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Course logistics

Let Y be a discrete random variable with f (y) = P(Y = y) = py .

Then, the expectation of Y is defined as

E (Y ) =
∑
y

yf (y)

Similarly, the Variance of Y is defined as

Var(Y ) = E [(Y − E (Y ))2]
= E (Y 2)− [E (Y )]2
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Conditional probabilities

Let A denote the event that a randomly selected individual from the
“population” has heart disease.

Then, P(A) is the probability of heart disease in the “population”.

Let B denote the event that a randomly selected individual from the
population has a defining characteristics such as smoking

Then, P(B) is the probability of smoking in the population

Denote

P(A|B) =
probability that a randomly selected individual
has characteristic A, given that he has characteristic B

Then by definition,

P(A|B) =
P(A and B)

P(B)
=

P(AB)

P(B)

provided that P(B) 6= 0

P(A|B) could be interpreted as the probability of that a smoker has heart
disease

D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 3 / 56



Associations

The two characteristics, A and B are associated if

P(A|B) 6= P(A)

Or, in the context of our example–the rate of heart disease depends
on smoking status

If P(A|B) = P(A) then A and B are said to be independent
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Bayes’ theorem

Note that

P(A|B) =
P(AB)

P(B)

and

P(B|A) =
P(BA)

P(A)

So
P(A|B)P(B) = P(B|A)P(A)

and

P(B|A) =
P(A|B)P(B)

P(A)

which is known as Bayes’ theorem
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Law of Total Probability

Suppose event B is made up of k mutually exclusive and exhaustive
strata, identified by B1,B2, . . .Bk

If event A occurs at all, it must occur along with one (and only one)
of the k exhaustive categories of B.

Since B1,B2, . . .Bk are mutually exclusive

P(A) = P[(A and B1) or (A and B2) or . . . (A and Bk)]
= P(AB1) + P(AB2) + . . .+ P(ABk)

=
k∑

i=1
P(A|Bi )P(Bi )

which is known as the total law of probability

A special case when k = 2 is

P(A) = P(A|B)P(B) + P(A|B ′)P(B ′)

where B ′ is read “not B” – also view this as a weighted average
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Application to screening tests

A frequent application of Bayes’ theorem is in evaluating the
performance of a diagnostic test used to screen for diseases

Let D+ be the event that a person does have the disease;

D− be the event that a person does NOT have the disease;

T+ be the event that a person has a POSITIVE test; and

T− be the event that a person has a NEGATIVE test

There are 4 quantities of interest:
1 Sensitivity
2 Specificity
3 Positive Predictive Value (PPV)
4 Negative Predictive Value (NPV)
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Sensitivity and Specificity

Sensitivity is defined as the probability a test is positive given disease

Sensitivity = P(T+|D+)

Specificity is defined as the probability of a test being negative given
the absence of disease

Specificity = P(T−|D−)

In Practice, you want to know disease status given a test result
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PPV and NPV

PPV is defined as the proportion of people with a positive test result
that actually have the disease, which is P(D+|T+)

By Bayes’ theorem,

PPV = P(D+|T+) =
P(T+|D+)P(D+)

P(T+)

NPV is defined as the proportion of people among those with a
negative test who truly do not have the disease (P(D−|T−))

Which by Bayes’ theorem is

NPV = P(D−|T−)

= P(T−|D−)·P(D−)
P(T−)

= P(T−|D−)·(1−P(D+))
1−P(T+)

D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 9 / 56



As a function of disease prevalence

For both PPV and NPV, the disease prevalence (P(D+)) influences
the value of the screening test.

Consider the following data
Test result

Disease status Positive Negative Total

Present 950 50 1000
Absent 10 990 1000

Sensitivity and Specificity for this test are

Sen = P(T+|D+) = 950/1000 = 0.95

and
Spec = P(T−|D−) = 990/1000 = 0.99

However, the real question is what is the probability that an individual
has the disease given a positive test result.
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With some easy algebra (substituting definitions into the previous
equations), it can be shown that

PPV =
Sens · Π

Sens · Π + (1− Spec)(1− Π)

and

NPV =
Spec · (1− Π)

Spec · (1− Π) + (1− Sens) · Π

where Π is the disease prevalence (P(D+))

Thus, the PPV and NPV for rare to common disease could be
calculated as follows:

Π PPV NPV

1/1,000,000 0.0001 1.0
1/500 0.16 0.99990
1/100 0.49 0.99949
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Interpretation?

