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Chapter 7

There are three common links considered in binary regression: logistic,
probit, and complimentary log-log. All three are written

π(x) = F (x′β).

Logistic regression: F (x) = ex

1+ex .

Probit regression: F (x) = Φ(x) where Φ(x) =
∫ x
−∞

e−0.5z2

√
2π

dz .

Complimentary log-log binary regression: F (x) = 1− exp{− exp(x)}.

They differ primarily in the tails, but the logistic and probit links are
symmetric in that rare and very common events are treated similarly in the
tails. The CLL link approaches 1 faster than 0, so obtaining “rare event”
status requires more extreme values of x than reaching “likely event”
status.
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Chapter 7

7.1.1 Probit Models: Latent Variable Motivations

Latent Tolerance Distribution: In toxicology, binary response models
describes the effect of dosage of a toxin on whether a subject dies.
Suppose that a subject has a tolerance threshold T for the dosage
X = x , with Y = 1 equivalent to T ≤ x . Tolerances vary among
subjects and assuming T ∼ N(µ, σ2), for fixed dosage, the probability
of a randomly selected subject dies is

π(x) = P(Y = 1|X = x) = P(T ≤ x) = F (x) = Φ [(x − µ)/σ] .

With α = −µ/σ and β = 1/σ, we have Φ−1 [π(x)] = α + βx .
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Chapter 7

Latent Threshold Model: This model assumes there is an unobserved
continuous response y∗ such that the observed response y = 0 if
y∗ ≤ τ and y = 1 if y∗ > τ . Suppose y∗ = µ+ ε where µ = α + βx
and ε ∼ N(0, σ2) then

P(Y = 1) = P(Y ∗ > τ) = P(α + βx + ε > τ)

= P(−ε < α + βx − τ)

= Φ [(α + βx − τ)/σ]

As there is no information in the data about σ and τ , an equivalent
model results if we multiply (α, β, σ, τ) by any positive constant. For
identifiability, we set τ = 0 and σ = 1.
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Utility Function: Let the utility function Uy = αy + βyx + εy for
y = 0, 1, a particular subject selects y = 1 if U1 > U0. Suppose ε0
and ε1 are independent N(0, 1) random variables. Then

P(Y = 1) = P(α1 + β1x + ε1 > α0 + β0x + ε0)

= P
[
(ε1 − ε0)/

√
2 < [(α1 − α0) + (β1 − β0)x ] /

√
2
]

= Φ(α∗ + β∗x)

All three latent variable approaches extend directly to multiple explanatory
variables.
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Probit Models: Interpreting Effects

For the latent threshold model since y∗ = α + βx + ε, 1 unit increase
in x corresponds to a β (or β standard deviation) increase in E (Y ∗) if
ε ∼ N(0, σ2).

Alternative, we can summarize effects on the probability scale. For
example, the average causal effect comparing a binary exposure
X1 = 1 versus X1 = 0 can be estimated as

1

n

∑
i

[π̂(xi1 = 1, xi2, ..., xip)− π̂(xi1 = 0, xi2, ..., xip)]
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O-ring data
Famous data set; your text has it in Table 5.14 (p. 199). N = 23 space shuttle
flights before the Challenger disaster in 1986. Temperature in Fahrenheit, and
whether at least one primary O-ring suffered thermal distress.

data shut1; input temp td @@; datalines;

66 0 70 1 69 0 68 0 67 0 72 0 73 0 70 0 57 1 63 1

70 1 78 0 67 0 53 1 67 0 75 0 70 0 81 0 76 0 79 0

75 1 76 0 58 1

;

data shut2;

do i=1 to 50; temp=i+29; td=.; output; end;

data shut3; set shut1 shut2;

proc logistic descending data=shut3; model td = temp / link=logit;

output out=shut4 p=p1;

proc logistic descending data=shut3; model td = temp / link=cloglog;

output out=shut5 p=p2;

proc logistic descending data=shut3; model td = temp / link=probit;

output out=shut6 p=p3;

data shut7; set shut4 shut5 shut6;

proc sort data=shut7; by temp;

goptions;

symbol1 color=black value=dot interpol=none;

symbol2 color=black value=none l=1 interpol=join;

symbol3 color=black value=none l=2 interpol=join;

symbol4 color=black value=none l=3 interpol=join;

legend1 label=none value=(’data’ ’logit’ ’cloglog’ ’probit’);

proc gplot data=shut7;

plot td*temp p1*temp p2*temp p3*temp / overlay legend=legend1;
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Fits from different links
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From the SAS output

Statistic logit cloglog probit

AIC 24.3 23.5 24.4
α̂ 15.0 12.3 8.8

β̂ −0.23 −0.20 −0.14

Complimentary log-log chosen as “best” out of three according to
AIC.

