values for \(p_{L}\) and \(p_{U}\) until we find the values that make \(\alpha / 2=.025\)
- Luckily, this is implemented on the computer, so we don't have to do it by hand.
- Because of relationship between hypothesis testing and confidence intervals, to calculate the exact confidence interval, we are actually setting the exact one-sided \(p\)-values to \(\alpha / 2\) for testing \(\mathrm{H}_{o}: p=p_{o}\) and solving for \(p_{L}\) and \(p_{U}\).
- In particular, we find \(p_{L}\) and \(p_{U}\) to make these \(p\)-values equal to \(\alpha / 2\).

\section*{Example}
- Suppose \(n=5\) and \(y_{o b s}=4\), and we want a \(95 \%\) confidence interval. (\(\alpha=.05, \alpha / 2=.025\)).
- Then, the lower point, \(p_{L}\) of the exact confidence interval \(\left[p_{L}, p_{U}\right]\) is the value \(p_{L}\) such that
\[
\alpha / 2=.025=\operatorname{pr}\left[Y \geq 4 \mid p=p_{L}\right]=\sum_{j=4}^{5}\binom{5}{j} p_{L}^{j}\left(1-p_{L}\right)^{n-j},
\]
- If you don't have a computer program to do this, you can try 'trial' and error for \(p_{L}\)
\[
\begin{array}{ll}
p_{L} & \operatorname{pr}\left(Y \geq 4 \mid p=p_{L}\right) \\
.240 & 0.013404 \\
.275 & 0.022305 \\
.2836 & .025006^{*} \approx .025
\end{array}
\]
- Then, \(p_{L} \approx .2836\).
- Similarly, the upper point, \(p_{U}\) of the exact confidence interval \(\left[p_{L}, p_{U}\right.\)] is the value \(p_{U}\) such that
\[
\alpha / 2=.025=\operatorname{pr}\left[Y \leq 4 \mid p=p_{U}\right]=\sum_{j=0}^{4}\binom{5}{j} p_{U}^{j}\left(1-p_{U}\right)^{n-j}
\]
- Similarly, you can try "trial" and error for the \(p_{U}\)
\[
\begin{array}{ll}
p_{U} & \operatorname{pr}\left(Y \leq 4 \mid p=p_{U}\right) \\
.95 & 0.22622 \\
.99 & 0.049010 \\
.994944 & 0.025026^{*} \approx .025
\end{array}
\]

STATA ? The following STATA code will calculate the exact binomial confidence interval for you
. cii 54
----------- Output ------------------------
-- Binomial Exact --
\(\begin{array}{cccccc}\text { Variable | Obs } & \text { Mean } & \text { Std. Err. } & \text { [95\% Conf. Interval] } \\ \text { | } & 5 & .8 & .1788854 & .2835937 & .9949219\end{array}\)
```

How about SAS?
data one;
input outcome \$ count;
cards;
1succ 4
2fail 1
;
proc freq data=one;
tables outcome / binomial;
weight count;
run;

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Binomial Proportion} \\
\hline Proportion & 0.8000 \\
\hline ASE & 0.1789 \\
\hline 95\% Lower Conf Limit & 0.4494 \\
\hline 95\% Upper Conf Limit & 1.0000 \\
\hline \multicolumn{2}{|l|}{Exact Conf Limits} \\
\hline 95\% Lower Conf Limit & 0.2836 \\
\hline 95\% Upper Conf Limit & 0.9949 \\
\hline \multicolumn{2}{|l|}{Test of HO: Proportion \(=0.5\)} \\
\hline ASE under H0 & 0.2236 \\
\hline Z & 1.3416 \\
\hline One-sided \(\mathrm{Pr}>\mathrm{Z}\) & 0.0899 \\
\hline Two-sided \(\mathrm{Pr}>|\mathrm{Z}|\) & 0.1797 \\
\hline
\end{tabular}

\section*{Comparing the exact and large sample}
- Then, the two sided confidence intervals are
LARGE
SAMPLE
- We had to truncate the upper limit based on using \(\hat{p}\) at 1 .
- The exact Cl is not symmetric about \(\widehat{p}=\frac{4}{5}=.8\), whereas the the confidence interval based on \(\widehat{p}\) would be if not truncated.
- Suggestion; if \(Y<5\), and/or \(n<30\), use exact; for large \(Y\) and \(n\), any of the three would be almost identical.

\section*{Exact limits based on F Distribution}
- While software would be the tool of choice (I doubt anyone still calculates exact binomial confidence limits by hand), there is a distributional relationship among the Binomial and F distributions.
- In particular \(P_{L}\) and \(P_{U}\) can be found using the following formulae
\[
P_{L}=\frac{Y_{o b s}}{y_{o b s}+\left(n-y_{o b s}+1\right) F_{2\left(n-y_{o b s}+1\right), 2 \cdot y_{o b s}, 1-\alpha / 2}}
\]
- and
\[
P_{U}=\frac{\left(y_{o b s}+1\right) \cdot F_{2 \cdot\left(y_{\text {obs }}+1\right), 2 \cdot\left(n-y_{\text {obs }}\right), 1-\alpha / 2}}{\left(n-y_{o b s}\right)+\left(y_{o b s}+1\right) \cdot F_{2 \cdot\left(y_{\text {obs }}+1\right), 2 \cdot\left(n-y_{o b s}\right), 1-\alpha / 2}}
\]

\section*{Example using F-dist}
- Thus, using our example of \(n=5\) and \(y_{o b s}=4\)
\[
\begin{aligned}
P_{L} & =\frac{y_{o b s}}{y_{o b s}+\left(n-y_{o b s}+1\right) F_{2\left(n-y_{o b s}+1\right), 2 \cdot y_{o b s}, 1-\alpha / 2}} \\
& =\frac{4}{4+2 F_{4,8,0.975}} \\
& =\frac{4}{4+2 \cdot 5.0526} \\
& =0.2836
\end{aligned}
\]
- and
\[
\begin{aligned}
P_{U} & =\frac{\left(y_{\text {obs }}+1\right) \cdot F_{2 \cdot\left(y_{\text {obs }}+1\right), 2 \cdot\left(n-y_{\text {obs }}\right), 1-\alpha / 2}}{\left(n-y_{\text {obs }}\right)+\left(y_{\text {obs }}+1\right) \cdot F_{2 \cdot\left(y_{\text {obs }}+1\right), 2 \cdot\left(n-y_{\text {obs }}\right), 1-\alpha / 2}} \\
& =\frac{5 \cdot F_{10,2,2,095}}{1+5 \cdot F_{102}, 0.9975} \\
& =\frac{5 \cdot 39.39797}{1+5 \cdot 39.39797} \\
& =0.9949
\end{aligned}
\]
- Therefore, our 95\% exact confidence interval for \(p\) is [0.2836, 0.9949] as was observed previously
```

