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Chapter 6 6.1 Model selection

Two competing goals:
I Model should fit the data well.
I Model should be simple to interpret (smooth rather than overfit –

principle of parsimony).

Often hypotheses on how the outcome is related to specific predictors
will help guide the model building process.

As a rule of thumb: at least 10 events and 10 non-events should
occur for each predictor in the model (including dummies), see
Peduzzi et al. 1996. So if

∑N
i=1 yi = 40 and

∑N
i=1 ni = 830, you

should have no more than 40/10 = 4 predictors in the model.
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Impacts of over fitting: Severe biased parameter estimates, poor
standard error estimates, and error rates from Wald tests and
confidence intervals far from the nominal level.

Certain strategies such as penalized likelihood methods that can
shrink many estimates to 0, and it is possible to have many predictors.

You should not use the guideline to justify overly ambitious. If you
have 1000 outcomes of each type, you are not usually well served by a
model with 100 predictors.
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6.1.2 Horseshoe crab data

Recall that in all models fit we strongly rejected H0 : logit π(x) = β0

in favor of H1 : logit π(x) = x′β:

T e s t i n g G l o b a l N u l l H y p o t h e s i s : BETA=0

Test Chi−Square DF Pr > ChiSq
L i k e l i h o o d R a t i o 40 .5565 7 <.0001
Sc or e 36 .3068 7 <.0001
Wald 29 .4763 7 0 .0001

However, it was not until we carved superfluous predictors from the
model that we showed significance for the included model effects.

This is an indication that several covariates may be highly related, or
correlated. If one or more predictors are perfectly predicted as a linear
combination of other predictors the model is overspecified and
unidentifiable. Here’s an example:

logit π(x) = β0 + β1x1 + β2x2 + β3(x1 − 3x2).
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The MLE β = (β0, β1, β2, β3) is not unique and the model is said to
be unidentifiable. The variable x1 − 3x2 is totally predicted and
redundant given x1 and x2.

Although a perfect linear relationship is usually not met in practice,
often variables are highly correlated and therefore one or more are
redundant. We need to get rid of some!

Although not ideal, automated model selection is necessary with large
numbers of predictors. With p − 1 = 10 predictors, there are
210 = 1024 possible models; with p − 1 = 20 there are 1, 048, 576 to
consider.

Backwards elimination starts with a large pool of potential predictors
and step-by-step eliminates those with (Wald) p-values larger than a
cutoff (the default is 0.05 in SAS PROC LOGISTIC).
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Backward Elimination
proc logistic data=crabs1 descending;

class color spine / param=ref;
model y = color spine width weight color∗spine color∗width color∗weight
spine∗width spine∗weight width∗weight / selection =backward;
run;

When starting from all main effects and two-way interactions, the default p-value cutoff 0.05 yields only the model with width
as a predictor

Summary o f Backward E l i m i n a t i o n
E f f e c t Number Wald

Step Removed DF I n Chi−Square Pr > ChiSq

1 c o l o r∗ s p i n e 6 9 0 .0837 1 .0000
2 width∗ c o l o r 3 8 0 .8594 0 .8352
3 width∗ s p i n e 2 7 1 .4906 0 .4746
4 w e i g h t∗ s p i n e 2 6 3 .7334 0 .1546
5 s p i n e 2 5 2 .0716 0 .3549
6 width∗w e i g h t 1 4 2 .2391 0 .1346
7 w e i g h t∗ c o l o r 3 3 5 .3070 0 .1507
8 w e i g h t 1 2 1 .2263 0 .2681
9 c o l o r 3 1 6 .6246 0 .0849

A n a l y s i s o f Maximum L i k e l i h o o d E s t i m a t e s
Standard Wald

Parameter DF E s t i m a t e E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 −12.3508 2 .6287 22.0749 <.0001
width 1 0 .4972 0 .1017 23.8872 <.0001
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Change criteria of removal
Let’s change the criteria for removing a predictor to p-value ≥ 0.15.

model y = color spine width weight color∗spine color∗width color∗weight
spine∗width spine∗weight width∗weight / selection =backward slstay=0.15;

Yielding a more complicated model:
Summary o f Backward E l i m i n a t i o n

E f f e c t Number Wald
Step Removed DF I n Chi−Square Pr > ChiSq

1 c o l o r∗ s p i n e 6 9 0 .0837 1 .0000
2 width∗ c o l o r 3 8 0 .8594 0 .8352
3 width∗ s p i n e 2 7 1 .4906 0 .4746
4 w e i g h t∗ s p i n e 2 6 3 .7334 0 .1546
5 s p i n e 2 5 2 .0716 0 .3549

A n a l y s i s o f Maximum L i k e l i h o o d E s t i m a t e s
Standard Wald

Parameter DF E s t i m a t e E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 13 .8781 14.2883 0 .9434 0 .3314
c o l o r 1 1 1 .3633 5 .9645 0 .0522 0 .8192
c o l o r 2 1 −0.6736 2 .6036 0 .0669 0 .7958
c o l o r 3 1 −7.4329 3 .4968 4 .5184 0 .0335
width 1 −0.4942 0 .5546 0 .7941 0 .3729
w e i g h t 1 −10.1908 6 .4828 2 .4711 0 .1160
w e i g h t∗ c o l o r 1 1 0 .1633 2 .3813 0 .0047 0 .9453
w e i g h t∗ c o l o r 2 1 0 .9425 1 .1573 0 .6632 0 .4154
w e i g h t∗ c o l o r 3 1 3 .9283 1 .6151 5 .9155 0 .0150
width∗w e i g h t 1 0 .3597 0 .2404 2 .2391 0 .1346
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Drop width and width*weight?

Let’s test if we can simultaneously drop width and width*weight from this model.
From the (voluminous) output we find:

I n t e r c e p t
I n t e r c e p t and

C r i t e r i o n Only C o v a r i a t e s
AIC 227.759 196.841
SC 230.912 228.374
−2 Log L 225.759 176.841

Fitting the simpler model with color, weight, and color*weight yields

Model F i t S t a t i s t i c s

I n t e r c e p t
I n t e r c e p t and

C r i t e r i o n Only C o v a r i a t e s
AIC 227.759 197.656
SC 230.912 222.883
−2 Log L 225.759 181.656

There are 2 more parameters in the larger model (for width and width*weight)

and we obtain −2(L0 − L1) = 181.7− 176.8 = 4.9 and P(χ2
2 > 4.9) = 0.07. We

barely accept that we can drop width and width*weight at the 5% level.
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Forward Selection

Forward selection starts by fitting each model with one predictor separately
and including the model with the smallest p-value under a cutoff
(default=0.05 in PROC LOGISTIC). When we instead have
SELECTION=FORWARD in the MODEL statement we obtain the model
with only width. Changing the cutoff to SLENTRY=0.15 gives the model
with width and color.