Fitted cloglog model is

π̂(temp) = 1− exp{− exp(12.3− 0.2 temp)}.

H-L p-values are 0.21, 0.23, 0.22 respectively.
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7.2 Bayesian logistic regression

The Bayesian approach allows the addition of information for β in the form
of a prior. If no information is available, the prior can be uninformative.
Conditional means priors allow incorporation of probability of success for
different covariate values (Bedrick, Christensen, and Johnson, 1997).

Bayesian approaches typically do not depend on asymptotics so they’re
valid for small sample sizes.

Inference usually obtained through Markov chain Monte Carlo. Yields
Monte Carlo estimates of inferences of interest (odds ratios, etc.)

In SAS, can add BAYES statement to PROC GENMOD. Example coming
up where Bayes approach handles complete separation in data.
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7.3 Exact conditional logistic regression

Pages 265–270 describe a method to obtain exact small-sample inference
for regression parameters. The basic idea involves conditioning on
sufficient statistics of parameters you don’t care about. This was also done
to obtain Monte Carlo p-values using EXACT in PROC FREQ (Chapter
3).

Exact conditional logistic regression is appropriate when the data are
sparse, i.e. either

∑N
i=1 yi , or

∑N
i=1(ni − yi ) is small.

Without loss of generality, assume we have two predictors x1 and x2. The
logistic regression likelihood looks like

P(Y1 = y1, . . . ,Yn = yn) =
exp

[
β0
∑N

i=1 yi + β1
∑N

i=1 yixi1 + β2
∑N

i=1 yixi2
]

∏N
i=1

[
1 + exp

(
β0N + β1

∑N
i=1 xi1 + β2

∑N
i=1 xi2

)] .
The sufficient statistic for each βj is Tj =

∑N
i=1 yixij where xi0 = 1 for

the intercept.
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Exact conditional logistic regression

The likelihood for β2, conditional T0 = t0 and T1 = t1 is given by

P(Y1 = y1, . . . ,YN = yN |T0 = t0,T1 = t1) =
exp(t2β2)∑

S(t0,t1)
exp(t∗2β2)

where S(t0, t1) =
{

(y∗1 , . . . , y
∗
N) :

∑N
i=1 y∗i xi0 = t0 and

∑N
i=1 y∗i xi1 = t1

}
.

This is maximized to give the conditional estimate β̃2. Further inference
(e.g. hypothesis testing) requires P(T2 = t2|T0 = t0,T1 = t1). This is
given on p. 267 as (7.7). More details are in a document posted on the
course webpage, if you are interested.

Instead of one effect, we may be interested in two or more effects. We
simply condition on the remaining effects to obtain a contitional likelihood
of two or more effects, similar to the above.
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Exact conditional logistic regression

To test one or more effects, add an EXACT statement in PROC
LOGISTIC, followed by a list variables you want to test dropping from the
model. Options include JOINT (dropping more than one effect and each
effect separately), JOINTONLY, ESTIMATE (=PARM, ODDS, or
BOTH), ALPHA, and ONESIDED.

If your data are not sparse, be prepared to wait for days – a Bayesian
approach might be better.
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7.4.5 Smoothing Using Penalized Likelihood Estimation
The penalized likelihood estimator of β maximizes L∗(β) = L(β)− λ(β),
where λ(.) is a function that provides a roughness penalty, i.e., λ(.)
decreases as elements of β are smoother in some sense, such as uniformly
closer to 0.

The quadratic penalty: λ(β) = λ
∑

j β
2
j , commonly referred as

L2-norm methods.

The L1-norm penalty: λ(β) = λ
∑

j |βj |, equivalently it maximize the
log-likelihood subject to the constraint that

∑
j |βj | ≤ K for some

constant K.

The L0-norm penalty: takes λ(β) to be proportional to the number of
nonzero βj , such as AIC.

The degree of smoothing depends on the smoothing parameter λ, the
choice of which reflects the bias/variance trade-off. Increasing λ
results in greater shrinkage toward zero in the estimates of βj and
smaller variance but greater bias.
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7.4.7 Firth’s Penalized Likelihood for Logistic Regression

Let I (β) be the information matrix of β, the Firth’s Penalized
log-Likelihood for Logistic Regression maximizes
L∗(β) = L(β)− 1

2 log |I (β)|, where |I (β)| is the determinant of the
information matrix I (β).

