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Chapter 8 8.1 Baseline Category Logit Models for Nominal Responses

8.1.1 Baseline-Category Logits

Let Y be categorical with J levels. Let πj(x) = P(Y = j |x).

Logit models pair each response Y = j with the baseline category
Y = J:

log
πj(x)

πJ(x)
= αj + β′jx, for j = 1, . . . , J − 1.

The parameters are α = (α1, . . . , αJ−1) and (β1, . . . ,βJ−1). If each
βj is p − 1 dimensional, then there are (J − 1) + (p − 1)(J − 1) =
(J − 1)p parameters to estimate.

For a fixed x, the ratio of probabilities Y = a versus Y = b is given by

πa(x)

πb(x)
= exp

{
(αa − αb) + (βa − βb)′x

}
.

Note: this model reduces to ordinary logistic regression when J = 2.
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8.1.2 Alligator food choice example

Size Primary food choice
Lake Gender (m) Fish Invertebrate Reptile Bird Other
Hancock Male ≤ 2.3 7 1 0 0 5

> 2.3 4 0 0 1 2
Female ≤ 2.3 16 3 2 2 3

> 2.3 3 0 1 2 3
Oklawaha Male ≤ 2.3 2 2 0 0 1

> 2.3 13 7 6 0 0
Female ≤ 2.3 3 9 1 0 2

> 2.3 0 1 0 1 0
Trafford Male ≤ 2.3 3 7 1 0 1

> 2.3 8 6 6 3 5
Female ≤ 2.3 2 4 1 1 4

> 2.3 0 1 0 0 0
George Male ≤ 2.3 13 10 0 2 2

> 2.3 9 0 0 1 2
Female ≤ 2.3 3 9 1 0 1

> 2.3 8 1 0 0 1
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From n = 219 alligators caught in four Florida lakes.

Let L be lake, G be gender, and S size. Each alligator will have
x = (L,G , S) as a predictor for what they primarily eat.

The probability of food source being (fish, invertebrate, reptile, bird,
other) is π = (π1, π2, π3, π4, π5), where π = π(x) according to the
baseline logit model.
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data gator ;
input lake gender size food count ;
datalines ;
1 1 1 1 7
1 1 1 2 1
1 1 1 3 0
1 1 1 4 0
1 1 1 5 5
...

4 2 2 1 8
4 2 2 2 1
4 2 2 3 0
4 2 2 4 0
4 2 2 5 1
;
proc logistic ; freq count; class lake size gender / param=ref;

model food(ref=’1’) = lake size gender lake∗ size size∗gender lake∗gender
/ link =glogit aggregate scale =none selection=backward;
run;
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We have

Summary o f Backward E l i m i n a t i o n

E f f e c t Number Wald
Step Removed DF I n Chi−Square Pr > ChiSq

1 l a k e∗ s i z e 12 5 0 .7025 1 .0000
2 s i z e∗g e n d e r 4 4 1 .3810 0 .8475
3 l a k e∗g e n d e r 12 3 8 .0477 0 .7814
4 g e n d e r 4 2 2 .1850 0 .7018

The final model has lake and size as additive effects; gender is unimportant
to predicting primary food source. GOF and Type III analyses:

Dev iance and Pearson Goodness−of−F i t S t a t i s t i c s

C r i t e r i o n Value DF Value /DF Pr > ChiSq

Dev iance 52 .4785 44 1 .1927 0 .1784
Pearson 58.0140 44 1 .3185 0 .0765

Type 3 A n a l y s i s o f E f f e c t s

Wald
E f f e c t DF Chi−Square Pr > ChiSq
l a k e 12 35.4890 0 .0004
s i z e 4 18 .7593 0 .0009
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Unless we specify the variables to aggregate over (e.g.
aggregate=(lake size) in the model statement), the SAS GOF
tests use all variables in the original model we worked backwards from
to determine the saturated model. The original model has three
effects: lake, gender, and size.