%macro mybinomialpdf(p,n);
dm "output" clear; dm "log" clear;
options nodate nocenter nonumber;
data myexample;
do i = 0 to \&n;
prob = PDF('BINOMIAL',i,\&p,\&n) ;
cdf = CDF('BINOMIAL',i,\&p,\&n) ;
m1cdfprob = 1-cdf+prob;
output;
end;
label i = "Number of *Successes";
label prob = "P(Y=y) ";
label cdf = "P(Y<=y)";
label m1cdfprob="P(Y>=y)";
run;
title "Binomial PDF for N=\&n and P=\&p";
proc print noobs label split="*";
run;
%mend mybinomialpdf;
%mybinomialpdf(0.4,5);

```

\subsection*{1.4.3 where for art thou, vegetarians?}

Out of \(n=25\) students, \(y=0\) were vegetarians. Assuming binomial data, the \(95 \%\) Cls found by inverting the Wald, score, and LRT tests are
\[
\begin{array}{ll}
\text { Wald } & (0,0) \\
\text { score } & (0,0.133) \\
\text { LRT } & (0,0.074)
\end{array}
\]

The Wald interval is particularly troublesome. Why the difference? for small or large (true, unknown) \(\pi\) the normal approximation for the distribution of \(\hat{\pi}\) is pretty bad in small samples.

A solution is to consider the exact sampling distribution of \(\hat{\pi}\) rather than a normal approximation.

\subsection*{1.4.4 Exact inference}

An exact test proceeds as follows.
Under \(H_{0}: \pi=\pi_{0}\) we know \(Y \sim \operatorname{bin}\left(n, \pi_{0}\right)\). Values of \(\hat{\pi}\) far away from \(\pi_{0}\), or equivalently, values of \(Y\) far away from \(n \pi_{0}\), indicate that \(H_{0}: \pi=\pi_{0}\) is unlikely.

Say we reject \(H_{0}\) if \(Y<a\) or \(Y>b\) where \(0 \leq a<b \leq n\). Then we set the type I error at \(\alpha\) by requiring \(P\left(\right.\) reject \(H_{0} \mid H_{0}\) is true \()=\alpha\). That is,
\[
P\left(Y<a \mid \pi=\pi_{0}\right)=\frac{\alpha}{2} \text { and } P\left(Y>b \mid \pi=\pi_{0}\right)=\frac{\alpha}{2} .
\]

\section*{Bounding Type I error}

However, since \(Y\) is discrete, the best we can do is bounding the type I error by choosing \(a\) as large as possible such that
\[
P\left(Y<a \mid \pi=\pi_{0}\right)=\sum_{i=0}^{a-1}\binom{n}{i} \pi_{0}^{i}\left(1-\pi_{0}\right)^{n-i}<\frac{\alpha}{2}
\]
and \(b\) as small as possible such that
\[
P\left(Y>b \mid \pi=\pi_{0}\right)=\sum_{i=b+1}^{n}\binom{n}{i} \pi_{0}^{i}\left(1-\pi_{0}\right)^{n-i}<\frac{\alpha}{2}
\]

\section*{Exact test, cont.}

For example, when \(n=20, H_{0}: \pi=0.25\), and \(\alpha=0.05\) we have
\[
P(Y<2 \mid \pi=0.25)=0.024 \text { and } P(Y<3 \mid \pi=0.25)=0.091
\]
so \(a=2\). Also,
\[
P(Y>9 \mid \pi=0.25)=0.014 \text { and } P(Y>8 \mid \pi=0.25)=0.041
\]
so \(b=9\). We reject \(H_{0}: \pi=0.25\) when \(Y<2\) or \(Y>9\). The type I error is bounded: \(\alpha=P\left(\right.\) reject \(H_{0} \mid H_{0}\) is true \() \leq 0.05\), but in fact this is conservative, \(P\left(\right.\) reject \(H_{0} \mid H_{0}\) is true \()=0.024+0.014=0.038\).
Nonetheless, this type of exact test can be inverted to obtain exact confidence intervals for \(\pi\). However, the actual coverage probability is at least as large as \(1-\alpha\), but typically more. So the procedure errs on the side of being conservative (Cl's are bigger than they need to be). Section 16.6.1 has more details.

\section*{Tests in R}

To obtain the \(95 \% \mathrm{Cl}\) from inverting the score test, and from inverting the exact (Clopper-Pearson) test:
```