For a rare disease that affects only 1 in a million,
1 A negative test result almost guarantees the individual is free from

disease (NOTE: this is a different conclusion of a 99% specificity)
2 A positive test result still only indicates that you have a probability of

0.0001 of having the disease (still unlikely–which is why most screening
tests indicate that “additional verification may be necessary”)

However, if the disease is common (say 1 in 100 have it)
1 A negative test result would correctly classify 9995 out of 10,000 as

negative, but 5 of 10,000 would be wrongly classified (i.e., they are
truly positive and could go untreated)

2 However, of 100 people that do have a positive test, only 49 would
actually have the disease (51 would be wrongly screened)

Does the test “work”

It “depends”
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Application to Pregnancy Tests

Most home pregnancy tests claims to be “over 99% accurate”

By accurate, the manufactures mean that 99% of samples are
“correctly” classified (i.e., pregnant mothers have a positive test,
non-pregnant mothers have a negative test)

This measure is flawed in that it is highly dependent on the number
of cases (i.e., pregnant mothers) and controls (i.e., non-pregnant
mothers) – FYI: we’ll revisit this concept again in future lectures

However, for sake of illustration, lets consider a sample of 250
pregnant mothers and 250 non-pregnant mothers
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Example Data–Based on at home pregnancy tests

Suppose we have the following data observed in a clinical trial:

Truth
Pregnant Not Pregnant

Test + N++ b
Test - a N−−

250 250 500

We know that we have 99% accuracy (because the manufactures tell us so), we
have a constraint

N++ + N−−
500

≥ 0.99

so
N++ + N−− ≥ 495

and for illustrative purposes, let a = 3 and b = 2 so that the following table

results.
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Truth
Pregnant Not Pregnant

Test + 247 2 249
Test - 3 248 251

250 250 500

Then
Sens = P(T+|D+) = 247/250 = 0.988

and
Spec = P(T−|D−) = 248/250 = 0.992

Using these values and simplifying the previous equations for PPV and NPV,

PPV =
0.988Π

0.980Π + 0.008

NPV =
0.992− 0.992Π

0.992− 0.98Π

where Π is again the “disease rate” (or in this case, the probability of being

pregnant)
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Π PPV NPV
0.001 0.110022 0.999988

0.01 0.555056 0.999878
0.1 0.932075 0.998658
0.5 0.991968 0.988048

Here, the “population” at risk is those females, of childbearing age, who
engaged in sexual activity during the previous menstrual cycle, and are at
least 2 days late in the new cycle.

The success rate of birth control may be in the range of 99% and
unprotected sex may be in the range of (0.1-0.5)

How do you feel about the marketing claim that the product is “over 99%
accurate”?
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Different Case-Control Ratio

Truth
Pregnant Not Pregnant

Test + 397 2 399
Test - 3 98 101

400 100 500

Then
Sens = P(T+|D+) = 297/400 = 0.9925

and
Spec = P(T−|D−) = 98/100 = 0.98

*Note: Sensitivity is now higher and specificity is lower than previously assumed

Π PPV NPV
0.001 0.047324 0.999992

0.01 0.333894 0.999923
0.1 0.846482 0.99915
0.5 0.980247 0.992405
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Before we begin

Lectures will be primarily from the text, and (usually) posted the
night before.

Sample SAS code is provided on Dr. Agresti’s website
http://www.stat.ufl.edu/∼aa/cda/cda.html, and in my notes.
There is also a link to a large PDF file with sample R code.

For a better understanding, read the lecture notes AND the text.
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Categorical Data Analysis (CDA) ?

What are categorical data?

Agresti’s answer: a variable with a measurement scale consisting of a
set of categories
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CDA definitions continued...