Starting from main effects and working backwards by hand, we ended up
with width and color in the model. We further simplified color to dark and
non dark crabs. Using backwards elimination with a cutoff of 0.05 we ended
up with just width. A cutoff of 0.15 and another “by hand” step (at the
0.05 level) yielded weight, color, and weight*color.

The book considers backwards elimination starting with a three-way
interaction model including color, spine condition, and width. The end
model is color and width.
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Stepwise selection in SAS

PROC LOGISTIC allows backwards elimination, forwards selection, and
something that does both, termed ‘stepwise.’

Stepwise selection checks to see whether one or more effects can be removed
from the model after adding a term. Stepwise goes back and forth adding
and removing terms until no more can be eliminated at the SLSTAY level
and no more can be added at the SLENTRY level. In my opinion, this is the
best of the three approaches to variable selection.

Hierarchical models have interactions and/or quadratic effects only when the
main effects comprising them are also in the model (more on this shortly).
SAS automatically chooses the default HIERARCHY=SINGLE to force a
hierarchical final model. There are other options, e.g. HIER=MULTIPLE or
HIER=NONE.
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Stepwise selection in SAS

Recall that default values for SLENTRY and SLSTAY are 0.05. You will get
models with more predictors when you increase these.

For default SLENTRY and SLSTAY, only width is picked using all three
selection procedures for the crab data. For SLENTRY=SLSTAY=0.1, all
three procedures give the same model: color and width.

Treating color and spine as continuous also yields an additive model with
color and width using all three approaches.
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6.1.4 AIC: Minimizing Distance of the Fit from Truth

“No model is correct, but some are more useful than others.”
— George Box

It is often of interest to examine several competing models. In light of
underlying biology or science, one or more models may have relevant
interpretations within the context of why data were collected in the
first place.

In the absence of scientific input, a widely-used model selection tool is
the Akaike information criterion (AIC),

AIC = −2[L(β̂; y)− p].

The L(β̂; y) represents model fit. If you add a parameter to a model,
L(β̂; y) has to increase. If we only used L(β̂; y) as a criterion, we’d
keep adding predictors until we ran out. The p penalizes for the
number of the predictors in the model.
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AIC for Crab Data

The AIC has very nice properties in large samples in terms of prediction.
The smaller the AIC is, the better the model fit (asymptotically).

Model AIC

W 198.8
C +Wt+C ∗Wt 197.7

C +W 197.5
D + Wt + D ∗Wt 194.7

D + W 194.0

If we pick one model, it’s W + D, the additive model with width and the
dark/nondark category.
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LASSO for logistic regression

SAS has a new procedure, PROC HPGENSELECT, which can implement the
LASSO, a modern variable selection technique. It does not, as of yet, have a
HIER=SINGLE option akin to PROC GLMSELECT, but probably will in a future
version. SAS will perform forward selection with a very large number of variables
in a more principled manner than traditional forward selection in PROC
HPGENSELECT with the METHOD=LASSO option. It will star the model with
the ‘best’ selection criterion that you ask for, below the AIC corrected for small
sample sizes. Here we try to find a parsimonious model from all main effects and
two-way interactions.

proc hpgenselect;

class color spine;

model y(event="1") = color spine width weight color*spine color*width

color*weight spine*width spine*weight weight*width / dist=binary link=logit;

selection method=lasso(choose=aicc) details=all;

run;
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GOFs

GOF tests are global checks for model adequacy.
The data are (xi ,Yi ) for i = 1, . . . ,N. The i th fitted value is an estimate

of µi = E (Yi ), namely Ê (Yi ) = µ̂i = ni π̂i where πi = eβ
′xi

1+eβ
′xi

and

π̂i = eβ̂
′
xi

1+eβ̂
′
xi

. The raw residual is what we see Yi minus what we predict

ni π̂i . The Pearson residual divides this by an estimate of
√

var(Yi ):

ei =
yi − ni π̂i√
ni π̂i (1− π̂i )

.

The Pearson GOF statistic is

X 2 =
N∑
i=1

e2
i .
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The standardized Pearson residual is given by

ri =
yi − ni π̂i√

ni π̂i (1− π̂i )(1− ĥi )
,

where ĥi is the i th diagonal element of the hat matrix
Ĥ = Ŵ1/2X(X′ŴX)−1X′Ŵ1/2 where X is the design matrix

X =


1 x11 · · · x1,p−1

1 x21 · · · x2,p−1
...

...
. . .

...
1 xN1 · · · xN,p−1

 ,
and
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Chapter 6 6.2 Diagnostics

Ŵ =


n1π̂1(1− π̂1) 0 · · · 0

0 n2π̂2(1− π̂2) · · · 0
...

...
. . .

...
0 0 · · · nN π̂N(1− π̂N)

 .
Alternatively, (6.2, p. 220) defines a deviance residual.
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Comments

With good replication (e.g. ni ≥ 10), plots of residuals rj versus one of the
p− 1 predictors xij , for j = 1, . . . ,N might show systematic lack of fit (i.e. a
pattern). Adding nonlinear terms or interactions can improve fit.

With truly continuous predictors ni = 1 and the residual plots will have a
distinct pattern. Use the fact that if the model fits, E (ri ) ≈ 0, and
superimpose a loess fit on top of the residuals. The loess line should be
approximately straight.

An overall plot is rj versus the linear predictor η̂j = β̂
′
xj . This plot will tell

you if the model tends to over or underpredict the observed data for ranges
of the linear predictor.

The ri are approximately N(0, 1) when ni is not small.
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I usually flag |ri | > 3 as being ill-fit by the model.

You can look at individual ri to determine model fit. For the crab
data, this might flag some individual crabs as ill-fit or unusual relative
to the model.