Maximizing the penalized likelihood yields a maximum penalized
likelihood estimates that always exists and is unique.

It is shown to reduce bias of ML estimators (Firth 1993 Biometrika).

It is very helpful when complete or quasi-complete separation occurs
in the space of explanatory variables, in which ordinary ML estimates
of logistic regression parameters are infinite or do not exist.

The penalized likelihood estimates are posterior modes for the
Bayesian approach using the Jeffreys prior.
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A simple example:

data a ;
i n p u t x y n@@ ; c a r d s ;
0 7 16 1 12 14
;
pr oc l o g i s t i c data=a ; model y /n=x/ f i r t h ; run ;
p r oc l o g i s t i c data=a ; model y /n=x ; run ;

The ordinary logistic regression gives β̂x = 2.0429 with standard error of
0.9150, and the Firth’s penalized logistic regression gives β̂x = 1.8458 with
standard error of 0.8762.
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Example with quasi-complete separation and sparsity

data promote;

input race$ month$ promoted total @@;

datalines;

black july 0 7

black august 0 7

black september 0 8

white july 4 20

white august 4 17

white september 2 15

;

proc logistic data=promote; class race month;

model promoted/total=race month;

exact race / alpha=0.05 estimate=both onesided;

proc logistic data=promote; class race month;

model promoted/total=race month / firth;

proc genmod data=promote; class race month;

model promoted/total=race month / dist=binom link=logit;

bayes coefprior=jeffries;

run;
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‘Regular’ logistic regression

Model Convergence Status

Quasi-complete separation of data points detected.

WARNING: The maximum likelihood estimate may not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are

based on the last maximum likelihood iteration. Validity of the model fit is

questionable.

The LOGISTIC Procedure

WARNING: The validity of the model fit is questionable.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 8.2663 3 0.0408

Score 5.3825 3 0.1458

Wald 0.5379 3 0.9105

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

race 1 0.0027 0.9583

month 2 0.5351 0.7652

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.8718 0.7596 6.0730 0.0137

race black 1 -12.6091 241.4 0.0027 0.9583

month august 1 0.6931 0.9507 0.5316 0.4659

month july 1 0.4855 0.9431 0.2650 0.6067

D. Bandyopadhyay (VCU) 18 / 40



Chapter 7

Conditional exact logistic regression

The LOGISTIC Procedure

Exact Conditional Analysis

Conditional Exact Tests

--- p-Value ---

Effect Test Statistic Exact Mid

race Score 4.5906 0.0563 0.0434

Probability 0.0257 0.0563 0.0434

Exact Parameter Estimates

Standard One-sided 95% One-sided

Parameter Estimate Error Confidence Limits p-Value

race black -1.8813* . -Infinity -0.2491 0.0257

NOTE: * indicates a median unbiased estimate.

Exact Odds Ratios

One-sided 95% One-sided

Parameter Estimate Confidence Limits p-Value

race black 0.152* 0 0.779 0.0257

NOTE: * indicates a median unbiased estimate.

Race is significant using the small-sample exact approach. Race is also
significant using a Bayesian approach fit via McMC (coming up).
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Bayesian approach using Jeffreys’ prior (FIRTH)

Uses Jeffreys’ prior, but inference based on normal approximation.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 5.6209 3 0.1316

Score 4.4120 3 0.2203

Wald 3.1504 3 0.3690

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

race 1 2.6869 0.1012

month 2 0.4464 0.7999

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.6891 0.6946 5.9133 0.0150

race black 1 -2.3491 1.4331 2.6869 0.1012

month august 1 0.5850 0.8770 0.4449 0.5047

month july 1 0.3867 0.8703 0.1975 0.6568

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

race black vs white 0.095 0.006 1.584

month august vs septembe 1.795 0.322 10.014

month july vs septembe 1.472 0.267 8.105
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Bayesian approach using Jeffreys’ prior