The saturated model has 16 sets (4 lakes × 2 genders × 2 sizes) of 5
probabilities associated with it. Since the probabilities in each row
add to one, that implies 16× 4 = 64 parameters total in the
saturated model.

However, the reduced model from SAS only has the effects lake and
size! The number of parameters in the reduced model is 20: 12 lake
effects, 4 size effects, and 4 intercepts.

Since we’ve determined that gender is not important, we should not
include gender in the saturated model when determining lack of fit.
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We refit the model including only those predictors L + S in the final model:

proc logistic ; freq count; class lake size / param=ref;
model food(ref=’1’) = lake size / link =glogit aggregate scale =none; run;

Dev iance and Pearson Goodness−of−F i t S t a t i s t i c s

C r i t e r i o n Value DF Value /DF Pr > ChiSq
Dev iance 17 .0798 12 1 .4233 0 .1466
Pearson 15.0429 12 1 .2536 0 .2391

The df = 12 is the number of parameters in the saturated model
aggregated over only lake and size minus the number in the reduced
regression model.

The saturated model has four parameters (five probabilities that add
to one) for each level of lake and size: 4× 4× 2 = 32 df .

The regression model (still) has p = 20 effects so there are
32− 20 = 12 df for testing model fit.

PDeviance = 0.15 and PPearson = 0.24, so there is no evidence of gross
LOF.
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The regression parameter estimates:

A n a l y s i s o f Maximum L i k e l i h o o d E s t i m a t e s

Standard Wald
Parameter food DF E s t i m a t e E r r o r Chi−Square Pr > ChiSq

I n t e r c e p t 2 1 −1.5490 0 .4249 13.2890 0 .0003
I n t e r c e p t 3 1 −3.3139 1 .0528 9 .9081 0 .0016
I n t e r c e p t 4 1 −2.0931 0 .6622 9 .9894 0 .0016
I n t e r c e p t 5 1 −1.9043 0 .5258 13.1150 0 .0003
l a k e 1 2 1 −1.6583 0 .6129 7 .3216 0 .0068
l a k e 1 3 1 1 .2422 1 .1852 1 .0985 0 .2946
l a k e 1 4 1 0 .6951 0 .7813 0 .7916 0 .3736
l a k e 1 5 1 0 .8262 0 .5575 2 .1959 0 .1384
l a k e 2 2 1 0 .9372 0 .4719 3 .9443 0 .0470
l a k e 2 3 1 2 .4583 1 .1179 4 .8360 0 .0279
l a k e 2 4 1 −0.6532 1 .2021 0 .2953 0 .5869
l a k e 2 5 1 0.00565 0 .7766 0 .0001 0 .9942
l a k e 3 2 1 1 .1220 0 .4905 5 .2321 0 .0222
l a k e 3 3 1 2 .9347 1 .1161 6 .9131 0 .0086
l a k e 3 4 1 1 .0878 0 .8417 1 .6703 0 .1962
l a k e 3 5 1 1 .5164 0 .6214 5 .9541 0 .0147
s i z e 1 2 1 1 .4582 0 .3959 13.5634 0 .0002
s i z e 1 3 1 −0.3513 0 .5800 0 .3668 0 .5448
s i z e 1 4 1 −0.6307 0 .6425 0 .9635 0 .3263
s i z e 1 5 1 0 .3316 0 .4483 0 .5471 0 .4595
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The theoretical model is