The model can’t tell the difference between, e.g., two nondark crabs
with same carapace width 23 cm. You can aggregate over same
values of the predictors to slightly “improve” the residuals. This way
the approximate N(0, 1) may be a bit better. Ill fitting residuals then
suggest evidence where the aggregated number of events don’t match
what we’d expect under the model.
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Let’s look at W + D for the crab data. We’ll consider both width and
width truncated to an integer cm. The DATA step is

data crabs1; set crabs ; input color spine width satell weight;
weight=weight/1000; color=color−1;
y=0; n=1; if satell >0 then y=1;
dark=1; if color =4 then dark=2;
w=int(width); ∗ round down;

D. Bandyopadhyay (VCU) 20 / 68



Chapter 6 6.2 Diagnostics

Two models fit & ri plotted:

proc logistic data=crabs1 descending;
∗ each crab has n i=1;
class dark; model y = dark width;
output out=diag1 reschi=p h=h xbeta=eta;

data diag2; set diag1; r=p/sqrt(1−h);
proc gplot ; plot r∗width; plot r∗dark; plot r∗eta;
∗ plot r i vs width, dark, eta i ;

proc sort data=crabs1; by w dark;
∗ aggregate over coarser widths;

proc means data=crabs1 noprint; by w dark; var y n;
output out=crabs2 sum=sumy sumn;

proc logistic data=crabs2;
class dark; model sumy/sumn = dark w;
output out=diag3 reschi=p h=h xbeta=eta;

data diag4; set diag3; r=p/sqrt(1−h);
proc gplot ; plot r∗w; plot r∗dark; plot r∗eta; run;
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6.2.4 Influence

Unlike linear regression, the leverage ĥi in logistic regression depends on
the model fit β̂ as well as the covariates X. Points that have extreme
predictor values xi may not have high leverage ĥi if π̂i is close to 0 or 1.
Here are the influence diagnostics available in PROC LOGISTIC:

Leverage ĥi . Still may be useful for detecting “extreme” predictor
values xi .

ci = e2
i ĥi/(1− ĥi )

2 measures the change in the joint confidence
region for β when i is left out.

DFBETAij is the standardized difference in β̂j when observation i is
left out.

The change in the X 2 GOF statistic when obs. i is left out is
DIFCHISQi = e2

i /(1− ĥi ).

I suggest looking at plots of ci vs. i , and possibly the DFBETA’s versus i .
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Obs w dark sumy sumn

1 21 2 0 1
2 22 1 2 6
3 22 2 1 1
4 23 1 4 11
5 23 2 0 4
6 24 1 9 20
7 24 2 1 3
8 25 1 15 27
9 25 2 3 6

10 26 1 20 27
11 26 2 0 2
12 27 1 20 22
13 27 2 1 4
14 28 1 15 19
15 29 1 10 10
16 29 2 1 1
17 30 1 6 6
18 31 1 2 2
19 33 1 1 1
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Fitting a logistic regression for the aggregated data:

proc logistic data=crabs2;
class dark;
model sumy/sumn = dark w
/aggregate scale =none lackfit influence iplots ;
run;

Let’s look output from the aggregated crab data:
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Dev iance and Pearson Goodness−of−F i t S t a t i s t i c s
C r i t e r i o n Value DF Value /DF Pr > ChiSq
Dev iance 17 .3663 16 1 .0854 0 .3623
Pearson 20.1139 16 1 .2571 0 .2151

T e s t i n g G l o b a l N u l l H y p o t h e s i s : BETA=0
Test Chi−Square DF Pr > ChiSq
L i k e l i h o o d R a t i o 41 .2125 2 <.0001
Sc or e 36 .6705 2 <.0001
Wald 29 .0982 2 <.0001

Type 3 A n a l y s i s o f E f f e c t s
Wald

E f f e c t DF Chi−Square Pr > ChiSq
dark 1 5 .7191 0 .0168
w 1 23.2366 <.0001

A n a l y s i s o f Maximum L i k e l i h o o d E s t i m a t e s
Standard Wald

Parameter DF E s t i m a t e E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 −12.7834 2 .6636 23.0329 <.0001
dark 1 1 0 .6374 0 .2665 5 .7191 0 .0168
w 1 0.5044 0 .1046 23.2366 <.0001

Odds R a t i o E s t i m a t e s
P o i n t 95% Wald

E f f e c t E s t i m a t e C o n f i d e n c e L i m i t s
dark 1 vs 2 3 . 5 7 8 1 . 2 5 9 10 .171
w 1 . 6 5 6 1 . 3 4 9 2 . 0 3 3

Hosmer and Lemeshow Goodness−of−F i t Test
Chi−Square DF Pr > ChiSq

6 .5710 6 0 .3623
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Pearson R e s i d u a l Dev iance R e s i d u a l
C o v a r i a t e s

Case (1 u n i t = 0 . 4 ) (1 u n i t = 0 . 2 7 )
# dark1 w Value −8 −4 0 2 4 6 8 Value −8 −4 0 2 4 6 8

1 −1.0000 21.0000 −0.2431 | ∗| | −0.3389 | ∗| |
2 1 .0000 22.0000 0 .4131 | |∗ | 0 .4021 | |∗ |
3 −1.0000 22.0000 3 .1960 | | ∗| 2 .1987 | | ∗|
4 1 .0000 23.0000 −0.0239 | ∗ | −0.0240 | ∗ |
5 −1.0000 23.0000 −0.8053 | ∗ | | −1.0964 | ∗ | |
6 1 .0000 24.0000 −0.3574 | ∗| | −0.3578 | ∗| |
7 −1.0000 24.0000 0 .5160 | |∗ | 0 .4876 | | ∗ |
8 1 .0000 25.0000 −0.6239 | ∗ | | −0.6189 | ∗ | |
9 −1.0000 25.0000 1 .0202 | | ∗ | 0 .9797 | | ∗ |

10 1 .0000 26.0000 0 .1850 | ∗ | 0 .1861 | |∗ |
11 −1.0000 26.0000 −1.2135 | ∗ | | −1.4856 | ∗ | |
12 1 .0000 27.0000 1 .1509 | | ∗ | 1 .2527 | | ∗ |
13 −1.0000 27.0000 −1.2035 | ∗ | | −1.2174 | ∗ | |
14 1 .0000 28.0000 −1.1861 | ∗ | | −1.0905 | ∗ | |
15 1 .0000 29.0000 0 .9143 | | ∗ | 1 .2671 | | ∗ |
16 −1.0000 29.0000 0 .5469 | |∗ | 0 .7234 | | ∗ |
17 1 .0000 30.0000 0 .5503 | |∗ | 0 .7687 | | ∗ |
18 1 .0000 31.0000 0 .2469 | |∗ | 0 .3466 | |∗ |
19 1 .0000 33.0000 0 .1054 | ∗ | 0 .1487 | |∗ |
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Hat M a t r i x D i a g o n a l I n t e r c e p t
Case (1 u n i t = 0 . 0 2 ) DfBeta (1 u n i t = 0 . 0 7 )

