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Chapter 5 5.3 Categorical Predictors: Continued

Alcohol consumption and malformation example continued:

Let’s use X = 1 as the reference level. Then the model is

logit π(X ) = β0+β1I{X = 2}+β2I{X = 3}+β3I{X = 4}+β4I{X = 5}.

We may be interested in the how the odds of malformation changes
when dropping from 3-4 drinks per week (X = 4) to less than one
drink per week (X = 2), given by eβ3−β1 .

A contrast is a linear combination
c′β = c1β1 + c2β2 + · · ·+ cp−1βp−1. We are specifically interested in
H0 : β3 = β1, or equivalently, H0 : β3 − β1 = 0, as well as estimating
eβ3−β1 .
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Chapter 5 5.3 Categorical Predictors: Continued

proc logistic data=mal;
class cons / param=ref ref= first ;
model present/ total = cons;
contrast ”exp(b3−b1)” cons −1 0 1 0 / estimate=exp;
contrast ”b3−b1” cons −1 0 1 0 / estimate;

run;

D. Bandyopadhyay (VCU) 3 / 37



Chapter 5 5.3 Categorical Predictors: Continued

Ana l y s i s o f Maximum L i k e l i h o o d Es t ima t e s

Standard Wald
Parameter DF Est imate E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 −5.8736 0 .1445 1651.3399 <.0001
cons 2 1 −0.0682 0 .2174 0 .0984 0 .7538
cons 3 1 0 .8136 0 .4713 2 .9795 0 .0843
cons 4 1 1 .0374 1 .0143 1 .0460 0 .3064
cons 5 1 2 .2632 1 .0235 4 .8900 0 .0270

Odds Rat i o E s t ima t e s

Po in t 95% Wald
E f f e c t Es t imate Con f i d ence L im i t s
cons 2 vs 1 0 .934 0 .610 1 .430
cons 3 vs 1 2 .256 0 .896 5 .683
cons 4 vs 1 2 .822 0 .386 20 .602
cons 5 vs 1 9 .614 1 .293 71 .460
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Chapter 5 5.3 Categorical Predictors: Continued

Let θij be the odds ratio for malformation when going from level
X = i to X = j .

We automatically get θ̂21 = e−0.068 = 0.934, θ̂31 = e0.814 = 2.26, etc.

Because θ42 = θ41/θ21 we can estimate θ̂42 = 2.822/0.934 = 3.02, or
else directly from the dummy variable coefficients,
e1.037−(−0.068) = 3.02.

The CONTRAST command allows us to further test H0 : β3 = β1
and to get a 95% CI for the odds ratio θ42 = eβ3−β1 .

D. Bandyopadhyay (VCU) 5 / 37



Chapter 5 5.3 Categorical Predictors: Continued

Cont r a s t Test R e s u l t s
Wald

Con t r a s t DF Chi−Square Pr > ChiSq
exp ( b3−b1 ) 1 1 .1817 0 .2770
b3−b1 1 1 .1817 0 .2770

Con t r a s t Rows E s t ima t i on and Tes t i ng R e s u l t s

Standard Wald
Con t r a s t Type Row Est imate E r r o r Alpha Con f i d ence L im i t s Chi−Square Pr > ChiSq
exp ( b3−b1 ) EXP 1 3.0209 3 .0723 0 .05 0 .4116 22.1728 1 .1817 0 .277
b3−b1 PARM 1 1.1056 1 .0170 0 .05 −0.8878 3 .0989 1 .1817 0 .277

We are allowed linear contrasts or the exponential of linear contrasts. To
get, for example, the relative risk of malformation,

h(β) =
P(Y = 1|X = 4)

P(Y = 1|X = 2)
=

eβ0+β3/[1 + eβ0+β3 ]

eβ0+β1/[1 + eβ0+β1 ]
,

takes more work.
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Chapter 5 5.3 Categorical Predictors: Continued

5.3.4 I × 2 tables

Let X = 1, 2, . . . , I be an ordinal predictor.