Response data considered in regression and ANOVA are continuous.
Examples:

cholesterol level (milligrams per deciliter)

lifetime of a lab rat (in weeks)

money spent on breakfast cereal (U.S. $)

A categorical variable takes on one of a (usually finite) number of
categories, or levels. Examples:

eye color (blue, brown, green, other)

political affiliation (Democrat, Republican, other)

cholesterol level (low, normal, high)

Note that a variable can be continuous or categorical depending on how
it’s defined.
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Quantitative vs. Qualitative Variable Distinctions

Qualitative Variables: Distinct categories differ in quality, not in quantity

Quantitative Variables: Distinct levels have differing amounts of the
characteristic of interest.

Clearly, a qualitative variable is synonymous with ”nominal” (black, white,
green, blue). Also, an interval variable is clearly quantitative (weight in
pounds).

However, ordinal variables are a hybrid of both a quantitative and
qualitative features. For example, ‘small, medium and large’ can be viewed
as a quantitative variable.

At this point, the utility in the variable descriptions may appear
unnecessary. However, as the course progresses, the statistical methods
presented will be appropriate for a specific classification of data.
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Response or Explanatory?

Variables can be classified as a response or explanatory.

In regression models we seek to model a response as a stochastic function
of explanatory variables, or predictors.

In this course the response will be categorical and the predictors can be
categorical, continuous, or discrete.

For example, if we wanted to model political affiliation as a function of
gender and annual salary, the response would be (Republican, Democrat,
other), and the two predictors would be annual salary (essentially
continuous) and the categorical gender (male, female).
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More examples: Nominal verses Ordinal

Nominal variables have no natural ordering to them. e.g. eye color (blue,
brown, other), political affiliation (Democrat, Republican, other), favorite
music type (jazz, folk, rock, rap, country, bluegrass, other), gender (male,
female).

Ordinal variables have an obvious order to them. e.g. cancer stage (I, II,
III, IV), a taste response to a new salsa (awful, below average, average,
good, delicious).

Interval variables are ordinal variables that also have a natural scale
attached to them. e.g. diastolic blood pressure, number of years of post
high school education. Interval variables are typically discrete numbers
that comprise an interval.
Read: Sections 1.1.3, 1.1.4, 1.1.5.
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Core Discrete Distributions for CDA

There are three core discrete distributions for categorical data analysis

1 Binomial (with the related Bernoulli distribution)

2 Multinomial

3 Poisson

We will explore each of these in more detail.
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Bernoulli Trials

Consider the following,

n independent patients are enrolled in a single arm (only one
treatment) Phase II oncology study.

The outcome of interest is whether or not the experimental treatment
can shrink the tumor.

Then, the outcome for patient i is

Yi =

{
1 if new treatment shrinks tumor (success)
0 if new treatment does not shrinks tumor (failure)

,

i = 1, . . . , n
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Each Yi is assumed to be independently, identically distributed as a
Bernoulli random variables with the probability of success as

P(Yi = 1) = p

and the probability of failure is

P(Yi = 0) = 1− p

Then, the probability function is Bernoulli

P(Yi = y) = py (1− p)1−y for y = 0, 1

and is denoted by
Yi ∼ Bern(p)
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Properties of Bernoulli

MEAN
E (Yi ) = 0 · P(Yi = 0) + 1 · P(Yi = 1)

= 0(1− p) + 1p

= p

VARIANCE

Var(Yi ) = E (Y 2
i )− [E (Yi )]2

= E (Yi )− [E (Yi )]2 ; since Y 2
i = Yi

= E (Yi )[1− E (Yi )]

= p(1− p)
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Binomial Distribution

Let Y be defined as

Y =
n∑

i=1

Yi ,

where n is the number of bernoulli trials. We will use Y (the number of
successes) to form test statistics and confidence intervals for p, the
probability of success.

Example 2,
Suppose you take a sample of n independent biostatistics professors to
determine how many of them are nerds (or geeks).