Number Value 0 2 4 6 8 12 16 Value −8 −4 0 2 4 6 8

1 0 .0237 | ∗ | −0.0283 | ∗ |
2 0 .1839 | ∗ | 0 .1929 | | ∗ |
3 0 .0298 | ∗ | 0 .3672 | | ∗ |
4 0 .2486 | ∗ | −0.0128 | ∗ |
5 0 .1467 | ∗ | −0.1877 | ∗ | |
6 0 .2844 | ∗ | −0.1639 | ∗ | |
7 0 .1331 | ∗ | 0 .0770 | |∗ |
8 0 .2460 | ∗ | −0.0894 | ∗| |
9 0 .3171 | ∗| 0 .1331 | | ∗ |

10 0 .2255 | ∗ | −0.0340 | ∗ |
11 0 .1232 | ∗ | 0 .0245 | ∗ |
12 0 .2244 | ∗ | −0.4487 | ∗ | |
13 0 .2755 | ∗ | 0 .2139 | | ∗ |
14 0 .2323 | ∗ | 0 .5935 | | ∗|
15 0 .1307 | ∗ | −0.3317 | ∗ | |
16 0 .0702 | ∗ | −0.0836 | ∗| |
17 0 .0754 | ∗ | −0.1490 | ∗ | |
18 0 .0222 | ∗ | −0.0352 | ∗ |
19 0.00738 |∗ | −0.00875 | ∗ |
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dark1 w
Case DfBeta (1 u n i t = 0 . 1 ) DfBeta (1 u n i t = 0 . 0 8 )

Number Value −8 −4 0 2 4 6 8 Value −8 −4 0 2 4 6 8

1 0 .0263 | ∗ | 0 .0258 | ∗ |
2 0 .0390 | ∗ | −0.1901 | ∗ | |
3 −0.4330 | ∗ | | −0.3253 | ∗ | |
4 −0.00363 | ∗ | 0 .0125 | ∗ |
5 0 .3020 | | ∗ | 0 .1582 | | ∗ |
6 −0.0788 | ∗| | 0 .1569 | | ∗ |
7 −0.1947 | ∗ | | −0.0578 | ∗| |
8 −0.1464 | ∗| | 0 .0751 | |∗ |
9 −0.7822 |∗ | | −0.0551 | ∗| |

10 0 .0384 | ∗ | 0 .0381 | ∗ |
11 0 .4486 | | ∗ | −0.0697 | ∗| |
12 0 .1861 | | ∗ | 0 .4700 | | ∗ |
13 0 .7676 | | ∗| −0.2920 | ∗ | |
14 −0.1497 | ∗ | | −0.6119 |∗ | |
15 0 .0598 | |∗ | 0 .3396 | | ∗ |
16 −0.1153 | ∗| | 0 .0956 | |∗ |
17 0 .0208 | ∗ | 0 .1519 | | ∗ |
18 0.00400 | ∗ | 0 .0358 | ∗ |
19 0.000718 | ∗ | 0.00887 | ∗ |
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C o n f i d e n c e I n t e r v a l D i s p l a c e m e n t C C o n f i d e n c e I n t e r v a l D i s p l a c e m e n t CBar

Case (1 u n i t = 0 . 0 5 ) (1 u n i t = 0 . 0 3 )
Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16

1 0.00147 |∗ | 0.00144 |∗ |
2 0 .0471 | ∗ | 0 .0385 | ∗ |
3 0 .3235 | ∗ | 0 .3139 | ∗ |
4 0.000252 |∗ | 0.000190 |∗ |
5 0 .1306 | ∗ | 0 .1115 | ∗ |
6 0 .0710 | ∗ | 0 .0508 | ∗ |
7 0 .0471 | ∗ | 0 .0409 | ∗ |
8 0 .1685 | ∗ | 0 .1270 | ∗ |
9 0 .7075 | ∗ | 0 .4832 | ∗ |

10 0 .0129 |∗ | 0.00997 |∗ |
11 0 .2359 | ∗ | 0 .2069 | ∗ |
12 0 .4940 | ∗ | 0 .3831 | ∗ |
13 0 .7600 | ∗| 0 .5507 | ∗|
14 0 .5544 | ∗ | 0 .4256 | ∗ |
15 0 .1446 | ∗ | 0 .1257 | ∗ |
16 0 .0243 | ∗ | 0 .0226 | ∗ |
17 0 .0267 | ∗ | 0 .0247 | ∗ |
18 0.00142 |∗ | 0.00139 |∗ |
19 0.000083 |∗ | 0.000083 |∗ |
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D e l t a Dev iance D e l t a Chi−Square
Case (1 u n i t = 0 . 3 2 ) (1 u n i t = 0 . 6 6 )

Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16

1 0 .1163 |∗ | 0 .0606 |∗ |
2 0 .2001 | ∗ | 0 .2091 |∗ |
3 5 .1483 | ∗| 10.5284 | ∗|
4 0.000764 |∗ | 0.000763 |∗ |
5 1 .3135 | ∗ | 0 .7600 | ∗ |
6 0 .1788 | ∗ | 0 .1785 |∗ |
7 0 .2787 | ∗ | 0 .3071 |∗ |
8 0 .5101 | ∗ | 0 .5163 | ∗ |
9 1 .4429 | ∗ | 1 .5239 | ∗ |

10 0 .0446 |∗ | 0 .0442 |∗ |
11 2 .4138 | ∗ | 1 .6794 | ∗ |
12 1 .9524 | ∗ | 1 .7078 | ∗ |
13 2 .0328 | ∗ | 1 .9990 | ∗ |
14 1 .6148 | ∗ | 1 .8326 | ∗ |
15 1 .7313 | ∗ | 0 .9616 | ∗ |
16 0 .5459 | ∗ | 0 .3217 |∗ |
17 0 .6156 | ∗ | 0 .3276 |∗ |
18 0 .1215 |∗ | 0 .0623 |∗ |
19 0 .0222 |∗ | 0 .0112 |∗ |
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Obs. 3 has a large ei (and larger ri ) and is flagged as ill-fit. Obs. 3
also has the largest DIFCHISQ. Obs. 3 is n3 = 1 skinny (22cm) dark
crab that had a satellite. Recall that the probability of having a
satellite increases for light crabs and for wider crabs. This observation
does not have much of an effect on β̂ as measured by ci and the
DFBETAs, perhaps because it’s only 1 crab.