Uses Jeffreys’ prior; inference from MCMC

Bayesian Analysis

Model Information

Burn-In Size 2000

MC Sample Size 10000

Thinning 1

Sampling Algorithm ARMS

Distribution Binomial

Link Function Logit

Fit Statistics

DIC (smaller is better) 16.131

pD (effective number of parameters) 3.645

Posterior Summaries

Standard Percentiles

Parameter N Mean Deviation 25% 50% 75%

Intercept 10000 -1.8560 0.7482 -2.3170 -1.7943 -1.3319

raceblack 10000 -3.4542 1.9101 -4.5220 -3.1403 -2.0504

monthaugust 10000 0.6772 0.9428 0.0332 0.6543 1.2855

monthjuly 10000 0.4642 0.9365 -0.1802 0.4351 1.0652

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

Intercept 0.050 -3.4978 -0.5705 -3.3326 -0.4128

raceblack 0.050 -8.0198 -0.5685 -7.5265 -0.2661

monthaugust 0.050 -1.1122 2.5991 -1.1378 2.5499

monthjuly 0.050 -1.2837 2.4032 -1.2698 2.4152

D. Bandyopadhyay (VCU) 21 / 40



Chapter 7

Hierarchical model building:

“When using a polynomial regression model as an approximation to
the true regression function, statisticians will often fit a second-order
or third-order model and then explore whether a lower-order model is
adequate...With the hierarchical approach, if a polynomial term of a
given order is retained, then all related terms of lower order are also
retained in the model. Thus, one would not drop the quadratic term
of a predictor variable but retain the cubic term in the model. Since
the quadratic term is of lower order, it is viewed as providing more
basic information about the shape of the response function; the cubic
term is of higher order and is viewed as providing refinements in the
specification of the shape of the response function.”
— Applied Statistical Linear Models by Neter, Kutner, Nachtsheim,
and Wasserman.
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“It is not usually sensible to consider a model with interaction but not
the main effects that make up the interaction.”
—Categorical Data Analysis by Agresti.

“Consider the relationship between the terms β1x and β2x2. To fit
the term β0 + β2x2 without including β1x implies that the maximum
(or minimum) of the response occurs at x = 0...ordinarily there is no
reason to suppose that the turning point of the response is at a
specified point in the x-scale, so that the fitting of β2x2 without the
linear term is usually unhelpful.
A further example, involving more than one covariate, concerns the
relation between a cross-term such as β12x1x2 and the corresponding
linear terms β1x1 and β2x2. To include the former in a model formula
without the latter two is equivalent to assuming the point (0, 0) is a
col or saddle-point of the response surface. Again, there is usually no
reason to postulate such a property for the origin, so that the linear
terms must be included with the cross-term.”
— Generalized Linear Models by McCullagh and Nelder.
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Polynomial approximation to unknown surface

Real model
logit(πi ) = f (xi1, xi2).

First order approximation to f (x1, x2) about some (x̄1, x̄2):

f (x1, x2) = f (x̄1, x̄2) +
∂f (x̄1, x̄2)

∂x1
(x1 − x̄1) +

∂f (x̄1, x̄2)

∂x1
(x2 − x̄2)

+HOT.

=

[
f (x̄1, x̄2)− x̄1

∂f (x̄1, x̄2)

∂x1
− x̄2

∂f (x̄1, x̄2)

∂x2

]
+

[
∂f (x̄1, x̄2)

∂x1

]
x1 +

[
∂f (x̄1, x̄2)

∂x2

]
x2 + HOT

= β0 + β1x1 + β2x2 + HOT

logit(π) = β0 + β1x1 + β2x2 is an approximation to unknown,
infinite-dimensional f (x1, x2) characterized by (β0, β1, β2).
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Polynomial approximation to unknown surface

Now let x = (x1, x2) and

f (x) = f (x̄) + Df (x̄)(x− x̄) +
1

2
(x− x̄)′D2f (x̄)(x− x̄)′ + HOT.

This similarly reduces to

f (x1, x2) = β0 + β1x1 + β2x2 + β3x2
1 + β4x2

2 + β5x1x2 + HOT,

where (β0, β1, β2, β3, β4, β5) correspond to various (unknown) partial
derivatives of f (x1, x2). Depending on the shape of the true (unknown)
f (x1, x2), some or many of the terms in the approximation
logit(π) = β0 + β1x1 + β2x2 + β3x2

1 + β4x2
2 + β5x1x2 may be unnecessary.