log

(
πI

πF

)
= α2 + β21I{L = 1}+ β22I{L = 2}+ β23I{L = 3}+ β24I{S = 1}

log

(
πR

πF

)
= α3 + β31I{L = 1}+ β32I{L = 2}+ β33I{L = 3}+ β34I{S = 1}

log

(
πB

πF

)
= α4 + β41I{L = 1}+ β42I{L = 2}+ β43I{L = 3}+ β44I{S = 1}

log

(
πO

πF

)
= α5 + β51I{L = 1}+ β52I{L = 2}+ β53I{L = 3}+ β54I{S = 1}

The estimated model is

log

(
π̂I

π̂F

)
= −1.55− 1.66I{L = 1}+ 0.94I{L = 2}+ 1.12I{L = 3}+ 1.46I{S = 1}

log

(
π̂R

π̂F

)
= −3.31 + 1.24I{L = 1}+ 2.46I{L = 2}+ 2.93I{L = 3} − 0.35I{S = 1}

log

(
π̂B

π̂F

)
= −2.09 + 0.70I{L = 1} − 0.65I{L = 2}+ 1.09I{L = 3} − 0.63I{S = 1}

log

(
π̂O

π̂F

)
= −1.90 + 0.82I{L = 1}+ 0.01I{L = 2}+ 1.52I{L = 3}+ 0.33I{S = 1}
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Note that eβji is how the odds of eating food in category j
(j = 2, 3, 4, 5) changes (relative to eating fish, j = 1) with levels of
lake (i = 1, 2, 3) compared to Lake George, or alligator size (i = 4)
(comparing size ≤ 2.3 to size > 2.3 meters long).

For example eβ32 is how the odds of eating primarily reptiles (j = 3)
changes for lake Oklawaha (i = 2) versus lake George. Here, we
estimate e2.46 ≈ 11.7. There’s probably proportionately more reptiles
(relative to fish) in Oklawaha than George!

Similarly, eβ44 is how the odds of eating primarily birds (j = 4)
changes for smaller alligators (i = 4, comparing size ≤ 2.3 to size >
2.3 meters long) . We estimate this as e−0.63 ≈ 0.53. The odds of
eating primarily birds (relative to fish) increases by e0.63 ≈ 1.88 for
large alligators.
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Let’s answer some more questions:

How does the odds of choosing invertebrates over fish change from
small to large alligators in a given lake?

I Answer:
πI (S = 1, L = l)/πF (S = 1, L = l)

πI (S = 2, L = l)/πF (S = 2, L = l)
= eβ24 .

I From the regression coefficients we have e1.4582 = 4.298. The odds of
primarily eating invertebrates over fish are four times greater for
smaller alligators than larger alligators.

Is this significant? Yes, p = 0.0002 for H0 : β24 = 0. What about a
95% CI?

A 95% CI is part of the output automatically generated by PROC
LOGISTIC.

D. Bandyopadhyay (VCU) 12 / 43



Chapter 8 8.1 Baseline Category Logit Models for Nominal Responses

Odds R a t i o E s t i m a t e s

P o i n t 95% Wald
E f f e c t food E s t i m a t e C o n f i d e n c e L i m i t s
l a k e 1 vs 4 2 0 . 1 9 0 0 . 0 5 7 0 . 6 3 3
l a k e 1 vs 4 3 3 . 4 6 3 0 . 3 3 9 35 .343
l a k e 1 vs 4 4 2 . 0 0 4 0 . 4 3 3 9 . 2 6 6
l a k e 1 vs 4 5 2 . 2 8 5 0 . 7 6 6 6 . 8 1 4
l a k e 2 vs 4 2 2 . 5 5 3 1 . 0 1 2 6 . 4 3 7
l a k e 2 vs 4 3 11 .685 1 . 3 0 6 104.508
l a k e 2 vs 4 4 0 . 5 2 0 0 . 0 4 9 5 . 4 9 0
l a k e 2 vs 4 5 1 . 0 0 6 0 . 2 1 9 4 . 6 0 8
l a k e 3 vs 4 2 3 . 0 7 1 1 . 1 7 4 8 . 0 3 2
l a k e 3 vs 4 3 18 .815 2 . 1 1 1 167.717
l a k e 3 vs 4 4 2 . 9 6 8 0 . 5 7 0 15 .447
l a k e 3 vs 4 5 4 . 5 5 6 1 . 3 4 8 15 .400
s i z e 1 vs 2 2 4 . 2 9 8 1 . 9 7 8 9 . 3 3 9
s i z e 1 vs 2 3 0 . 7 0 4 0 . 2 2 6 2 . 1 9 4
s i z e 1 vs 2 4 0 . 5 3 2 0 . 1 5 1 1 . 8 7 5
s i z e 1 vs 2 5 1 . 3 9 3 0 . 5 7 9 3 . 3 5 4

So e1.4582 = 4.298 with a 95% CI of (1.98, 9.34).
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How about reptiles over birds?