Obs. 9 and 13 have the largest ci . Refining their influence, both 9
and 13 have the largest (in magnitude) DFBETAs for the dark
dummy variable. However, with relatively small |ei |, these
observations are not ill-fit. Obs. 9 represents y9 = 3 dark crabs out of
n9 = 6 that have satellites at width 25cm. Obs. 13 is y13 = 1 out of
n13 = 4 dark crabs at 27cm. These affect the estimate of dark’s
regression coefficient (adjusting for width) more than the other
observations, but are fit well by the model.
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Let’s revisit the output from the aggregated crab data:
Dev iance and Pearson Goodness−of−F i t S t a t i s t i c s

C r i t e r i o n Value DF Value /DF Pr > ChiSq
Dev iance 17 .3663 16 1 .0854 0 .3623
Pearson 20.1139 16 1 .2571 0 .2151

T e s t i n g G l o b a l N u l l H y p o t h e s i s : BETA=0
Test Chi−Square DF Pr > ChiSq
L i k e l i h o o d R a t i o 41 .2125 2 <.0001
Sc or e 36 .6705 2 <.0001
Wald 29 .0982 2 <.0001

Type 3 A n a l y s i s o f E f f e c t s
Wald

E f f e c t DF Chi−Square Pr > ChiSq
dark 1 5 .7191 0 .0168
w 1 23.2366 <.0001

A n a l y s i s o f Maximum L i k e l i h o o d E s t i m a t e s
Standard Wald

Parameter DF E s t i m a t e E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 −12.7834 2 .6636 23.0329 <.0001
dark 1 1 0 .6374 0 .2665 5 .7191 0 .0168
w 1 0.5044 0 .1046 23.2366 <.0001

Odds R a t i o E s t i m a t e s
P o i n t 95% Wald

E f f e c t E s t i m a t e C o n f i d e n c e L i m i t s
dark 1 vs 2 3 . 5 7 8 1 . 2 5 9 10 .171
w 1 . 6 5 6 1 . 3 4 9 2 . 0 3 3

Hosmer and Lemeshow Goodness−of−F i t Test
Chi−Square DF Pr > ChiSq

6 .5710 6 0 .3623
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Fitting a logistic regression for the aggregated data:

data crabs2; set crabs2 ; sid = n ; run;
proc logistic data=crabs2 descending;

class dark; model sumy/sumn = dark w/aggregate scale=none lackfit;
where sid <>3;
run;

Let’s look output from the aggregated crab data with observation 3
deleted:
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Dev iance and Pearson Goodness−of−F i t S t a t i s t i c s
C r i t e r i o n Value DF Value /DF Pr > ChiSq
Dev iance 12 .2066 15 0 .8138 0 .6633
Pearson 10.3209 15 0 .6881 0 .7991

T e s t i n g G l o b a l N u l l H y p o t h e s i s : BETA=0
Test Chi−Square DF Pr > ChiSq
L i k e l i h o o d R a t i o 45 .4814 2 <.0001
Sc or e 39 .9703 2 <.0001
Wald 30 .9792 2 <.0001

Type 3 A n a l y s i s o f E f f e c t s
Wald

E f f e c t DF Chi−Square Pr > ChiSq
dark 1 7 .3422 0 .0067
w 1 24.6940 <.0001

A n a l y s i s o f Maximum L i k e l i h o o d E s t i m a t e s
Standard Wald

Parameter DF E s t i m a t e E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 −13.8155 2 .7781 24.7308 <.0001
dark 1 1 0 .7595 0 .2803 7 .3422 0 .0067
w 1 0.5403 0 .1087 24.6940 <.0001

Odds R a t i o E s t i m a t e s
P o i n t 95% Wald

E f f e c t E s t i m a t e C o n f i d e n c e L i m i t s
dark 1 vs 2 4 . 5 6 8 1 . 5 2 2 13 .705
w 1 . 7 1 7 1 . 3 8 7 2 . 1 2 4

Hosmer and Lemeshow Goodness−of−F i t Test
Chi−Square DF Pr > ChiSq

6 .6918 6 0 .3503
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Fitting a logistic regression for the aggregated data:

data crabs2; set crabs2 ; sid = n ; run;
proc logistic data=crabs2 descending;

class dark; model sumy/sumn = dark w/aggregate scale=none lackfit;
where sid <>9 and sid <>13;
run;

Let’s look output from the aggregated crab data with observations 9 and
13 deleted:
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Dev iance and Pearson Goodness−of−F i t S t a t i s t i c s
C r i t e r i o n Value DF Value /DF Pr > ChiSq
Dev iance 14 .8556 14 1 .0611 0 .3881
Pearson 18.2483 14 1 .3034 0 .1957

T e s t i n g G l o b a l N u l l H y p o t h e s i s : BETA=0
Test Chi−Square DF Pr > ChiSq
L i k e l i h o o d R a t i o 40 .5189 2 <.0001
Sc or e 35 .9213 2 <.0001
Wald 27 .9728 2 <.0001

Type 3 A n a l y s i s o f E f f e c t s
Wald

E f f e c t DF Chi−Square Pr > ChiSq
dark 1 2 .4644 0 .1165
w 1 23.6339 <.0001

A n a l y s i s o f Maximum L i k e l i h o o d E s t i m a t e s
Standard Wald

Parameter DF E s t i m a t e E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 −13.4764 2 .7614 23.8174 <.0001
dark 1 1 0 .6144 0 .3914 2 .4644 0 .1165
w 1 0.5327 0 .1096 23.6339 <.0001

Odds R a t i o E s t i m a t e s
P o i n t 95% Wald

E f f e c t E s t i m a t e C o n f i d e n c e L i m i t s
dark 1 vs 2 3 . 4 1 7 0 . 7 3 7 15 .849
w 1 . 7 0 3 1 . 3 7 4 2 . 1 1 2

Hosmer and Lemeshow Goodness−of−F i t Test
Chi−Square DF Pr > ChiSq

5 .5024 6 0 .4812
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Assessing a model’s predictive ability

Section 6.3.3: SAS will ‘predict’ each Bernoulli outcome, say ỹi based on a
fit of the model without observation i with the CTABLE option. You can
include the proportion of ‘successes’ in the population, say it’s 30%, using
PEVENT=0.3. The default for PEVENT is the proportion of successes in
the data set.

An observation will be classified as a success if π̃i > k where k is a cutoff,
and π̃i is the predicted probability of success through the model leaving
observation i out; use PPROB= k . If PPROB is omitted, SAS will pick a
bunch of them and give the correct number of correctly predicted successes
(true positives) and the number of correctly predicted failures (true
negatives), as well as the sensitivity and specificity for each.