If the log odds increases linearly with category X = i we have
logit π(i) = α + βi .

If the log risk increases linearly we have logπ(i) = α + βi .

If the probability increases linearly we have π(i) = α + βi .

If we replace X = 1, 2, . . . , I by scores u1 ≤ u2 ≤ · · · ≤ uI , we get

logit linear model: logit π(i) = α + βui ,

log linear model: logπ(i) = α + βui ,

linear model: π(i) = α + βui .
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Chapter 5 5.3 Categorical Predictors: Continued

In any of these models testing H0 : β = 0 is a test of X ⊥ Y versus a
particular monotone alternative.

The last of the six is called the Cochran-Armitage linear trend model.

Tarone and Gart (1980) Showed that the score test
(Cochran-Armitage trend test) for a binary linear trend model does
not depend on the link function.

These can all be fit in SAS GENMOD.

proc genmod; model present/total = cons / dist=bin link=logit ;
proc genmod; model present/total = cons / dist=bin link=log;
proc genmod; model present/total = cons / dist=bin link=identity ;
proc genmod; model present/total = score / dist =bin link=logit ;
proc genmod; model present/total = score / dist =bin link=log;
proc genmod; model present/total = score / dist =bin link=identity ;
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Chapter 5 5.3 Categorical Predictors: Continued

The first three use X = 1, 2, 3, 4, 5 and the last three use
X = 0.0, 0.5, 1.5, 4.0, 7.0.

For this data, the p-values are respectively 0.18, 0.18, 0.28, 0.01,
0.01, 0.13 testing H0 : β1 = 0 using Wald test.

The Pearson GOF X 2 = 2.05 with p = 0.56 for the logit model with
scores and X 2 = 5.68 with p = 0.13 for using 1, 2, 3, 4, 5. The logit
model using scores fits better and from this model we reject
H0 : β = 0 with p = 0.01.
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Chapter 5 5.4 Multiple Predictors

Now we have p − 1 predictors xi = (1, xi1, . . . , xi ,p−1) and fit

Yi ∼ bin

(
ni ,

exp(β0 + β1xi1 + · · ·+ βp−1xi ,p−1)

1 + exp(β0 + β1xi1 + · · ·+ βp−1xi ,p−1)

)
.

Many of these predictors may be sets of dummy variables associated
with categorical predictors.

eβj is now termed the adjusted odds ratio. This is how the odds of
the event occurring changes when xj increases by one unit keeping
the remaining predictors constant.

This interpretation may not make sense if two predictors are highly
related.
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Chapter 5 5.4 Multiple Predictors

An overall test of H0 : logit π(x) = β0 versus H1 : logit π(x) = x′β is
generated in PROC LOGISTIC three different ways: LRT, score, and Wald
versions. This checks whether some subset of variables in the model is
important.
Recall the crab data covariates:

C = color (1,2,3,4=light medium, medium, dark medium, dark).

S = spine condition (1,2,3=both good, one worn or broken, both
worn or borken).

W = carapace width (cm).

Wt = weight (kg).

We’ll take C = 4 and S = 3 as baseline categories.
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Chapter 5 5.4 Multiple Predictors

There are two categorical predictors, C and S , and two continuous
predictors W and Wt. Let Y = 1 if a randomly drawn crab has one or
more satellites and x = (C ,S ,W ,Wt) be her covariates. An additive
model including all four covariates would look like

logit π(x) = β0 + β1I{C = 1}+ β2I{C = 2}+ β3I{C = 3}
+β4I{S = 1}+ β5I{S = 2}+ β6W + β7Wt

This model is fit via

proc logistic data=crabs1 descending;
class color spine / param=ref;
model y = color spine width weight / lackfit ;

The H-L GOF statistic yields p − value = 0.88 so there’s no evidence of
gross lack of fit. The parameter estimates are:
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Chapter 5 5.4 Multiple Predictors