πR(S = 1, L = l)/πB(S = 1, L = l)

πR(S = 2, L = l)/πB(S = 2, L = l)
= eβ34−β44 = e−0.35−(−0.63) = 1.32.

This is an exponentiated contrast, but I’d suggest simply refitting the
model with “birds” as the reference category to get a CI:

proc logistic ; freq count; class lake size / param=ref;
∗ type 4 is birds and type 3 is reptiles ;
model food(ref=’4’) = lake size / link =glogit aggregate scale =none;

D. Bandyopadhyay (VCU) 14 / 43



Chapter 8 8.1 Baseline Category Logit Models for Nominal Responses

Output:

Odds R a t i o E s t i m a t e s

P o i n t 95% Wald
E f f e c t food E s t i m a t e C o n f i d e n c e L i m i t s
s i z e 1 vs 2 3 1 . 3 2 2 0 . 2 7 2 6 . 4 2 1

The estimate of π̂R(S=1,L=l)/π̂B(S=1,L=l)
π̂R(S=2,L=l)/π̂B(S=2,L=l) = 1.32. The odds of

primarily eating reptiles over birds are 1.32 times greater for small
alligators than large ones.

Does this mean that small (or large) alligators eat more reptiles than
birds? Hint: what if the odds are 13 and 10? What if they are 0.13
and 0.10?
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1.3 =

[
13/14
1/14

]
[

10/11
1/11

] ,
implies more reptiles than birds for small and large alligators!

1.3 =

[
13/113

100/113

]
[

1/11
10/11

] ,
implies more birds than reptiles for small and large alligators!
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Figure 8.1, p. 297: note that the curves have to add up to one. As
the alligator gets bigger, she increasingly chooses “fish” and “other”
over “invertebrates” (worms, snails, bugs, etc.) (as would any of us!)

Let x be a fixed covariate vector and say n observations are sampled
at x. Then n = (n1, . . . , nJ) ∼ mult(n,π(x)) where
π(x) = (π1(x), . . . , πJ(x)) and

πj(x) =
exp(αj + β′jx)

1 +
∑J−1

h=1 exp(αh + β′hx)
.

For example, each row in the alligator food table is a different
multinomial vector n = (n1, n2, n3, n4, n5) corresponding to a unique x
yielding probabilities π(x) through the baseline logit model.
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8.2.1 Cumulative logits

Let Y be ordinal with J categories.

P(Y ≤ j |x) = π1(x) + · · ·+ πj(x) for j = 1, . . . , J.

The cumulative logits are defined as

logitP(Y ≤ j |x) = log
P(Y ≤ j |x)

1− P(Y ≤ j |x)

= log
π1(x) + · · ·+ πj(x)

πj+1(x) + · · ·+ πJ(x)
for j = 1, . . . , J − 1.
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8.2.2 Cumulative logit models

The proportional odds model stipulates

log
P(Y ≤ j |x)

P(Y > j |x)
= αj + β′x for j = 1, . . . , J − 1.

There are only (J − 1) + (p − 1) parameters to estimate rather than
p(J − 1) with the nominal model.

The odds for Y ≤ j is allowed to change with j through αj . However,
the effect of covariates x on odds Y ≤ j is independent of j .

