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Chapter 5 5.1 Model Interpretation

5.1.1 Model Interpretation

The logistic regression model is

Yi ∼ bin(ni , πi ), πi =
exp(β0 + β1xi1 + · · ·+ βp−1xi ,p−1)

1 + exp(β0 + β1xi1 + · · ·+ βp−1xi ,p−1)
.

xi = (1, xi1, . . . , xi ,p−1) is a p-dimensional vector of explanatory
variables including a place holder for the intercept.

β = (β0, . . . , βp−1) is the p-dimensional vector of regression
coefficients. These are the unknown population parameters.

ηi = x′iβ is called the linear predictor.

Many, many uses including credit scoring, genetics, disease
monitoring, etc, etc...

Many generalizations: ordinal data, complex random effects models,
discrete choice models, etc.
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Chapter 5 5.1 Model Interpretation

Lets start with simple logistic regression:

Yi ∼ bin

(
ni ,

eα+βxi

1 + eα+βxi

)
.

An odds ratio: let’s look at how the odds of success changes when we
increase x by one unit:

π(x + 1)/[1− π(x + 1)]

π(x)/[1− π(x)]
=

[
eα+βx+β

1+eα+βx+β

]
/
[

1
1+eα+βx+β

]
[

eα+βx

1+eα+βx

]
/
[

1
1+eα+βx

]
=

eα+βx+β

eα+βx
= eβ.

When we increase x by one unit, the odds of an event occurring increases
by a factor of eβ, regardless of the value of x .
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Chapter 5 5.1 Model Interpretation

So eβ is an odds ratio. We also have

∂π(x)

∂x
= βπ(x)[1− π(x)].

Note that π(x) changes more when π(x) is away from zero or one than
when π(x) is near 0.5.
This gives us approximately how π(x) changes when x increases by a unit.
This increase depends on x , unlike the odds ratio.
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Chapter 5 5.1 Model Interpretation

5.1.3 Horseshoe Crab Data

Let’s look at Yi = 1 if a female crab has one or more satellites, and Yi = 0
if not. So

π(x) =
eα+βx

1 + eα+βx
,

is the probability of a female having more than her nest-mate around as a
function of her width x .
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Chapter 5 5.1 Model Interpretation

Standard Wald
Parameter DF Est imate E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 −12.3508 2 .6287 22.0749 <.0001
width 1 0 .4972 0 .1017 23.8872 <.0001

Odds Rat i o E s t ima t e s

Po in t 95% Wald
E f f e c t Es t imate Con f i d ence L im i t s
width 1 .644 1 .347 2 .007

We estimate the probability of a satellite as

π̂(x) =
e−12.35+0.50x

1 + e−12.35+0.50x
.

The odds of having a satellite increases by a factor between 1.3 and
2.0 times for every cm increase in carapace width.

The coefficient table houses estimates β̂j , se(β̂j), and the Wald

statistic z2
j = {β̂j/se(β̂j)}2 and p-value for testing H0 : βj = 0.

What do we conclude here?
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Chapter 5 5.1 Model Interpretation

5.1.2 Looking at data

With a single predictor x , can plot pi = yi/ni versus xi . This approach
works well when ni 6= 1. The plot should look like a “lazy s.”

Alternatively, the sample logits log pi/(1− pi ) = log yi/(ni − yi )
versus xi should be approximately straight.

If some categories have all successes or failures, an ad hoc adjustment
is log{(yi + 0.5)/(ni − yi + 0.5)}.
When many ni are small, you can group the data yourself into, say,
10-20 like categories and plot them.

For the horseshoe crab data let’s use the categories defined in Chapter 4.
A new variable w is created that is the midpoint of the width categories:
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Chapter 5 5.1 Model Interpretation

data crab1; input color spine width satell weight;
weight=weight/1000; color=color−1;
y=0; n=1; if satell >0 then y=1; w=22.75;
if width>23.25 then w=23.75;
if width>24.25 then w=24.75;
if width>25.25 then w=25.75;
if width>26.25 then w=26.75;
if width>27.25 then w=27.75;
if width>28.25 then w=28.75;
if width>29.25 then w=29.75;

run;
proc sort data=crab1; by w;
proc means data=crab1 noprint; by w; var y n;

output out=crabs2 sum=sumy sumn;
data crabs3; set crabs2; p=sumy/sumn;

logit =log((sumy+0.5)/(sumn−sumy+0.5));
proc gplot ; plot p∗w; plot logit ∗w; run;

D. Bandyopadhyay (VCU) 8 / 30



Chapter 5 5.1 Model Interpretation
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Figure : Sample P & logit(P) versus width; Is it ”lazy s” or “straight?”
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Chapter 5 5.1 Model Interpretation

5.1.4 Retrospective sampling & logistic regression

In case-control studies the number of cases and the number of
controls are set ahead of time. It is not possible to estimate the
probability of being a case from the general population for these types
of data, but just as with a 2× 2 table, we can still estimate an odds
ratio eβ.