Standard Wald
Parameter DF Est imate E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 −9.2734 3 .8378 5 .8386 0 .0157
c o l o r 1 1 1 .6087 0 .9355 2 .9567 0 .0855
c o l o r 2 1 1 .5058 0 .5667 7 .0607 0 .0079
c o l o r 3 1 1 .1198 0 .5933 3 .5624 0 .0591
s p i n e 1 1 −0.4003 0 .5027 0 .6340 0 .4259
s p i n e 2 1 −0.4963 0 .6292 0 .6222 0 .4302
width 1 0 .2631 0 .1953 1 .8152 0 .1779
we ight 1 0 .8258 0 .7038 1 .3765 0 .2407

Color seems to be important. Plugging in β̂ for β,

logit π̂(x) = −9.27 + 1.61I{C = 1}+ 1.51I{C = 2}+ 1.11I{C = 3}
−0.40I{S = 1} − 0.50I{S = 2}+ 0.26W + 0.83Wt

Overall checks that one or more predictors are important:

Tes t i ng G l oba l Nu l l Hypo the s i s : BETA=0

Test Chi−Square DF Pr > ChiSq
L i k e l i h o o d Rat i o 40 .5565 7 <.0001
Score 36 .3068 7 <.0001
Wald 29 .4763 7 0 .0001
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Chapter 5 5.4 Multiple Predictors

The Type III tests are (1) H0 : β1 = β2 = β3 = 0, that color is not needed
to explain whether a female has satellite(s), (2) H0 : β4 = β5 = 0, whether
spine is needed, (3) H0 : β6 = 0, whether width is needed, and (4)
H0 : β7 = 0, whether weight is needed:

Type 3 An a l y s i s o f E f f e c t s
Wald

E f f e c t DF Chi−Square Pr > ChiSq
c o l o r 3 7 .1610 0 .0669
s p i n e 2 1 .0105 0 .6034
width 1 1 .8152 0 .1779
we ight 1 1 .3765 0 .2407

The largest p-value is 0.6 for dropping spine condition from the model.
When refitting the model without spine condition, we still strongly reject
H0 : β1 = β2 = β3 = β4 = β5 = 0, and the H-L shows no evidence of lack
of fit. We have:

Type 3 An a l y s i s o f E f f e c t s
Wald

E f f e c t DF Chi−Square Pr > ChiSq
c o l o r 3 6 .3143 0 .0973
width 1 2 .3355 0 .1265
we ight 1 1 .2263 0 .2681

We do not reject that we can drop weight from the model, and so we do:
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Chapter 5 5.4 Multiple Predictors

Tes t i ng G l oba l Nu l l Hypo the s i s : BETA=0

Test Chi−Square DF Pr > ChiSq
L i k e l i h o o d Rat i o 38 .3015 4 <.0001
Score 34 .3384 4 <.0001
Wald 27 .6788 4 <.0001

Type 3 An a l y s i s o f E f f e c t s
Wald

E f f e c t DF Chi−Square Pr > ChiSq
c o l o r 3 6 .6246 0 .0849
width 1 19.6573 <.0001

An a l y s i s o f Maximum L i k e l i h o o d Es t ima t e s
Standard Wald

Parameter DF Est imate E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 −12.7151 2 .7618 21.1965 <.0001
c o l o r 1 1 1 .3299 0 .8525 2 .4335 0 .1188
c o l o r 2 1 1 .4023 0 .5484 6 .5380 0 .0106
c o l o r 3 1 1 .1061 0 .5921 3 .4901 0 .0617
width 1 0 .4680 0 .1055 19.6573 <.0001
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Chapter 5 5.4 Multiple Predictors

The new model is

logit π(x) = β0 + β1I{C = 1}+ β2I{C = 2}β3I{C = 3}+ β4W .