Note: this model reduces to ordinary logistic regression when J = 2.
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0.
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P(Y<=1)

Figure : Cumulative logit model with the same effect on each of 4 cumulative
probabilities in a 5-category response: They share exactly the same rate of
increase but are horizontally displaced from each other
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The proportional odds model constrains the J − 1 response curves to have
the same shape. For multicategory indicator (yi1, . . . , yiJ) of the response
for subject i , the product multinomial log-likelihood function is

n∑
i

 J∑
j=1

yij log πj(xi )


=

n∑
i

 J∑
j=1

yij log [P(Y ≤ j |xi )− P(Y ≤ j − 1|xi )]


=

n∑
i

 J∑
j=1

yij log

[
exp(αj + β′xi )

1 + exp(αj + β′xi )
−

exp(αj−1 + β′xi )

1 + exp(αj−1 + β′xi )

]
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Restated, the odds of Y ≤ j at x1 divided by the odds of Y ≤ j at x2

are, under the model:

log
P(Y ≤ j |x1)/P(Y > j |x1)

P(Y ≤ j |x2)/P(Y > j |x2)
= β′(x1 − x2).

This is the log cumulative odds ratio.

The odds of making response ≤ j at x1 are eβ
′(x1−x2) times the odds

at x2, independent of the level j .

Note that eβk is how the odds of Y ≤ j change when increasing the
predictor xk by one.
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Mental impairment example from Agresti 2002 page 279:

Y = 1, 2, 3, 4 is degree of impairment (well, mild symptom formation,
moderate symptom formation, impaired) for n = 40 randomly
sampled people in Alachua County, Florida.

We wish to relate Y to L = number and severity of important life
events (new baby, new job, divorce, death in family within 3 years),
S = socioeconomic status (low=0 or high=1).

Y S L Y S L Y S L Y S L

1 1 1 1 1 9 1 1 4 1 1 3
1 0 2 1 1 0 1 0 1 1 1 3
1 1 3 1 1 7 1 0 1 1 0 2
2 1 5 2 0 6 2 1 3 2 0 1
2 1 8 2 1 2 2 0 5 2 1 5
2 1 9 2 0 3 2 1 3 2 1 1
3 0 0 3 1 4 3 0 3 3 0 9
3 1 6 3 0 4 3 0 3
4 1 8 4 1 2 4 1 7 4 0 5
4 0 4 4 0 4 4 1 8 4 0 8
4 0 9
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Code:

data impair ;
input mental ses life ;
datalines ;
1 1 1
1 1 9
...

4 0 8
4 0 9
;
proc logistic ;

model mental = life ses / aggregate scale =none;
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Output:

Response P r o f i l e

Ordered T o t a l
Value menta l Frequency

1 1 12
2 2 12
3 3 7
4 4 9

P r o b a b i l i t i e s modeled a r e cumulated o v e r t h e l o w e r Ordered V a l u e s .

Sc or e Test f o r t h e P r o p o r t i o n a l Odds Assumption
Chi−Square DF Pr > ChiSq

2 .3255 4 0 .6761
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The test of the proportional odds assumption tests the fitted model
against the alternative

log
P(Y ≤ j |x)

P(Y > j |x)
= αj + β′jx for j = 1, . . . , J − 1.

The proportional odds model is a special case where
β1 = β2 = · · · = βJ−1 = β. The drop in model parameters is
p(J − 1)− (J − 1)− (p − 1) = (p − 1)(J − 2), here (3− 1)2 = 4 df .

We accept that the simpler cumulative logit model fits, and find no
gross LOF from the Pearson GOF (Note: The DF is computed by
3× 19− 5 = 52, which is problematic as n = 40):

Dev iance and Pearson Goodness−of−F i t S t a t i s t i c s
C r i t e r i o n Value DF Value /DF Pr > ChiSq
Dev iance 57 .6833 52 1 .1093 0 .2732
Pearson 57.0248 52 1 .0966 0 .2937

Number o f u n i q u e p r o f i l e s : 19
T e s t i n g G l o b a l N u l l H y p o t h e s i s : BETA=0

Test Chi−Square DF Pr > ChiSq
L i k e l i h o o d R a t i o 9 .9442 2 0 .0069
Sc or e 9 .1431 2 0 .0103
Wald 8 .5018 2 0 .0143
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A n a l y s i s o f Maximum L i k e l i h o o d E s t i m a t e s