Let Z indicate whether a subject is sampled (1=yes,0=no). Let
P1 = P(Z = 1|y = 1) be the probability that a case is sampled and
let P0 = P(Z = 1|y = 0) be the probability that a control is sampled.

In a simple random sample, P1 = P(Y = 1) and
P0 = P(Y = 0) = 1− P1.

Assume the logistic regression model

π(x) = P(Y = 1|x) =
eα+βx

1 + eα+βx
.
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Chapter 5 5.1 Model Interpretation

Assume that the probability of choosing a case is independent of x ,
P(Z = 1|y = 1, x) = P(Z = 1|y = 1) and the same for a control
P(Z = 1|y = 0, x) = P(Z = 1|y = 0). This is the case, for instance,
when a fixed number of cases and controls are sampled
retrospectively, regardless of their x values.

Bayes’ rule gives us

P(Y = 1|z = 1, x) =
P1π(x)

P1π(x) + P0(1− π(x))

=
eα
∗+βx

1 + eα∗+βx
,

where α∗ = α + log(P1/P0).

The parameter β has the same interpretation in terms of odds ratios
as with simple random sampling.
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Chapter 5 5.1 Model Interpretation

Comments:

This is very powerful & another reason why logistic regression is
widely used.

Other links (e.g. identity, probit) do not have this property.

Matched case/controls studies require more thought; Chapter 11.2.5.
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Chapter 5 5.2 Inferences for Logistic Regression

5.2.1 Inference about Model Parameters and Probabilities

Consider the full model

logit{π(x)} = β0 + β1x1 + · · ·+ βp−1xp−1 = x′β.

Most types of inferences are functions of β, say g(β). Some examples:

g(β) = βj , j th regression coefficient.

g(β) = eβj , j th odds ratio.

g(β) = ex
′β/(1 + ex

′β), probability π(x).

If β̂ is the MLE of β, then g(β̂) is the MLE of g(β). This provides an
estimate. The delta method is an all-purpose method for obtaining a
standard error for g(β̂).
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Chapter 5 5.2 Inferences for Logistic Regression

We know
β̂
•∼ Np(β, ĉov(β̂)).

Let g(β) be a function from Rp to R. Taylor’s theorem implies, as long as
the MLE β̂ is somewhat close to the true value β, that

g(β) ≈ g(β̂) + [Dg(β̂)](β − β̂),

where [Dg(β)] is the vector of first partial derivatives

Dg(β) =


∂g(β)
∂β1
∂g(β)
∂β2
...

∂g(β)
∂βp

 .
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Chapter 5 5.2 Inferences for Logistic Regression

Then
(β̂ − β)

•∼ Np(0, ĉov(β̂)),

implies
[Dg(β)]′(β̂ − β)

•∼ N(0, [Dg(β)]′ĉov(β̂)[Dg(β)]),

and finally
g(β̂)

•∼ N(g(β), [Dg(β̂)]′ĉov(β̂)[Dg(β̂)]).

So

se{g(β̂)} =

√
[Dg(β̂)]′ĉov(β̂)[Dg(β̂)].

This can be used to get confidence intervals for probabilities, etc.
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Chapter 5 5.2 Inferences for Logistic Regression

proc logistic data=crabs1 descending;
model y = width; output out=crabs2 pred=p lower=l upper=u;

proc sort data=crabs2; by width;
proc gplot data=crabs2;

title ”Estimated probabilities with pointwise 95% CI’s”;
symbol1 i=join color =black; symbol2 i=join color =red line=3;
symbol3 i=join color =black; axis1 label =(’’);
plot ( l p u)∗width / overlay vaxis=axis1;

run;
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Chapter 5 5.2 Inferences for Logistic Regression
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Figure : Fitted probability of satellite as a function of width & 95% CIs.
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Chapter 5 5.2 Inferences for Logistic Regression

5.2.3 & 5.2.4 Goodness of fit

The deviance GOF statistic is defined to be

D = 2
s∑

i=1

{
yi log

(
yi

ni π̂i

)
+ (ni − yi ) log

(
ni − yi

ni − ni π̂i

)}
,

where π̂i = ex
′
i β̂

1+e
x′
i
β̂

are fitted values.

Pearson’s GOF statistic is

X 2 =
s∑

i=1

(yi − ni π̂i )
2

ni π̂i (1− π̂i )
.