We do not reject that color can be dropped from the model
H0 : β1 = β2 = β3, but we do reject that the dummy for C = 2 can be
dropped, H0 : β2 = 0. Maybe unnecessary levels in color are clouding its
importance.
Let’s see what happens when we try to combine levels of C .

proc logistic data=crabs1 descending;
class color spine / param=ref;
model y = color width / lackfit ;
contrast ’1 vs 2’ color 1 −1 0;
contrast ’1 vs 3’ color 1 0 −1;
contrast ’1 vs 4’ color 1 0 0;
contrast ’2 vs 3’ color 0 1 −1;
contrast ’2 vs 4’ color 0 1 0;
contrast ’3 vs 4’ color 0 0 1;

run;
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Chapter 5 5.4 Multiple Predictors

p-values for combining levels:

Cont r a s t Test R e s u l t s
Wald

Con t r a s t DF Chi−Square Pr > ChiSq
1 vs 2 1 0 .0096 0 .9220
1 vs 3 1 0 .0829 0 .7733
1 vs 4 1 2 .4335 0 .1188
2 vs 3 1 0 .5031 0 .4781
2 vs 4 1 6 .5380 0 .0106
3 vs 4 1 3 .4901 0 .0617

We reject that we can combine levels C = 2 and C = 4, and almost
reject combining C = 3 and C = 4. Let’s combine C = 1, 2, 3 into
one category D = 1 “not dark” and C = 4 is D = 2, “dark”. See
Figure 5.7 (p.188) in next slide.
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Chapter 5 5.4 Multiple Predictors

Carapace Width
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Figure : Predicted probability of satellite presence as a function of width and color
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Chapter 5 5.4 Multiple Predictors

We include dark=1; if color=4 then dark=2; in the DATA step,
and fit

proc logistic data=crabs1 descending;
class dark / param=ref ref= first ;
model y = dark width / lackfit ;
run;

Annotated output:
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Chapter 5 5.4 Multiple Predictors

Tes t i ng G l oba l Nu l l Hypo the s i s : BETA=0
Test Chi−Square DF Pr > ChiSq
L i k e l i h o o d Rat i o 37 .8006 2 <.0001

Type 3 An a l y s i s o f E f f e c t s
Wald

E f f e c t DF Chi−Square Pr > ChiSq
dark 1 6 .1162 0 .0134
width 1 21.0841 <.0001

An a l y s i s o f Maximum L i k e l i h o o d Es t ima t e s
Standard Wald

Parameter DF Est imate E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 −11.6790 2 .6925 18.8143 <.0001
dark 2 1 −1.3005 0 .5259 6 .1162 0 .0134
width 1 0 .4782 0 .1041 21.0841 <.0001

Odds Rat i o E s t ima t e s
Po in t 95% Wald

E f f e c t Es t imate Con f i d ence L im i t s
dark 2 vs 1 0 .272 0 .097 0 .764
width 1 .613 1 .315 1 .979

Hosmer and Lemeshow Goodness−of−F i t Test
Chi−Square DF Pr > ChiSq

5 .5744 8 0 .6948
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Chapter 5 5.4 Multiple Predictors

Comments:

The odds of having satellite(s) significantly decreases by a little less
than a third, 0.27, for dark crabs regardless of width.

The odds of having satellite(s) significantly increases by a factor of
1.6 for every cm increase in carapice width regardless of color.

Lighter, wider crabs tend to have satellite(s) more often.

The H-L GOF test shows no gross LOF.

We didn’t check for interactions. If an interaction between color and
width existed, then the odds ratio of satellite(s) for dark versus not
dark crabs would change with how wide she is.
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Chapter 5 5.4 Multiple Predictors

Interactions and quadratic effects

An additive model is easily interpreted because an odds ratio from
changing values of one predictor does not change with levels of
another predictor. However, often this incorrect and we may
introduce additional terms into the model such as interactions.

An interaction between two predictors allows the odds ratio for
increasing one predictor to change with levels of another. For
example, in the last model fit the odds of having satellite(s) decreases
by 0.27 for dark crabs vs. not dark regardless of carapace width.