> out1=prop.test(x=0,n=25, conf.level=0.95,correct=F)
> out1$conf.int
[1] 0.0000000 0.1331923
attr(,"conf.level") [1] 0.95
> out2=binom.test( }\textrm{x}=0,\textrm{n}=25\mathrm{ ,conf.level=0.95)
> out2$conf.int
[1] 0.0000000 0.1371852
attr(,"conf.level") [1] 0.95

```

\section*{SAS code}
```

data table;
input vegetarian\$ count @@;
datalines;
yes 0 no 25
;

* let pi be proportion of vegetarians in population;
* let's test HO: pi=0.032 (U.S. proportion) and obtain exact 95% CI for pi;
* SAS also provides a test of HO: pi=0.5,
* other options given by binomial(ac wilson exact jeffreys)
* even though you didn't ask for it! (not shown on next slide);
proc freq data=table order=data; weight count / zeros;
tables vegetarian / binomial testp=(0.032,0.968);
exact binomial chisq;
run;
data veg;
input response \$ count;
datalines;
no 25
yes 0
;
proc freq data=veg; weight count;
tables response / binomial(ac wilson exact jeffreys) alpha
= 05. run.

```

\section*{SAS output}

The FREQ Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline vegetarian & Frequency & Percent & \begin{tabular}{l}
Test \\
Percent
\end{tabular} & Cumulative Frequency & Cumulative Percent \\
\hline yes & 0 & 0.00 & 3.20 & 0 & 0.00 \\
\hline no & 25 & 100.00 & 96.80 & 25 & 100.00 \\
\hline \multicolumn{6}{|c|}{Chi-Square Test for Specified Proportions} \\
\hline \multicolumn{6}{|c|}{Chi-Square 0.8264} \\
\hline \multicolumn{6}{|c|}{DF} \\
\hline \multicolumn{6}{|c|}{Asymptotic Pr > ChiSq 0.3633} \\
\hline \multicolumn{6}{|c|}{Exact \(\quad\) Pr >= ChiSq \(\quad 0.6335\)} \\
\hline \multicolumn{6}{|c|}{WARNING: \(50 \%\) of the cells have expected counts less than 5. (Asymptotic) Chi-Square may not be a valid test.} \\
\hline \multicolumn{6}{|c|}{Binomial Proportion for vegetarian \(=\) yes} \\
\hline \multicolumn{6}{|c|}{Proportion (P) 0.0000} \\
\hline \multicolumn{6}{|c|}{ASE 0.0000} \\
\hline \multicolumn{6}{|c|}{95\% Lower Conf Limit 0.0000} \\
\hline \multicolumn{6}{|c|}{95\% Upper Conf Limit 0.0000} \\
\hline \multicolumn{6}{|c|}{Exact Conf Limits} \\
\hline \multicolumn{6}{|c|}{95\% Lower Conf Limit 0.0000} \\
\hline \multicolumn{6}{|c|}{} \\
\hline
\end{tabular}```