We want to estimate the probability of being a nerd given you are a
biostatistics professor.
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What is the distribution of the number of successes,

Y =
n∑

i=1

Yi ,

resulting from n identically distributed, independent trials with

Yi =

{
1 if professor i is a nerd (success)
0 if professor i is not a nerd (failure)

.

and
p = P(Yi = 1); (1− p) = P(Yi = 0)

for all i = 1, . . . , n
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The probability function can be shown to be binomial:

P(Y = y) =

(
n
y

)
py (1− p)n−y =

n!

y !(n − y)!
py (1− p)n−y ,

where
y = 0, 1, 2, . . . , n

and
the number (

n
y

)
=

n!

(n − y)!y !

is the number of ways of partitioning n objects into two groups; one group
of size y , and the other of size (n − y).
The distribution is denoted by

Y ∼ Bin(n, p)
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Properties of the Binomial

MEAN
E (Y ) = E

(∑n
i=1 Yi

)
=

∑n
i=1 E (Yi )

=
∑n

i=1 p = np

[Recall, the expectation of a sum is the sum of the expectations]

VARIANCE

Var(Y ) = Var
(∑n

i=1 Yi

)
=

∑n
i=1 Var(Yi )

=
∑n

i=1 p(1− p) = np(1− p)

[Variance of a sum is the sum of the variances if observations are
independent)
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Multinomial

Often, a categorical may have more than one outcome of interest. Recall
the previous oncology trial where Yi was defined as

Yi =

{
1 if new treatment shrinks tumor (success)
0 if new treatment does not shrinks tumor (failure)

However, sometimes is may be more beneficial to describe the outcome in
terms of

Yi =


1 Tumor progresses in size
2 Tumor remains as is
3 Tumor decreases in size
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Multinomial

Let yij = 1 if subject i has outcome j and yij = 0 else. Then

yi = (yi1, yi2, . . . , yic)

represents a multinomial trial, with
∑

j yij = 1 and c representing the
number of potential levels of Y .

Let nj =
∑

i yij denote the number of trials having outcome in category j.
The counts (n1, n2, . . . , nc) have the multinomial distribution.

P(n1, n2, · · · , nc−1) =

(
n!

n1!n2! · · · nc !

)
πn11 π

n2
2 . . . πncc

How many free parameters among the π’s?
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Special Case of a Multinomial

When c = 2, then

P(n1) =

(
n!

n1!n2!

)
πn11 π

n2
2

Due to the constraints
∑

c nc = n and
∑

c π = 1, n2 = n − n1 and
π2 = 1− π1.

Therefore,

P(n1) =

(
n!

n1!(n − n1!)

)
πn11 (1− π1)n−n1

Note: For most of the class, I will use p for probability, Agresti tends to
use π
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Poisson

Sometimes, count data does not arrive from a fixed number of trials. For
example,
Let Y = number of babies born at VCU in a given week.

Y does not have a predefined maximum and a key feature of the Poisson
distribution is that the variance equals its mean.

The probability that Y = 0, 1, 2, . . . is written as

P(Y = y) =
e−µµy

y !

where µ = E (Y ) = Var(Y ).
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Proof of Expectation

E [Y ] =
∞∑
i=0

ie−µµi

i!

= 0·e−µ

0! +
∞∑
i=1

ie−µµi

i! [See Note 1]

= 0 + µe−µ
∞∑
i=1

µi−1

(i−1)!

= µe−µ
∞∑
j=0

µj

j! [See Note 2]

= µ [See Note 3]

Notes:

1 0! = 1 and we separated the 1st term (i=0) of the summation out

2 Let j = i − 1, then if i = 1, . . . ,∞, j = 0, . . . ,∞

3 Since
∞∑
j=0

µj

j! = eµ by McLaurin expansion of ex
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Overdispersion

Overdispersion: Often the variability associated with Poisson and
binomial models is smaller than what is observed in real data.

The increased variance can be attributed to unmeasured, or perhaps latent
regressors in the model and thus the resulting count distribution is more
correctly a mixture of binomial or Poisson distributions, with mixing
weights being the proportion of outcomes resulting from specific
(unaccounted for) covariate combinations.