A two-way interaction is defined by multiplying the variables together;
if one or both variables are categorical then all possible pairings of
dummy variables are considered.
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Chapter 5 5.4 Multiple Predictors

Example: Say we have two categorical predictors, X = 1, 2, 3 and
Z = 1, 2, 3, 4. An additive model is

logit π(X ,Z ) = β0 + β1I{X = 1}+ β2I{X = 2}
+β3I{Z = 1}+ β4I{Z = 2}+ β5I{Z = 3}.

The model that includes an interaction between X and Z adds
(3− 1)(4− 1) = 6 additional dummy variables accounting for all possible
ways, i.e. all levels of Z , the log odds can change between from X = i to
X = j . The new model is rather cumbersome:

logit π(X ,Z ) = β0 + β1I{X = 1}+ β2I{X = 2}
+β3I{Z = 1}+ β4I{Z = 2}+ β5I{Z = 3}
+β6I{X = 1}I{Z = 1}+ β7I{X = 1}I{Z = 2}
+β8I{X = 1}I{Z = 3}+ β9I{X = 2}I{Z = 1}
+β10I{X = 2}I{Z = 2}+ β11I{X = 2}I{Z = 3}.
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Chapter 5 5.4 Multiple Predictors

In PROC GENMOD and PROC LOGISTIC, categorical variables are
defined through the CLASS statement and all dummy variables are
created and handled internally.

The Type III table provides a test that the interaction can be
dropped; the table of regression coefficients tell you whether
individual dummies can be dropped.

Let’s consider the crab data again, but consider an interaction
between categorical D and continuous W :
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Chapter 5 5.4 Multiple Predictors

proc logistic data=crabs1 descending;
class dark / param=ref ref= first ;
model y = dark width dark∗width / lackfit ;

Type 3 An a l y s i s o f E f f e c t s
Wald

E f f e c t DF Chi−Square Pr > ChiSq

dark 1 0 .9039 0 .3417
width 1 20.7562 <.0001
width∗dark 1 1 .2686 0 .2600

We accept that the interaction is not needed.
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Chapter 5 5.4 Multiple Predictors

Let’s consider the interaction model anyway, for illustration:

Ana l y s i s o f Maximum L i k e l i h o o d Es t ima t e s

Standard Wald
Parameter DF Es t imate E r r o r Chi−Square Pr > ChiSq

I n t e r c e p t 1 −12.8116 2 .9577 18.7629 <.0001
dark 2 1 6 .9578 7 .3182 0 .9039 0 .3417
width 1 0 .5222 0 .1146 20.7562 <.0001
width∗dark 2 1 −0.3217 0 .2857 1 .2686 0 .2600

The model is:

logit π(D,W ) = −12.81 + 6.96I{D = 2}+ 0.52W − 0.32I{D = 2}W .

The odds ratio for the probability of satellite(s) going from D = 2 to
D = 1 is estimated

P(Y = 1|D = 2,W )/P(Y = 0|D = 2,W )

P(Y = 1|D = 1,W )/P(Y = 0|D = 1,W )
=

e−12.81+6.96+0.52W−0.32W

e−12.81+0.52W

= e6.96−0.32W .

How about the odds ratio going from W to W + 1?
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Chapter 5 5.4 Multiple Predictors

For a categorical predictor X with I levels, adding I − 1 dummy
variables allows for a different event probability at each level of X .

For a continuous predictor Z , the model assumes that the log-odds of
the event increases linearly with Z . This may or may not be a
reasonable assumption, but can be checked by adding nonlinear
terms, the simplest being Z 2.

Consider a simple model with continuous Z :

logit π(Z ) = β0 + β1Z .