Standard Wald
Parameter DF E s t i m a t e E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 1 −0.2818 0 .6231 0 .2045 0 .6511
I n t e r c e p t 2 1 1 .2129 0 .6511 3 .4700 0 .0625
I n t e r c e p t 3 1 2 .2095 0 .7171 9 .4932 0 .0021
l i f e 1 −0.3189 0 .1194 7 .1294 0 .0076
s e s 1 1 .1111 0 .6143 3 .2719 0 .0705

Odds R a t i o E s t i m a t e s

P o i n t 95% Wald
E f f e c t E s t i m a t e C o n f i d e n c e L i m i t s
l i f e 0 . 7 2 7 0 . 5 7 5 0 . 9 1 9
s e s 3 . 0 3 8 0 . 9 1 1 10 .126

The fitted model is

log

{
P(Y = 1)

P(Y = 2, 3, 4)

}
= −0.28− 0.32 life + 1.11 ses

log

{
P(Y = 1, 2)

P(Y = 3, 4)

}
= 1.21− 0.32 life + 1.11 ses

log

{
P(Y = 1, 2, 3)

P(Y = 4)

}
= 2.21− 0.32 life + 1.11 ses
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Note that α1 < α2 < α3 must hold because this series of odds can
only increase. The event of interest is Y ≤ j , i.e. being “less
impaired.”

The odds of being “less impaired” increases by e1.11 = 3.0 for high
socioeconomic status versus low (for fixed number of life events).

The odds of being “less impaired” decreases by a factor of
e−0.32 = 0.73 for every additional life event that occurred in the
previous 3 years (for fixed socioeconomic status).

Put another way, for high ses the odds of being more impaired is only
1/3 that of low ses (so low ses is bad). The odds of being more
impaired increases by 1/0.727 = 1.38 for every additional life event.

Low SES is equivalent to about 3.5 life events: [e0.3189]3.5 ≈ 3.05.
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8.2.3 Latent variable motivation*

It is useful to think of each individual having an underlying continuous
“impairment” score Y ∗. This latent continuous variable determines
the observed level of impairment via cutoffs

Y ∗ < α1 ⇒ Y = 1
α1 < Y ∗ < α2 ⇒ Y = 2
α2 < Y ∗ < α3 ⇒ Y = 3
α3 < Y ∗ ⇒ Y = 4

The latent score has a regression model

Y ∗ = −β1 life− β2 ses + ε,

where ε is subject-to-subject error and distributed as standard logistic

f (ε) =
eε

(1 + eε)2
.
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This formulation is equivalent to the proportional odds model. To see
this, note that the CDF of the logistic distribution is F (ε) = eε

(1+eε) .
Then

P(Y = 1) = P(Y ∗ ≤ α1)

= P(−β1life− β2ses + ε ≤ α1)

= P(ε ≤ α1 + β1life + β2ses)

=
eα1+β1life+β2ses

(1 + eα1+β1life+β2ses)

yielding

log

{
P(Y = 1)

P(Y = 2, 3, 4)

}
= α1 + β1life + β2ses.

Repeat for P(Y ≤ 2) and P(Y ≤ 3).

See Figure 8.5 (p. 304).
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a1
a2

a3
Y

* Y
1

2
3

4

x1 x2

P(Y=4|x1) P(Y=4|x2)

Figure : Ordinal Response with Underlying Regression for a Latent Variable
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Generalizations:

8.3.1 & 8.3.2 discusses other models

P(Y ≤ j |x) = F (αj + β′x),

where F is probit or complimentary log-log. These can also be fit in
PROC LOGISTIC (LINK=CPROBIT or LINK=CCLOGLOG) and may
improve fit over proportional odds (i.e. the cumulative logit model).

If the subject-to-subject error ε is distributed as N(0, 1), it becomes a
cumulative probit model.