Section 6.3.4: Sensitivity and specificity for different cutoffs k can be
combined into a receiver operator characteristic (ROC) curve; the area under
this curve is c . OUTROC=name in the MODEL statement and PLOTS in
the PROC LOGISTIC statement gives an ROC curve and estimate of c .
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Every pair of observations with different outcomes, i.e. every pair (i1, i2)
where yi1 6= yi2 , is either concordant, discordant, or tied. Assume yi1 = 1
and yi2 = 0. This pair is concordant if π̂i1 ≥ π̂i2, discordant if π̂i1 ≤ π̂i2, and
tied if π̂i1 = π̂i2. Let C be the number of concordant pairs, D the number of
discordant pairs, T the number of ties. The total number of pairs is
C + D + T . Then, γ̂ = (C − D)/(C + D) and Somer’s D is
(C − D)/(C + D + T ). γ̂ does not penalize for ties.

c is (C + 0.5T )/(C + D + T ): the probability that a randomly drawn
‘success’ will have a higher π̂ than a randomly drawn ‘failure’, also called
‘area underneath the ROC curve’. c ≈ 1 indicates excellent discriminatory
ability; c ≈ 0.5 means you might as well flip a coin rather than use the
model to predict success or failure.

The probabilities π̂i are different than the leave-one-out values π̃i used in
the CTABLE option.
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6.3.3 Classification Tables

A Classification Table cross-classifies the binary response with a
prediction of whether y = 0 or 1. The prediction for observation i is
ŷ = 1 when π̂i > π0 and ŷ = 0 when π̂i ≤ π0 for some cutoff π0.

The predictive power can summarized as
Sensitivity = P(ŷ = 1|y = 1) and Specificity = P(ŷ = 0|y = 0).

The proportion of correct classification is P(correct
classification)= P(ŷ = 1|y = 1) + P(ŷ = 0|y = 0).
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6.3.4 ROC Curves

A receiver operating characteristic (ROC) is a plot of sensitivity as a
function of (1-specificity) for the possible π0.

The greater the area under the ROC curve (AUC), the better the
prediction.

The AUC is identical to the concordance index (Hanley and McNeil,
1982).

A value of AUC = 0.5 means predictions are no better than random
guessing, corresponding to a straight line connecting points (0, 0) and
(1, 1).
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Figure : ROC curve
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Chapter 6 6.4: 2× 2× K tables

Let us look at a clinical trial with 8 centers, two creams compared to cure
infection.

Response Y

Center Z = k Treatment X Success Failure θ̂XY (k)

1 Drug 11 25 1.2
Control 10 27

2 Drug 16 4 1.8
Control 22 10

3 Drug 14 5 4.8
Control 7 12

4 Drug 2 14 2.3
Control 1 16

5 Drug 6 11 ∞
Control 0 12

6 Drug 1 10 ∞
Control 0 10

7 Drug 1 4 2.0
Control 1 8

8 Drug 4 2 0.3
Control 6 1
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Have:

Y binary outcome (e.g. success/failure of treatment).

X binary predictor (e.g. treatment).

Stratum Z (e.g. treatment center).

Want to test X ⊥ Y |Z versus an alternative.

Let πik = P(Y = 1|X = i ,Z = k) and

θXY (k) =
P(Y = 1|X = 1,Z = k)/P(Y = 2|X = 1,Z = k)

P(Y = 1|X = 2,Z = k)/P(Y = 2|X = 2,Z = k)
.

Recall X ⊥ Y |Z when θXY (k) = 1. This happens under the model

logit πik = α + βZk .

This is an ANOVA-type specification where instead of listing K − 1
dummy variables, we concisely include a subscript on Z ’s effect βZk .
So there are K effects for Z , βZ1 , β

Z
2 , . . . , β

Z
K and they sum to zero.
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An additive alternative model specifies

logit πik = α + βI{Xi = 1}+ βZk .

Under this model θXY (k) = eβ for all k. The odds ratios are the same
across strata, but the strata-specific probabilities of success change
with Z = k . X ⊥ Y |Z if we accept H0 : β = 0.

The most general alternative is

logit πik = α + βI{Xi = 1}+ βZk + βXZk I{Xi = 1}.

This is a saturated model and allows θXY (1) 6= θXY (2) 6= · · · 6= θXY (K).

X ⊥ Y |Z if we accept H0 : β = 0, βXZk = 0 for k = 1, . . . ,K .

Both of these alternatives allow testing H0 : X ⊥ Y |Z in PROC
LOGISTIC with a Wald test.
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Cochran-Mantel-Haenszel Statistic

CMH =

[∑K
k=1(n11k − µ̂11k)

]2

∑K
k=1 var(n11k)

,

where µ̂11k = n1+kn+1k/n++k and
var(n11k) = n1+kn2+kn+1kn+2k/n2

++k(n++k−1).

Motivated by retrospective studies, e.g. case-control, so response
(column) totals are assumed fixed. Then row (treatment) totals are
sufficient and conditioned on. Leaves only one free parameter in each
table, say n11k which is hypergeometric under H0:

Null hypothesis is H0 : X ⊥ Y |Z .

µ̂11k = E (n11k) and var(n11k) are under H0.

When H0 true, CMH
•∼ χ2

1.

D. Bandyopadhyay (VCU) 47 / 68



Chapter 6 6.4: 2× 2× K tables

A bit more detail why n11k are hypergeometric ...

Y = 1 Y = 2
X = 1 n11k n12k n1+k

X = 2 n21k n22k n2+k

n+1k n+2k n++k

There are n1+k “red balls” X = 1 and n2+k “green balls” X = 2.

We choose n+1k balls (controls Y = 1) from the urn. Under
independence one cannot tell the difference between a case and a
control. The number n11k out of n+1k that are “red,” i.e. exposures
X = 1, is hypergeometric (under H0).

See page 91, (3.16) in Section 3.5.1.

Back to logistic regression formulation...
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The additive alternative looks in a certain direction for deviations
from conditional independence X ⊥ Y |Z . It can be more powerful
when the additive model truly holds.

The interaction, saturated model can be more powerful when the
additive alternative does not hold.