LOF from this model can manifest itself in rejecting a GOF test
(Pearson, deviance, or H-L) or a residual plot that shows curvature.
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Chapter 5 5.4 Multiple Predictors

Adding a quadratic term

logit π(Z ) = β0 + β1Z + β2Z
2,

may improve fit and allows testing the adequacy of the simpler model via
H0 : β2 = 0. Higher order powers can be added, but the model can
become unstable with, say, higher than cubic powers. A better approach
might be to fit a generalized additive model (GAM):

logit π(Z ) = f (Z ),

where f (·) is estimated from the data, often using splines.
However, we will not discuss this in this course!
Adding a simple quadratic term can be done, e.g.,
proc logistic; model y/n = z z*z;
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Chapter 5 5.4 Multiple Predictors

Should you always toss in a dispersion term φ?
Here’s some SAS code for a made-up data:

data example;
input x y n @@; x sq=x∗x;
datalines ;
−2.0 86 100 −1.5 58 100 −1.0 25 100 −0.5 17 100 0.0 10 100

0.5 17 100 1.0 25 100
;

proc genmod; ∗ fit simple linear term in x & check for overdispersion ;
model y/n = x / link=logit dist =bin;

proc genmod; ∗ adjust for apparent overdispersion ;
model y/n = x / link=logit dist =bin scale=pearson;

proc genmod; ∗ what if instead we try a more flexible mean?;
model y/n = x x sq / link =logit dist =binom;

proc logistic ; ∗ residual plots from simpler model;
model y/n = x; output out=diag1 reschi=p h=h xbeta=eta;

data diag2; set diag1; r=p/sqrt(1−h);
proc gplot ; plot r∗x; plot r∗eta; run;
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Chapter 5 5.4 Multiple Predictors

Output from fit of logistic model with logit link:

C r i t e r i a For A s s e s s i n g Goodness Of F i t

C r i t e r i o n DF Value Value /DF
Dev iance 5 74.6045 14.9209
Pearson Chi−Square 5 79 .5309 15.9062

An a l y s i s Of Parameter E s t ima t e s

Standard Wald 95% Con f i d ence Chi−
Parameter DF Est imate E r r o r L im i t s Square Pr > ChiSq
I n t e r c e p t 1 −1.3365 0 .1182 −1.5682 −1.1047 127 .77 <.0001
x 1 −1.0258 0 .0987 −1.2192 −0.8323 108 .03 <.0001
Sca l e 0 1 .0000 0 .0000 1 .0000 1 .0000

The coefficient for x is highly significant. Note that
P(χ2

5 > 74.6) < 0.0001 and P(χ2
5 > 79.5) < 0.0001. Evidence of

overdispersion? There’s good replication here, so certainly something is
not right with the model.
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Chapter 5 5.4 Multiple Predictors

Let’s include a dispersion parameter φ:

C r i t e r i a For A s s e s s i n g Goodness Of F i t

C r i t e r i o n DF Value Value /DF
Dev iance 5 74.6045 14.9209
Sca l ed Dev iance 5 4 .6903 0 .9381
Pearson Chi−Square 5 79 .5309 15.9062
Sca l ed Pearson X2 5 5.0000 1 .0000

An a l y s i s Of Parameter E s t ima t e s

Standard Wald 95% Con f i d ence Chi−
Parameter DF Est imate E r r o r L im i t s Square Pr > ChiSq
I n t e r c e p t 1 −1.3365 0 .4715 −2.2607 −0.4123 8 .03 0 .0046
x 1 −1.0258 0 .3936 −1.7972 −0.2543 6 .79 0 .0092
Sca l e 0 3 .9883 0 .0000 3 .9883 3 .9883

We have φ̂ = 3.99 and the standard errors are increased by this factor.
The coefficient for x is still significant.
Problem solved!!! Or is it?
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Chapter 5 5.4 Multiple Predictors

Instead of adding φ to a model with a linear term, what happens if we
allow the mean to be a bit more flexible?