If the subject-to-subject error ε is distributed as an extreme value
distribution, it becomes a cumulative complementary log-log model,
also called a proportional hazards model as it results from a
generalization of the proportional hazards model for survival data to
handle grouped survival times (see slide 8).
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8.3.6 Continuation-Ratio Logits Models

Let Y = 1, . . . , J be ordered stages that one must pass through in
order starting with the first (e.g. egg, larva or caterpillar, pupa or
chrysalis, and adult butterfly). Often the categories are time periods
(e.g. years 1, 2, 3, 4). Let

hj(x) = P(Y = j |Y ≥ j).

This probability is termed the hazard of ending up in stage Y = j . If
Y = j indicates death in time period j , then this is the risk of dying
right at j given that you’ve made it up to j .

Let P(Y = j) = πj(x). Then

hj(x) =
πj(x)

πj(x) + πj+1(x) + · · ·+ πJ(x)
.
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The continuation-ratio logit model specifies

log

{
hj(x)

1− hj(x)

}
= αj + β′x.

This is an example of a hazard regression model.
Note that

hj(x)

1− hj(x)
=

P(Y = j)/P(Y ≥ j)

P(Y > j)/P(Y ≥ j)
=

πj
πj+1 + πj+2 + · · ·+ πJ

.

This latter expression is called a continuation ratio.
The model thus specifies

log

{
πj

πj+1 + πj+2 + · · ·+ πJ

}
= αj + β′x.
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If we specify a cumulative log-log link instead,

hj(x) = 1− exp{− exp(αj + β′x)},

P(Y ≥ j) = P(Y ≥ 1,Y ≥ 2, . . . ,Y ≥ j)

= P(Y ≥ j |Y ≥ j − 1) · · ·P(Y ≥ 2|Y ≥ 1)

=
P(Y ≥ j)

P(Y ≥ j − 1)

P(Y ≥ j − 1)

P(Y ≥ j − 2)
· · · P(Y ≥ 2)

P(Y ≥ 1)

= [e−e
αj−1

]e
β′x

[e−e
αj−2

]e
β′x · · · [e−eα1 ]e

β′x

=
[
e−

∑j−1
i=1 eαi

]eβ′x
for fixed x,

as P(Y≥j)
P(Y≥j−1) = 1− P(Y=j−1)

P(Y≥j−1) = 1− hj−1(x). Let Sx(j) = P(Y ≥ j |x).
Then

Sx(j) = S0(j)e
β′x
,

where S0(j) = e−
∑j−1

i=1 eαi , which is the proportional hazards model.
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Both models are written

hj(x) = F (αj + β′x).

Generalizations:

If the affect of covariates changes with time (or stage), we can
generalize to

hj(x) = F (αj + β′jx).

This can be fit as a series of nested binomial regression models.

If time-dependent covariates {x1, x2, . . . , xJ} are measured (e.g.
blood pressure, amount of television watched, etc.) then we can fit

hj(x) = F (αj + β′xj).

In general, it is not straightforward to fit these models in SAS; see
http://support.sas.com/faq/045/FAQ04512.html.
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To form the likelihood note that

P(Y = j |x) = hj(x)

j−1∏
k=1

(1− hk(x)).

Then

L(α,β) =
n∏

j=1

P(Y = j |x).

Also note that
hJ(x) = P(Y = J|Y ≥ J) = 1.

Recall for the logit model hj(x) = e
αj+β′x

1+e
αj+β′x .

The proportional odds (cumulative logit) model for this type of data is
also applicable and provides a different type of inference.
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The cumulative logit model specifies

logitP(Y ≤ j |x) = log
π1(x) + · · ·+ πj(x)

πj+1(x) + · · ·+ πJ(x)
= αj + β′x.

The continuation-ratio logit model specifies

log

{
πj(x)

πj+1(x) + πj+2(x) + · · ·+ πJ(x)

}
= αj + β′x.
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Example: We consider a widely-analyzed data set first presented by Feigl
and Zelen (1965) on n = 33 leukemia patients.

The outcome is Y = 1 for death within the year after diagnosis,
Y = 2 for death within the second year, and Y = 3 for within 3 or
more years (only one made it to 4 years).