The CMH test is equivalent to a score test for testing H0 : β = 0 in
the additive model; see your book (p. 227). This test can be carried
out in PROC FREQ.
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data cmh;
input center $ treat response count;
datalines ;
a 1 1 11
a 1 2 25
a 2 1 10
a 2 2 27
b 1 1 16
b 1 2 4
...

h 1 1 4
h 1 2 2
h 2 1 6
h 2 2 1

;
proc freq ; weight count; tables center∗treat∗response / cmh;
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With annotated output:

Cochran−Mantel−H a e n s z e l S t a t i s t i c s ( Based on Table S c o r e s )

S t a t i s t i c A l t e r n a t i v e H y p o t h e s i s DF Value Prob
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 Nonzero C o r r e l a t i o n 1 6 .3841 0 .0115
2 Row Mean S c o r e s D i f f e r 1 6 .3841 0 .0115
3 G e n e r a l A s s o c i a t i o n 1 6 .3841 0 .0115

E s t i m a t e s o f t h e Common R e l a t i v e R i s k ( Row1/Row2 )

Type o f Study Method Value 95% C o n f i d e n c e L i m i t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Case−C o n t r o l Mantel−H a e n s z e l 2 .1345 1 .1776 3 .8692

( Odds R a t i o ) L o g i t ∗∗ 1 .9497 1 .0574 3 .5949

Cohort Mantel−H a e n s z e l 1 .4245 1 .0786 1 .8812
( Col1 R i s k ) L o g i t ∗∗ 1 .2194 0 .9572 1 .5536

Cohort Mantel−H a e n s z e l 0 .8129 0 .6914 0 .9557
( Col2 R i s k ) L o g i t 0 .8730 0 .7783 0 .9792

∗∗ These l o g i t e s t i m a t o r s use a c o r r e c t i o n o f 0 . 5 i n e v e r y c e l l
o f t h o s e t a b l e s t h a t c o n t a i n a z e r o .

We see CMH= 6.384 with p = 0.0115 and so we reject that X ⊥ Y |Z in
favor of a common odds ratio estimated as θ̂XY = 2.13 (1.18, 3.87).
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Alternatively, we can fit the three logit models:

data cmh2;
input center $ treat y n; treat =abs(treat−2);
datalines ;
a 1 11 36
a 2 10 37
b 1 16 20
b 2 22 32
...
h 1 4 6
h 2 6 7

;
proc logistic data=cmh2; class center ; model y/n = center;
proc logistic data=cmh2; class center ; model y/n = treat center ;
proc logistic data=cmh2; class center ; model y/n = treat center treat∗center ;
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Label the models (1), (2), and (3) respectively. The fit of (2) corresponds
to the alternative in the CMH test:

Type 3 A n a l y s i s o f E f f e c t s

Wald
E f f e c t DF Chi−Square Pr > ChiSq
t r e a t 1 6 .4174 0 .0113
c e n t e r 7 58 .4897 <.0001
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A n a l y s i s o f Maximum L i k e l i h o o d E s t i m a t e s

Standard Wald
Parameter DF E s t i m a t e E r r o r Chi−Square Pr > ChiSq

I n t e r c e p t 1 −1.2554 0 .2692 21.7413 <.0001
t r e a t 1 0 .7769 0 .3067 6 .4174 0 .0113
c e n t e r a 1 −0.0667 0 .3133 0 .0453 0 .8315
c e n t e r b 1 1 .9888 0 .3556 31.2789 <.0001
c e n t e r c 1 1 .0862 0 .3596 9 .1236 0 .0025
c e n t e r d 1 −1.4851 0 .5707 6 .7711 0 .0093
c e n t e r e 1 −0.5866 0 .4582 1 .6390 0 .2005
c e n t e r f 1 −2.2136 0 .9171 5 .8260 0 .0158
c e n t e r g 1 −0.8644 0 .7016 1 .5178 0 .2180

We reject H0 : β = 0 (p = 0.0113) and thus reject X ⊥ Y |Z . We
estimate the common odds ratio to be e−0.777 = 2.18 (1.19, 3.97)
(from excised output).

By adding / aggregate scale=none; to the MODEL statement,
we find the Pearson GOF X 2 = 8.03 on df = 16− (1 + 1 + 7) = 7
with p = 0.33. The additive model does not show gross LOF.

Let’s examine the full interaction (saturated) model anyway...
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The -2 Log L from (1) is 283.689 (under Model Fit Statistics)
and from (3) is 267.274. The number of parameters added to (1) to
get (3) is 8. The p-value is P(χ2

8 > 16.415) = 0.0368.

We reject that H0 : β = 0, βXYk = 0 in the saturated model (3) and
hence also reject X ⊥ Y |Z . Notice the p-value is about 3 times larger
though; we lost some power by considering a very general alternative.

By accepting this more complex alternative we have lost
interpretability as well, the estimated odds ratio θ̂XY (k) changes with
center k . From (3)’s fit

Type 3 A n a l y s i s o f E f f e c t s
Wald

E f f e c t DF Chi−Square Pr > ChiSq
t r e a t 1 0 .0064 0 .9362
c e n t e r 7 24 .2036 0 .0010
t r e a t∗ c e n t e r 7 4 .0996 0 .7682

The Type III effects table shows we can drop the treat*center from
the model and so we go with the analysis and results from the CMH
analysis and/or logit analysis on the previous slide.
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Chapter 6 6.4 Better living through models

Consider an I × 2 table where X is categorical and Y is binary. When the
probability of Y = 2 is the same for each level of X = i ,
π(i) = P(Y = 2|X = i) = π, we have X ⊥ Y . In terms of log-odds this is

logit π(i) = α.

1 If X is nominal, allowing a separate probability for each level of X
gives

logit π(i) = α + βi ,

for i = 1, . . . , I ; the saturated model.

2 When X is ordinal, we can use the above alternative model, or
instead use scores u1 ≤ u2 ≤ · · · ≤ uI in place of X and fit the model

logit π(i) = α + βui .
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Chapter 6 6.4 Better living through models

In the first case a test of H0 : β1 = · · · = βI = 0 is a test of
H0 : X ⊥ Y versus the most general possible alternative. The test
statistic (score, Wald, or LRT) has a χ2

I−1 distribution under H0.

In the second case a test of H0 : β = 0 tests X ⊥ Y versus a focused,
linear alternative. The test statistic has a χ2

1 distribution under H0.

If X is ordinal and the logistic regression model treating X as
continuous fits okay, you can increase your power to reject
H0 : X ⊥ Y by looking in one particular direction (linear log-odds of
scores).

If the model does not fit then you can lose power by looking in only
one place to the exclusion of other alternatives.

For nominal X we pretty much can only test the saturated model to
the intercept model.
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Chapter 6 6.4 Better living through models

6.5: Existence of finite β̂ [One more time]

Estimates β̂ exist, except when data are perfectly separated.