C r i t e r i a For A s s e s s i n g Goodness Of F i t

C r i t e r i o n DF Value Value /DF
Dev iance 4 1 .7098 0 .4274
Pearson Chi−Square 4 1 .6931 0 .4233

An a l y s i s Of Parameter E s t ima t e s

Standard Wald 95% Con f i d ence Chi−
Parameter DF Est imate E r r o r L im i t s Square Pr > ChiSq
I n t e r c e p t 1 −1.9607 0 .1460 −2.2468 −1.6745 180 .33 <.0001
x 1 −0.0436 0 .1352 −0.3085 0 .2214 0 .10 0 .7473
x sq 1 0 .9409 0 .1154 0 .7146 1 .1671 66 .44 <.0001
Sca l e 0 1 .0000 0 .0000 1 .0000 1 .0000

Here, we are not including a dispersion term φ. There is no evidence of
overdispersion when the mean is modeled correctly. Adjusting SE’s using
the quasilikelihood approach relies on correctly modeling the mean,
otherwise φ becomes a measure of dispersion of data about an incorrect
mean. That is, φ attempts to pick up the slop left over from specifying a
mean that is too simple.
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Chapter 5 5.4 Multiple Predictors

A correctly specified mean can obviate overdispersion. How to check if the
mean is okay? Hint:
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Figure : Residual plots ri versus (Xi ηi ) for made-up data.
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Chapter 5 5.4 Multiple Predictors

5.4.8 Estimating an Average Causal Effect

In many applications the explanatory variable of primary interest
specifies two groups to be compared while adjusting for the other
explanatory variables in the model.

Let X1 = 0, 1 denote this two groups.

As an alternative effect summary to the log odds ratio β̂1, the
estimated average causal effect is

1

n

∑
i

[π̂(xi1 = 1, xi2, ..., xip)− π̂(xi1 = 0, xi2, ..., xip)]

Estimating an average causal effect is natural for experimental
studies, and received much attention for non-randomized studies.

D. Bandyopadhyay (VCU) 34 / 37



Chapter 5 5.5 Fitting logistic regression models

5.5 Fitting logistic regression models
The data are (xi ,Yi ) for i = 1, . . . ,N.
The model is

Yi ∼ bin

(
ni ,

eβ
′xi

1 + eβ
′xi

)
.

The pmf of Yi in terms of β is

p(yi ;β) =

(
ni
yi

)[
eβ
′xi

1 + eβ
′xi

]yi [
1− eβ

′xi

1 + eβ
′xi

]ni−yi
.

The likelihood is the product of all N of these and the log-likelihood
simplifies to

L(β) =

p∑
j=1

βj

N∑
i=1

yixij −
N∑
i=1

log

1 + exp

 p∑
j=1

βjxij

+ constant.
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Chapter 5 5.5 Fitting logistic regression models

The likelihood (or score) equations are obtained by taking partial
derivatives of L(β) with respect to elements of β and setting equal to
zero. Newton-Raphson is used to get β̂, see 5.5.4 if interested.
The inverse of the covariance of β̂ has ij th element

−∂
2L(β)

∂βi∂βj
=

N∑
s=1

xsixsjnsπs(1− πs),

where πs = eβ
′xs

1+eβ′xs
. The estimated covariance matrix ĉov(β̂) is obtained

by replacing β with β̂. This can be rewritten

ĉov(β̂) = {X′diag[ni π̂i (1− π̂i )]X}−1.
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Chapter 5 5.5 Fitting logistic regression models

Existence of finite β̂

Estimates β̂ exist except when data are perfectly separated.

Complete separation happens when a linear combination of predictors
perfectly predicts the outcome. Here, there are an infinite number of
perfect fitting curves that have β̂ =∞. Essentially, there is a value of
x that perfectly separates the 0’s and 1’s. In two-dimensions there
would be a line separating the 0’s and 1’s.

Quasi-complete separation happens when there’s a line that separates
0’s and 1’s but there’s some 0’s and 1’s on the line. We’ll look at
some pictures.

The end result is that the model will appear to fit but the standard
errors will be absurdly large. This is the opposite of what’s really
happening, that the data can be perfectly predicted.
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