We work backwards via Wald tests hierarchically getting rid of HOT first
to get at more general trends/shapes, e.g. the first order approximation.
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BTW, this directly relates to generalized additive models (7.4.9 GAM)
where instead we approximate

f (x1, x2) = β0 + f1(x1) + f2(x2),

where often

f1(x1) =
J∑

j=1

θ1jg1j(x1) and f2(x2) =
J∑

j=1

θ2jg2j(x2),

functional expansions in terms of basis functions. Here, (θ11, . . . , θ1J) and
(θ21, . . . , θ2J) are estimated from the data and the functions {gij(·)} are
known; e.g. spline basis functions.
A simple additive model is a special case where J = 1 and
g11(x) = g21(x) = x yielding f (x1, x2) = β0 + θ11x1 + θ21x2.
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7.4.9 Generalized additive models

Consider a linear regression problem:

Yi = β0 + β1xi1 + β2xi2 + ei ,

where e1, . . . , en
iid∼ N(0, σ2).

Diagnostics (residual plots, added variable plots) might indicate poor fit of
the basic model above. Remedial measures might include transforming the
response, transforming one or both predictors, or both. One also might
consider adding quadratic terms and/or an interaction term.

Note: we only consider transforming continuous predictors!
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Transformations of predictors

When considering a transformation of one predictor, an added variable plot
can suggest a transformation (e.g. log(x), 1/x) that might work if the
other predictor is “correctly” specified.

In general, a transformation is given by a function g(x). Say we decide
that xi1 should be log-transformed and the reciprocal of xi2 should be
used. Then the resulting model is

Yi = β0 + β1 log(xi1) + β2/xi2 + ei = β0 + g1(xi1) + g2(xi2) + ei ,

where g1(x) and g2(x) are two functions of β1 and β2, respectively.

D. Bandyopadhyay (VCU) 28 / 40



Chapter 7

One method for “nonparametric regression”

Here we are specifying forms for g1(x) and g2(x) based on exploratory
data analysis, but we could from the outset specify models for g1(x) and
g2(x) that are rich enough to capture interesting and predictively useful
aspects of how the predictors affect the response and estimate these
functions from the data.

This is an example of “nonparametric regression,” which ironically involves
the inclusion of lots of parameters rather than fewer.
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Additive model for normal-errors regression

For simple regression data {(xi , yi )}ni=1, a cubic spline smoother g(x)
minimizes

n∑
i=1

(yi − g(xi ))2 + λ

∫ ∞
−∞

g ′′(x)2dx .

Good fit is achieved by minimizing the sum of squares
∑n

i=1(yi − g(xi ))2.
The

∫∞
−∞ g ′′(x)2dx term measures how wiggly g(x) is and λ ≥ 0 is how

much we will penalize g(x) for being wiggly.

So the spline trades off between goodness of fit and wiggliness.

Although not obvious, the solution to this minimization is a cubic spline: a
piecewise cubic polynomial with the pieces joined at the unique xi values.
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Model fit in PROC GAM

Hastie and Tibshirani (1986, 1990) point out that the meaning of λ
depends on the units xi is measured in, but that λ can be picked to yield
an “effective degrees of freedom” df or an “effective number of
parameters” being used in g(x). Then the complexity of g(x) is equivalent
to df -degree polynomial, but with the coefficients “spread out” more
yielding a more flexible function that fits data better.

Alternatively, λ can be picked through cross validation, by minimizing

CV (λ) =
n∑

i=1

(yi − g−iλ (xi ))2.

Both options are available in SAS.
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Generalized additive model

We don’t have {(xi , yi )}ni=1 where y1, . . . , yn are continuous, but rather
{(xi , yi )}ni=1 where yi is categorical (e.g. Bernoulli) or Poisson. The
generalized additive model (GAM) is given by

h{E (Yi )} = β0 + g1(xi1) + · · ·+ gp(xip),

for p predictor variables. Yi is a member of an exponential family such as
binomial, Poisson, normal, etc. h is a link function.

Each of g1(x), . . . , gp(x) are modeled via cubic smoothing splines, each
with their own smoothness parameters λ1, . . . , λp either specified as
df1, . . . , dfp or estimated through cross-validation. The model is fit
through “backfitting.” See Hastie and Tibshirani (1990) or the SAS
documentation for details.
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Fit of GAM to O-ring space shuttle data

data shut1;

input temp td @@;

datalines;

66 0 70 1 69 0 68 0 67 0 72 0 73 0 70 0 57 1 63 1 70 1 78 0 67 0

53 1 67 0 75 0 70 0 81 0 76 0 79 0 75 1 76 0 58 1

;

ods html; ods graphics on;

proc gam plots(clm) data=shut1;

model td = spline(temp) / dist=binomial;

run; quit; ods graphics off; ods html close;

Output:

The GAM Procedure

Dependent Variable: td

Smoothing Model Component(s): spline(temp)

Summary of Input Data Set

Number of Observations 23

Number of Missing Observations 0

Distribution Binomial

Link Function Logit
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Output from PROC GAM

Iteration Summary and Fit Statistics

Number of local score iterations 15

Local score convergence criterion 5.925073E-10

Final Number of Backfitting Iterations 1

Final Backfitting Criterion 8.5164609E-9

The Deviance of the Final Estimate 12.445020758

The local score algorithm converged.