We will discuss testing for overdispersion in specific models and remedies
later on.
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Connection between Multinomial and Poisson

Let Y = (Y1,Y2,Y3) be independent Poisson with parameters (µ1, µ2, µ3).

e.g. Y1 is number of people that fly to France from Britain this year, Y2

the number who go by train, and Y3 the number who take a ferry. The
total number of traveling n = Y1 + Y2 + Y3 is Pois(µ1 + µ2 + µ3).

Conditional on n, the distribution of (Y1,Y2,Y3) is multinomial with
parameters n and π = (µ1, µ2, µ3)/µ+ where µ+ = µ1 + µ2 + µ3.

This is especially useful in log-linear models, covered in Chapter 9.
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Maximum likelihood [ML] estimation

Let the parameter vector for a model be β = (β1, . . . , βp) where p is the
number of parameters in the model. Let the outcome variables be random
variables denoted y = (y1, . . . , yn) and the probability model denoted

p(y1, . . . , yn|β) = p(y|β).

The likelihood of β, denoted L(β), is L(β) = p(y|β) thinking of data y as
fixed.
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MLE, cont.

For example, if n = (n1, . . . , nc) is mult(n,π) where π = (π1, . . . , πc),
then β = (π1, π2, . . . , πc−1) because there are c − 1 free parameters in π.

The likelihood of β is simply the probability of seeing the response data
given β:

L(β) = p(n1, . . . , nc |β) =

(
n

n1 · · · nc

) c∏
j=1

π
nj
j .
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MLE, cont.

The maximum likelihood estimator is that value of β that maximizes L(β)
for given data:

β̂ = argmaxβ∈BL(β),

where B is the set of values β can take on.

The MLE β̂ makes the observed data as likely as possible. The estimator
turns into an estimate when data are actually seen. For example, if c = 3
and n1 = 3, n2 = 5, n3 = 2, then β̂ = (π̂1, π̂2) = (0.3, 0.5) and of course
π̂3 = 1− (π̂1 + π̂2) = 0.2. Then
p(3, 5, 2|π1 = 0.2, π2 = 0.5) ≥ p(3, 5, 2|π1 = p1, π2 = p2) for all values of
p1 and p2.

An estimator is random (i.e. before data are collected and seen they are
random, and so then is any function of data) whereas an estimate is a
fixed, known vector (like (0.3,0.5)).
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MLE, cont.

MLEs have nice properties for most (but not all) models (p. 9):

They have large sample normal distributions:

β̂
•∼ Np(β, cov(β̂)) where cov(β̂) =

[
−E

(
∂2 logL(β)

∂βj∂βk

)]−1
p×p

.

They are asymptotically consistent: β̂ → β (in probability) as the
sample size n→∞.

They are asymptotically efficient: var(β̂j) is smaller than the
corresponding variance of other (asymptotically) unbiased estimators.
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Example: MLE for Poisson data

Let Yi ∼ Pois(λti ) where λ is the unknown event rate and ti are known
exposure times. Assume the Y1, . . . ,Yn are independent.

The likelihood of λ is

L(λ) = p(y1, . . . , yn|λ) =
n∏

i=1

p(yi |λ) =
n∏

i=1

e−tiλ(tiλ)yi/yi !

=

[
n∏

i=1

tyii
yi !

]
e−λ

∑n
i=1 tiλ

∑n
i=1 yi = g(t, y)e−λ

∑n
i=1 tiλ

∑n
i=1 yi .

Then the log-likelihood is

L(λ) = log g(t, y)− λ
n∑

i=1

ti + log(λ)
n∑

i=1

yi .
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Poisson MLE, cont.
Taking the derivative w.r.t. λ we get

L′(λ) =
∂L(λ)

∂λ
= −

n∑
i=1

ti +
1

λ

n∑
i=1

yi .

Setting this equal to zero, plugging in Y for y, and solving for λ yields the
MLE

λ̂ =

∑n
i=1 Yi∑n
i=1 ti

.

Now
∂2L(λ)

∂λ2
= −

∑n
i=1 yi
λ2

.