The predictors are x1 = 0 for AG− and x1 = 1 for AG+ and
x2 = log(wbc), log white blood cell count. AG+ indicates the
presence of Auer rods and/or significant granulature of leukemic bone
marrow cells.

PROC NLMIXED has routines built in to maximize certain types of
likelihoods, and is especially useful when random effects are present.
We will use it to build and maximize the continuation ratio (hazard
regression) likelihood.
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data leuk1 ;
input x1 x2 y @@;
datalines ;

1 6.62 3 1 7.74 2 1 8.36 2 1 7.86 3 1 8.69 1 1 9.25 3
1 9.21 3 1 9.74 1 1 8.59 1 1 8.85 3 1 9.14 2 1 10.37 1
1 10.46 1 1 10.85 1 1 11.51 1 1 11.51 1 1 11.51 2 0 8.38 2
0 8.00 2 0 8.29 1 0 7.31 1 0 9.10 1 0 8.57 1 0 9.21 1
0 9.85 1 0 10.20 1 0 10.23 1 0 10.34 1 0 10.16 1 0 9.95 1
0 11.27 1 0 11.51 1 0 11.51 1
;
proc nlmixed; ∗ effect of beta constant across stages ;
parms a1=−7 a2=−6 b1=−3 b2=1;
nh1=exp(a1+x1∗b1+x2∗b2);
nh2=exp(a2+x1∗b1+x2∗b2);
h1=nh1/(1+nh1); h2=nh2/(1+nh2);
if (y=1) then z=h1;
if (y=2) then z=(1−h1)∗h2;
if (y=3) then z=(1−h1)∗(1−h2);
if (z>1e−8) then ll=log(z); else ll =−1e100;
model y ˜ general ( ll );
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We obtain
The NLMIXED P r o c e d u r e

Parameter E s t i m a t e s

Standard
Parameter E s t i m a t e E r r o r DF t Value Pr > | t | Alpha Lower Upper G r a d i e n t
a1 −6.7090 3 .4093 33 −1.97 0 .0575 0 . 0 5 −13.6454 0 .2273 −3.67E−8
a2 −5.8987 3 .2094 33 −1.84 0 .0751 0 . 0 5 −12.4282 0 .6309 −1.07E−8
b1 −2.6455 0 .9875 33 −2.68 0 .0114 0 . 0 5 −4.6545 −0.6364 −4.32E−8
b2 0 .9677 0 .3813 33 2 . 5 4 0 .0161 0 . 0 5 0 .1919 1 .7436 −4.49E−7
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Clearly both AG factor and log(wbc) affect the probability of moving
from stage to stage.

Given that a subject has made it to a given stage, the odds of dying
in that stage (instead of moving on) are estimated to significantly
decrease by a factor of e−2.6455 = 0.071 when x1 changes from 0 to 1.

Given that a subject has made it to a given stage, the odds of dying
increase by e0.9677 = 2.63 for each unit increase in log(wbc).

Model -2 Log L AIC
Hazard regression, logistic, AG+WBC 39.2 47.2

β same across stages
Hazard regression, logistic, AG+WBC 38.2 50.2

βj changes j = 1, 2
Hazard regression, logistic, AG+WBC+AG*WBC 39.0 49.0

β same across stages
Proportional odds (cumulative logit) 39.9 47.9

AG+WBC
Proportional odds (cumulative logit) 39.7 49.7

AG+WBC+AG*WBC
Hazard regression, cumulative log-log, AG+WBC 38.6 46.6

β same across stages
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Comments:

The proportional odds model is trivially fit: proc logistic; model

y=x1 x2;.

We can test the logistic continuation ratio model with the effect of
the covariates changing with stage by comparing the decrease in -2

Log L to the increase in parameters. The simpler model has (β1, β2)
increased to (β11, β12, β21, β22), a df = 2 parameter difference.
39.2− 38.2 = 1.0; P(χ2

2 > 1.0) = 0.61; the simpler (constant β)
model is preferred.

This confirms the best choice from AIC: the additive logistic hazard
regression model with AG and log(wbc).
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