Regression Model Analysis

Parameter Estimates

Parameter Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 5.18721 14.01486 0.37 0.7156

Linear(temp) -0.08921 0.19693 -0.45 0.6560

Smoothing Model Analysis

Fit Summary for Smoothing Components

Num

Smoothing Unique

Component Parameter DF GCV Obs

Spline(temp) 0.999976 3.000000 136344 16

Smoothing Model Analysis

Analysis of Deviance

Sum of

Source DF Squares Chi-Square Pr > ChiSq

Spline(temp) 3.00000 7.870171 7.8702 0.0488
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Chapter 7

Comments
The Analysis of Deviance table gives a χ2-test from comparing the
deviance between the full model and the model with this variable dropped
– here the intercept model plus a linear effect in temperature. We see that
temperature effect is significantly nonlinear at the 5% level. The default
df = 3 corresponds to a smoothing spline with the complexity of a cubic
polynomial.

The following plot was obtained from the plots(clm) statement. The
plot has the estimated smoothing spline function with the linear effect
subtracted out. The plot includes a 95% curvewise Bayesian confidence
band. We visually inspect where this band does not include zero to get an
idea of where significant nonlinearity occurs. This plot can suggest simpler
transformations of predictor variables than use of the full-blown smoothing
spline. Model is

logit(πi ) = β0 + β1xi + g̃1(xi ) = β0 + g1(xi )
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Estimation of g̃1(·), “wiggly part” of g1(·)
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Chapter 7

Comments

The band basically includes zero for most temperature values; at a few
points it comes close to not including zero.

The plot spans the range of temperature values in the data set and
becomes highly variable at the ends. Do you think extrapolation is a good
idea using GAMs?

We want to predict the probability of a failure at 39 degrees. I couldn’t
get GAM to predict beyond the range of predictor values.
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GAM in R

The package gam was written by Trevor Hastie (one of the inventors of
GAM) and (in your instructor’s opinion) is easier to use and gives nicer
output that SAS PROC GAM.

A subset of the kyphosis data set is given on p. 199. Kyphosis is severe
forward flexion of the spine following spinal surgery. We will run the
following code in class:

library(gam); data(kyphosis)

?kyphosis

fit=gam(Kyphosis~s(Age)+s(Number)+s(Start),family=binomial(link=logit),

data=kyphosis)

par(mfrow=c(2,2))

plot(fit,se=TRUE)

summary(fit)
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More R examples

# Challenger O-ring data

td=c(0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,1,0,1)

te=c(66,70,69,68,67,72,73,70,57,63,70,78,67,53,67,75,70,81,76,79,75,76,58)

fit=gam(td~s(te),family=binomial(link=logit))

plot(fit,se=TRUE)

summary(fit)

fit$coeff

# example with linear log-odds

# parametric part significant, nonparametric not significant

x=rnorm(1000,0,2); p=exp(x)/(1+exp(x)); y=rbinom(1000,1,p)

plot(x,y)

fit=gam(y~s(x),family=binomial(link=logit))

plot(fit,se=TRUE)

summary(fit)

fit$coef

# example with quadratic log-odds

# parametric part not be significant, nonparametric significant

p=exp(x^2)/(1+exp(x^2)); y=rbinom(1000,1,p)

plot(x,y)

fit=gam(y~s(x),family=binomial(link=logit))

plot(fit,se=TRUE)

summary(fit)
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Chapter 7

The importance role of DAG in Modeling Building
A directed acyclic graph (DAG): is a directed graph with no directed
cycles. It is formed by a collection of vertices and directed edges,
each edge connecting one vertex to another, such that there is no way
to start at some vertex v and follow a sequence of edges that
eventually loops back to v again.
Common Cause (CC): Lead to Biased Estimates If Not Adjusted;
Common Effect (CE): Lead to Biased Estimates If Adjusted;

D. Bandyopadhyay (VCU) 40 / 40