Since
∑n

i=1 Yi ∼ Pois(λ
∑n

i=1 ti ), we have

−E
(
∂2L(λ)

∂λ2

)
= E

(∑n
i=1 Yi

λ2

)
=
λ
∑n

i=1 ti
λ2

=

∑n
i=1 ti
λ

.
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Poisson MLE, cont.
The variance of λ̂ is given by the ‘inverse’ of this ‘matrix’

var(λ̂)
•
=

λ∑n
i=1 ti

.

The large sample normal result tells us

λ̂
•∼ N

(
λ,

λ∑n
i=1 ti

)
.

The standard deviation of λ̂ is estimated to be sd(λ̂) =
√

λ∑n
i=1 ti

. Since

we do not know λ, the standard deviation is estimated by the standard
error obtained from estimating λ by its MLE:

se(λ̂) =

√
λ̂∑n
i=1 ti

=

√ ∑n
i=1 yi

[
∑n

i=1 ti ]
2

=

√∑n
i=1 yi∑n

i=1 ti
.
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Poisson MLE, cont.

Example: Say that we record the number of adverse medical events (e.g.
operating on the wrong leg) from a hospital over n = 3 different times:
t1 = 1 week in 2013, t2 = 4 weeks in 2014, and t3 = 3 weeks in 2015.
We’ll assume that the adverse surgical event rate λ (events/week) does
not change over time and that event counts in different time periods are
independent.

Then Yi ∼ Pois(tiλ) for i = 1, 2, 3. Say we observe y1 = 0, y2 = 3, and
y3 = 1. Then λ̂ = (0 + 3 + 1)/(1 + 4 + 3) = 4/8 = 0.5 event/week, or one
event every other week. Also, se(λ̂) =

√
4/8 = 0.25.

The large sample result tells us then (before data are collected and
Y = (Y1,Y2,Y3) is random) that

λ̂
•∼ N(λ, 0.252),

useful for constructing hypothesis tests and confidence intervals.
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Wald, Likelihood Ratio, and Score tests

These are three ways to perform large sample hypothesis tests based on
the model likelihood.

Wald test

Let M be a m × p matrix. Many hypotheses can be written H0 : Mβ = b
where b is a known m × 1 vector.

For example, let p = 3 so β = (β1, β2, β3). The test of H0 : β2 = 0 is
written in matrix terms with M = (0, 1, 0) and b = 0. The hypothesis

H0 : β1 = β2 = β3 has M =

[
1 −1 0
0 1 −1

]
and b =

[
0
0

]
.
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Wald test, cont.
The large sample result for MLEs is

β̂
•∼ Np(β, cov(β̂)).

So then
Mβ̂

•∼ Nm(Mβ,Mcov(β̂)M′).

If H0 : Mβ = b is true then

Mβ̂ − b
•∼ Nm(0,Mcov(β̂)M′).

So
W = (Mβ̂ − b)′[Mĉov(β̂)M′]−1(Mβ̂ − b)

•∼ χ2
m.

W is called the Wald statistic and large values of W indicate Mβ is far
away from b, i.e. that H0 is false. The p-value for H0 : Mβ = b is given
by p-value = P(χ2

m >W ).

The simplest, most-used Wald test is the familiar test that a regression
effect is equal to zero, common to multiple, logistic, Poisson, and ordinal
regression models.
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Score test

In general, the cov(β̂) is a function of the unknown β. The Wald test
replaces β by its MLE β̂ yielding ĉov(β̂). The score test replaces β by the
the MLE β̂0 obtained under the constraint imposed by H0

β̂0 = argmaxβ∈B:Mβ=bL(β).

Let cov(β) be the asymptotic covariance for unconstrained MLE.

The resulting test statistic

S = [ ∂∂β logL(β̂0)]′[cov(β̂0)][ ∂∂β logL(β̂0)]
•∼ χ2

m.

Sometimes it is easier to fit the reduced model rather than the full model;
the score test allows testing whether new parameters are necessary from a
fit of a smaller model.