Both statistics are approximately χ2
s−p in large samples assuming that the

number of trials n =
∑s

i=1 ni increases in such a way that each ni

increases.
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Chapter 5 5.2 Inferences for Logistic Regression

5.2.5 Group your data
Binomial data is often recorded as individual (Bernoulli) records:

i yi ni xi
1 0 1 9
2 0 1 14
3 1 1 14
4 0 1 17
5 1 1 17
6 1 1 17
7 1 1 20

Grouping the data yields an identical model:

i yi ni xi
1 0 1 9
2 1 2 14
3 2 3 17
4 1 1 20
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Chapter 5 5.2 Inferences for Logistic Regression

β̂, se(β̂j), and L(β̂) don’t care if data are grouped.

The quality of residuals and GOF statistics depend on how data are
grouped. D and Pearson’s X 2 will change!

In PROC LOGISTIC type AGGREGATE and SCALE=NONE after the
MODEL statement to get D and X 2 based on grouped data. This
option does not compute residuals based on the grouped data. You
can aggregate over all variables or a subset, e.g.
AGGREGATE=(width).
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Chapter 5 5.2 Inferences for Logistic Regression

The Hosmer and Lemeshow test statistic orders observations (xi ,Yi )
by fitted probabilities π̂(xi ) from smallest to largest and divides them
into (typically) g = 10 groups of roughly the same size. A Pearson
test statistic is computed from these g groups.

The statistic would have a χ2
g−p distribution if each group had

exactly the same predictor x for all observations (but the observations
in a group do not have the same predictor x and they do not share a
common success probability). In general, the null distribution is
approximately χ2

g−2 when the number of distinct patterns of covariate
values equals the sample size (see text). Termed a “near-replicate
GOF test” (Hosmer and Lemeshow 1980). The LACKFIT option in
PROC LOGISTIC gives this statistic.

Can also test logit{π(x)} = β0 + β1x versus more general model
logit{π(x)} = β0 + β1x + β2x2 via H0 : β2 = 0.
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Chapter 5 5.2 Inferences for Logistic Regression

Raw (Bernoulli) data with aggregate scale=none lackfit;

Dev iance and Pearson Goodness−of−F i t S t a t i s t i c s

C r i t e r i o n Value DF Value /DF Pr > ChiSq
Dev iance 69 .7260 64 1 .0895 0 .2911
Pearson 55.1779 64 0 .8622 0 .7761

Number o f un ique p r o f i l e s : 66
P a r t i t i o n f o r the Hosmer and Lemeshow Test

y = 1 y = 0
Group Tota l Observed Expected Observed Expected

1 19 5 5 .39 14 13 .61
2 18 8 7 .62 10 10 .38
3 17 11 8 .62 6 8 .38
4 17 8 9 .92 9 7 .08
5 16 11 10 .10 5 5 .90
6 18 11 12 .30 7 5 .70
7 16 12 12 .06 4 3 .94
8 16 12 12 .90 4 3 .10
9 16 13 13 .69 3 2 .31

10 20 20 18 .41 0 1 .59

Hosmer and Lemeshow Goodness−of−F i t Test

Chi−Square DF Pr > ChiSq
5 .2465 8 0 .7309
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Chapter 5 5.2 Inferences for Logistic Regression

Comments:

There are 66 distinct widths {xi} out of N = 173 crabs. For χ2
66−2 to

hold, we must keep sampling crabs that only have one of the 66 fixed
number of widths! Does that make sense here?

The Hosmer and Lemeshow test gives a p-value of 0.73 based on
g = 10 groups. Are assumptions going into this p-value met?

None of the GOF tests have assumptions that are met in practice for
continuous predictors. Are they still useful?

The raw statistics do not tell you where lack of fit occurs. Deviance
and Pearson residuals do tell you this (later). Also, the table provided
by the H-L tells you which groups are ill-fit should you reject H0 :
logistic model holds.

GOF tests are meant to detect gross deviations from model
assumptions. No model ever truly fits data except hypothetically.

D. Bandyopadhyay (VCU) 23 / 30



Chapter 5 5.3 Categorical Predictors

5.3.1 Categorical predictors
Let’s say we wish to include variable X , a categorical variable that takes
on values x ∈ {1, 2, . . . , I}. We need to allow each level of X = x to affect
π(x) differently. This is accomplished by the use of dummy variables. This
is typically done one of two ways.
Define z1, z2, . . . , zI−1 as follows:

zj =

{
1 X = j
−1 X 6= j

This is the default in PROC LOGISTIC with a CLASS X statement. Say
I = 3, then the model is

logit π(x) = β0 + β1z1 + β2z2.

which gives

logit π(x) = β0 + β1 − β2 when X = 1

logit π(x) = β0 − β1 + β2 when X = 2

logit π(x) = β0 − β1 − β2 when X = 3
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Chapter 5 5.3 Categorical Predictors