Complete separation happens when a linear combination of predictors
perfectly predicts the outcome. See Figure 6.5 (p. 234). Here, there are an
infinite number of perfect fitting curves that have α =∞. Essentially, there
is a value of x that perfectly separates the 0’s and 1’s. In two-dimensions
there would be a line separating the 0’1 and 1’s.

Quasi-complete separation happens when there’s a line that separates 0’s
and 1’s but there’s some 0’s and 1’s on the line. We’ll look at some pictures.

The end result is that the model will appear to fit but the standard errors
will be absurdly large. This is the opposite of what’s really happening, that
the data can be perfectly predicted.

A (Bayesian!) fix is hiding in Section 7.4.7 (p. 275). Add FIRTH to the
MODEL statement, and quasi and complete separation issues vanish!
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Chapter 6 6.6: Power and sample size considerations

Power Settings

Recall:

α = P(reject H0|H0 true)

β = P(accept H0|H1 true)

Power is 1− β = P(reject H0|H1 true).

Often we want to find an overall sample size n such that, for example,
1− β = 0.9 or 0.8 while capping off α = 0.05.
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One sample proportion

Say we want to test H0 : π = π0 for Y ∼ bin(n, π).

The score test statistic is Z0 = π̂−π0
σ0

where π̂ = Y /n and

σ0 =
√
π0(1− π0)/n.

Under H0 : π = π0, Z
•∼ N(0, 1); this determines zα/2.

The power 1− β is a function of the hypothesized π0, the true π1,
and the sample size through σ0 and σ1 =

√
π1(1− π1)/n.
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We compute:

1− β = P(reject H0|H1 true)

= P(|Z0| > zα/2|π = π1)

= 1− P(−zα/2 ≤ Z0 ≤ zα/2|π = π1)

= 1− P(−zα/2σ0 + π0 ≤ π̂ ≤ zα/2σ0 + π0|π = π1)

= 1− P

(−zα/2σ0 + π0 − π1

σ1
≤ π̂ − π1

σ1
≤

zα/2σ0 + π0 − π1

σ1

)
= 1− P

(−zα/2σ0 + π0 − π1

σ1
≤ Z ≤

zα/2σ0 + π0 − π1

σ1

)
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Chapter 6 6.6: Power and sample size considerations

For a given β, α, π0, and π1, we can solve the above equation for the
sample size n as

n =

[
Zα/2

√
π0(1− π0) + Zβ

√
π1(1− π1)

]2

(π0 − π1)2
.

Check out http://homepage.cs.uiowa.edu/∼rlenth/Power/
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6.6.1 Testing H0 : π1 = π2 from two samples

Recall the two-sample proportion problem. Assume the same number of
observations n will be collected in each group X = 1 and X = 2.

Y1 ∼ bin(n1, π1) ⊥ Y2 ∼ bin(n2, π2).

Let π̂1 = Y1/n and π̂2 = Y2/n. The CLT gives us

π̂1
•∼ N

(
π1,

π1(1− π1)

n1

)
⊥ π̂2

•∼ N

(
π2,

π2(1− π2)

n2

)
,

and so

π̂1 − π̂2
•∼ N

(
π1 − π2,

π1(1− π1)

n1
+
π2(1− π2)

n2

)
.
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Chapter 6 6.6: Power and sample size considerations

Under H0 : π1 = π2 and n1 = n2 the test statistic is

Z =
π̂1 − π̂2√

2π̂(1− π̂)/n
,

where π̂ = (Y1 + Y2)/(2n) is the pooled estimator (the MLE under H0).
Similar computations as in the one-sample case leads to

n1 = n2 = (zα/2 + zβ)2π1(1− π1) + π2(1− π2)

(π1 − π2)2
.

Note that for α = 0.05 and β = 0.1 we have z0.025 = 1.960 and
z0.1 = 1.282. 1− β = 0.99 yields z0.01 = 2.326.
What happens when π1 ≈ π2?
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6.6.2 Sample size for simple logistic regression

Let
logit π(x) = α + βX ,

where X ∼ N(µ, σ2) and

τ = log

{
π(µ+ σ)/[1− π(µ+ σ)]

π(µ)/[1− π(µ)]

}
,

the log of the ratio of event odds when x = µ+ σ and x = µ. Then to
test H0 : β ≤ 0 versus H0 : β > 0 (or the other direction) at significance α
and power 1− β we need sample size

n = [zα + zβe−τ
2/4]2[1 + 2π(µ)δ]/[π(µ)τ2],

where
δ = [1 + (1 + τ2)e5τ2/4]/[1 + e−τ

2/4].
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Text example.

X is cholesterol level, Y indicates “severe heart disease.”

Know π(µ) = 0.08. Want to be able to detect a 50% increase in
probability for a standard deviation increase in cholesterol. 50%
increase in probability is 1.5× 0.08 = 0.12.

π(µ)/[1− π(µ)] = 0.08/0.92 = 0.087.

π(µ+ σ)/[1− π(µ+ σ)] = 0.12/0.88 = 0.136. So the odds ratio is
0.136/0.087 = 1.57, and τ = log(1.57) = 0.45.

Then for α = 0.05, 1− β = 0.9, we have δ = 1.306 and n = 612.

Note: didn’t need to know µ and σ, but rather π(µ) and π(µ+ σ).
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6.6.3 Sample size for one effect in multiple logistic
regression

Say now that we’re interested in X1 but there’s p − 2 more predictors
X2, . . . ,Xp−1. Let R denote the multiple correlation between X1 and the
remaining predictors:

R = max
||a||=1

{corr(X1, a2X2 + · · ·+ ap−1Xp−1)}.

Let π(µ) = π(µ1, µ2, . . . , µp−1) be the probability at the mean of all p − 1
variables.
τ is the now the log odds ratio comparing π(µ1 + σ1, µ2, . . . , µp−1) to
π(µ1, µ2, . . . , µp−1).

n = [zα + zβe−τ
2/4]2[1 + 2π(µ)δ]/[π(µ)τ2(1− R2)].
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Text example (continued):

Say we have another variable X2 is blood pressure and
R = corr(X1,X2) = 0.4.

Then n = 612/(1− 0.42) = 729.

What happens when corr(X1,X2) ≈ 1. Is this problematic? Hint:
think about the interpretation of β1.

The formula only provide, at best, very approximate indications of
sample sizes. Many applications have only a crude guess for π̂ and R,
and X may be far from normally distributed.

6.6.4, 6.6.5, & 6.6.6 Misc. power and sample size considerations
Read over if interested.
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