D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 49 / 56



Likelihood Ratio tests

The Likelihood Ratio test [LRT] is easily constructed and carried out for
nested models. The full model has parameter vector β and the reduced
model obtains when H0 : Mβ = b holds. A common example is when
β = (β1,β2) and we wish to test H0 : β1 = 0 (e.g. a subset of regression
effects are zero). Let β̂ be the MLE under the full model

β̂ = argmaxβ∈BL(β),

and β̂0 be the MLE under the constraint imposed by H0

β̂0 = argmaxβ∈B:Mβ=bL(β).
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LRT, cont.

If H0 : Mβ = b is true,

L = −2[logL(β̂0)− logL(β̂)]
•∼ χ2

m.

The statistic L is the likelihood ratio test statistic for the hypothesis
H0 : Mβ = b. The smallest L can be is zero when β̂0 = β̂. The more
different β̂ is from β̂0, the larger L is and the more evidence there is that
H0 is false. The p-value for testing H0 is given by p− value = P(χ2

m > L).

To test whether additional parameters are necessary, LRT tests are carried
out by fitting two models: a ‘full’ model with all effects and a ‘reduced’
model. In this case the dimension m of M is the difference in the numbers
of parameters in the two models.
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LRT, cont.

For example, say we are fitting the standard regression model

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + ei

where ei
iid∼ N(0, σ2). Then β = (β0, β1, β2, β3, σ

2) and we want to test
β1 = (β2, β3) = (0, 0), that the 2nd and 3rd predictors aren’t needed. This
test can be written using matrices as

H0 :

[
0 0 1 0 0
0 0 0 1 0

]
β0
β1
β2
β3
σ2

 =

[
0
0

]
.
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LRT, cont.

The likelihood ratio test fits the full model above and computes
Lf = logLf (β̂0, β̂1, β̂2, β̂3, σ̂).

Then the reduced model Yi = β0 + β1xi1 + ei is fit and
Lr = logLr (β̂0, β̂1, σ̂) computed.

The test statistic is L = −2(Lr − Lf ); a p-value is computed as P(χ2
2 > L).

If the p-value is less than, say, α = 0.05 we reject H0 : β2 = β3 = 0.

Of course we wouldn’t use this approximate LRT test here! We have
outlined an approximate test, but there is well-developed theory that
instead uses a different test statistic with an exact F -distribution.
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Comments

Note that:

The Wald test requires maximizing the unrestricted likelihood, and
uses non-null standard error.

The score test requires maximizing the restricted likelihood (under a
nested submodel), and uses the null standard error.

The Likelihood ratio test combines information from both [restricted
and unrestricted] likelihoods.

So the likelihood ratio test uses more information and both Wald and
Score tests can be viewed as approximations to the LRT.

However, SAS can “automatically” perform Wald tests of the form
H0 : Mβ = b in a contrast statement and so I often use Wald tests
because they’re easy to get. In large samples the tests are equivalent.
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Confidence intervals

A plausible range of values for a parameter βj (from β) is given by a
confidence interval (CI). Recall that a CI has a certain fixed probability of
containing the unknown βj before data are collected. After data are
collected, nothing is random any more, and instead of “probability” we
refer to “confidence.”

A common way of obtaining confidence intervals is by inverting hypothesis
tests of H0 : βk = b. Without delving into why this works, a (1− α)100%
CI is given by those b such that the p-value for testing H0 : βk = b is
larger than α.
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CIs, cont.

For Wald tests of H0 : βk = b, the test statistic is W = (β̂k − b)/se(β̂k).
This statistic is approximately N(0, 1) when H0 : βk = b is true and the
p-value is larger than 1− α only when |W | < zα/2 where zα/2 is the
1− α/2 quantile of a N(0, 1) random variable. This yields the well known
CI

(β̂k − zα/2se(β̂k), β̂k + zα/2se(β̂k)).

The likelihood ratio CI operates in the same way, but the log-likelihood
must be computed for all values of b. We’ll explore the differences
between inverting Wald, Score, and LRT for binomial data in the
remainder of Chapter 1.
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