At alternative method uses “zero/one” dummies instead:

zj =

{
1 X = j
0 X 6= j

This is the default if PROC GENMOD with a CLASS X statement. This
can also be obtained in PROC LOGISTIC with the PARAM=REF option.
This sets class X = I as baseline. Say I = 3, then the model is

logit π(x) = β0 + β1z1 + β2z2.

which gives

logit π(x) = β0 + β1 when X = 1

logit π(x) = β0 + β2 when X = 2

logit π(x) = β0 when X = 3
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Chapter 5 5.3 Categorical Predictors

I prefer the latter method because it’s easier to think about for me. You
can choose a different baseline category with REF=FIRST next to the
variable name in the CLASS statement. Table 3.7 (p. 89):

Drinks per day
Malformation 0 < 1 1− 2 3− 5 ≥ 6
Absent 17,066 14,464 788 126 37
Present 48 38 5 1 1

data mal;
input cons present absent score @@;
total = present+absent;
datalines ;
1 48 17066 0 2 38 14464 0.5 3 5 788 1.5 4 1 126 4.0 5 1 37 7.0;

run;
proc logistic data=mal;

class cons / param=ref ref=last;
model present/ total = cons;

run;
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Chapter 5 5.3 Categorical Predictors

Tes t i ng G l oba l Nu l l Hypo the s i s : BETA=0

Test Chi−Square DF Pr > ChiSq
L i k e l i h o o d Rat i o 6 .2020 4 0 .1846
Score 12 .0821 4 0 .0168
Wald 9 .2811 4 0 .0544

Type 3 An a l y s i s o f E f f e c t s
Wald

E f f e c t DF Chi−Square Pr > ChiSq
cons 4 9 .2811 0 .0544

An a l y s i s o f Maximum L i k e l i h o o d Es t ima t e s
Standard Wald

Parameter DF Est imate E r r o r Chi−Square Pr > ChiSq
I n t e r c e p t 1 −3.6109 1 .0134 12.6956 0 .0004
cons 1 1 −2.2627 1 .0237 4 .8858 0 .0271
cons 2 1 −2.3309 1 .0264 5 .1577 0 .0231
cons 3 1 −1.4491 1 .1083 1 .7097 0 .1910
cons 4 1 −1.2251 1 .4264 0 .7377 0 .3904

Odds Rat i o E s t ima t e s
Po in t 95% Wald

E f f e c t Es t imate Con f i d ence L im i t s
cons 1 vs 5 0 .104 0 .014 0 .774
cons 2 vs 5 0 .097 0 .013 0 .727
cons 3 vs 5 0 .235 0 .027 2 .061
cons 4 vs 5 0 .294 0 .018 4 .810
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Chapter 5 5.3 Categorical Predictors

The model is

logit π(X ) = β0 +β1I{X = 1}+β2I{X = 2}+β3I{X = 3}+β4I{X = 4}

where X denotes alcohol consumption X = 1, 2, 3, 4, 5.

Type 3 analyses test whether all dummy variables associated with a
categorical predictor are simultaneously zero, here
H0 : β1 = β2 = β3 = β4 = 0. If we accept this then the categorical
predictor is not needed in the model.

PROC LOGISTIC gives estimates and CIs for eβj for j = 1, 2, 3, 4.
Here, these are interpreted as the odds of developing malformation
when X = 1, 2, 3, or 4 versus the odds when X = 5.

We are not as interested in the individual Wald tests H0 : βj = 0 for a
categorical predictor. Why is that? Because they only compare a level
X = 1, 2, 3, 4 to baseline X = 5, not to each other.
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The Testing Global Null Hypothesis: BETA=0 are three tests
that no predictor is needed; H0 : logit{π(x)} = β0 versus
H1 : logit{π(x)} = x′β.

Anything wrong here? 1) p-values = 0.18, 0.02, 0.05 from LR, Score
and Wald tests respectively; 2) the p-vlues using the exact conditional
distribution of X 2 and G 2 are 0.03 and 0.13, providing mixed signals.
The table 3.7 has a mixture of very small, moderate, and extremely
large counts, even though n=32,574, the null distributions of X 2 and
G 2 may not be close to chi-squared. In any case, these statistics
ignore the ordinality of alcohol consumption.
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Note that the Wald test for H0 : β = 0 is the same as the Type III
test that consumption is not important. Why is that?

Let Y = 1 denote malformation for a randomly sampled individual.
To get an odds ratio for malformation from increasing from, say,
X = 2 to X = 4, note that

P(Y = 1|X = 2)/P(Y = 0|X = 2)

P(Y = 1|X = 4)/P(Y = 0|X = 4)
= eβ2−β4 .

This is estimated with the CONTRAST command.
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