Chapter 5: Logistic Regression-I

Dipankar Bandyopadhyay

Department of Biostatistics, Virginia Commonwealth University

BIOS 625: Categorical Data & GLM

[Acknowledgements to Tim Hanson and Haitao Chu]

5.1.1 Model Interpretation

The logistic regression model is

$$Y_i \sim \text{bin}(n_i, \pi_i), \quad \pi_i = \frac{\exp(\beta_0 + \beta_1 x_{i1} + \dots + \beta_{p-1} x_{i,p-1})}{1 + \exp(\beta_0 + \beta_1 x_{i1} + \dots + \beta_{p-1} x_{i,p-1})}.$$

- $\mathbf{x}_i = (1, x_{i1}, \dots, x_{i,p-1})$ is a *p*-dimensional vector of explanatory variables including a place holder for the intercept.
- $\beta = (\beta_0, \dots, \beta_{p-1})$ is the *p*-dimensional vector of regression coefficients. These are the unknown population parameters.
- $\eta_i = \mathbf{x}_i' \boldsymbol{\beta}$ is called the linear predictor.
- Many, many uses including credit scoring, genetics, disease monitoring, etc, etc...
- Many generalizations: ordinal data, complex random effects models, discrete choice models, etc.

Lets start with simple logistic regression:

$$Y_i \sim \mathsf{bin}\left(n_i, rac{e^{lpha + eta x_i}}{1 + e^{lpha + eta x_i}}
ight).$$

An odds ratio: let's look at how the odds of success changes when we increase x by one unit:

$$\frac{\pi(x+1)/[1-\pi(x+1)]}{\pi(x)/[1-\pi(x)]} = \frac{\left[\frac{e^{\alpha+\beta x+\beta}}{1+e^{\alpha+\beta x+\beta}}\right]/\left[\frac{1}{1+e^{\alpha+\beta x+\beta}}\right]}{\left[\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}\right]/\left[\frac{1}{1+e^{\alpha+\beta x}}\right]}$$
$$= \frac{e^{\alpha+\beta x+\beta}}{e^{\alpha+\beta x}} = e^{\beta}.$$

When we increase x by one unit, the odds of an event occurring increases by a factor of e^{β} , regardless of the value of x.

4 D > 4 B > 4 B > 4 B > 9 Q P

So e^{β} is an odds ratio. We also have

$$\frac{\partial \pi(x)}{\partial x} = \beta \pi(x) [1 - \pi(x)].$$

Note that $\pi(x)$ changes more when $\pi(x)$ is away from zero or one than when $\pi(x)$ is near 0.5.

This gives us approximately how $\pi(x)$ changes when x increases by a unit. This increase depends on x, unlike the odds ratio.

5.1.3 Horseshoe Crab Data

Let's look at $Y_i = 1$ if a female crab has one or more satellites, and $Y_i = 0$ if not. So

$$\pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}},$$

is the probability of a female having more than her nest-mate around as a function of her width x.

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-12.3508	2.6287	22.0749	<.0001
width	1	0.4972	0.1017	23.8872	<.0001

Odds Ratio Estimates

	Point	95% Wa	ld
Effect	Estimate	Confidence	Limits
width	1.644	1.347	2.007

• We estimate the probability of a satellite as

$$\hat{\pi}(x) = \frac{e^{-12.35 + 0.50x}}{1 + e^{-12.35 + 0.50x}}.$$

- The odds of having a satellite increases by a factor between 1.3 and 2.0 times for every *cm* increase in carapace width.
- The coefficient table houses estimates $\hat{\beta}_j$, $\operatorname{se}(\hat{\beta}_j)$, and the Wald statistic $z_i^2 = \{\hat{\beta}_j/\operatorname{se}(\hat{\beta}_j)\}^2$ and p-value for testing $H_0: \beta_j = 0$.
- What do we conclude here?

5.1.2 Looking at data

- With a single predictor x, can plot $p_i = y_i/n_i$ versus x_i . This approach works well when $n_i \neq 1$. The plot should look like a "lazy s."
- Alternatively, the sample logits $\log p_i/(1-p_i) = \log y_i/(n_i-y_i)$ versus x_i should be approximately straight.
- If some categories have all successes or failures, an ad hoc adjustment is $\log\{(y_i + 0.5)/(n_i y_i + 0.5)\}$.
- When many n_i are small, you can group the data yourself into, say, 10-20 like categories and plot them.

For the horseshoe crab data let's use the categories defined in Chapter 4. A new variable w is created that is the midpoint of the width categories:

```
data crab1; input color spine width satell weight;
  weight=weight/1000; color=color-1;
  v=0; n=1; if satell >0 then v=1; w=22.75;
   if width>23.25 then w=23.75:
   if width>24.25 then w=24.75:
   if width>25.25 then w=25.75:
   if width>26.25 then w=26.75:
   if width>27.25 then w=27.75:
   if width>28.25 then w=28.75:
   if width>29.25 then w=29.75:
run:
proc sort data=crab1; by w;
proc means data=crab1 noprint; by w; var y n;
   output out=crabs2 sum=sumy sumn;
data crabs3; set crabs2; p=sumy/sumn;
    logit = log((sumy+0.5)/(sumn-sumy+0.5));
proc gplot; plot p*w; plot logit *w; run;
```

26 28 Carapace Width 30 32 34

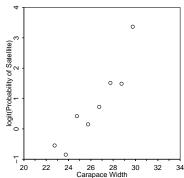


Figure : Sample P & logit(P) versus width; Is it "lazy s" or "straight?"

0.2

20 22 24

5.1.4 Retrospective sampling & logistic regression

- In case-control studies the number of cases and the number of controls are set ahead of time. It is not possible to estimate the probability of being a case from the general population for these types of data, but just as with a 2×2 table, we can still estimate an odds ratio e^{β} .
- Let Z indicate whether a subject is sampled (1=yes,0=no). Let $P_1 = P(Z = 1|y = 1)$ be the probability that a case is sampled and let $P_0 = P(Z = 1|y = 0)$ be the probability that a control is sampled.
- In a simple random sample, $P_1 = P(Y = 1)$ and $P_0 = P(Y = 0) = 1 - P_1$.
- Assume the logistic regression model

$$\pi(x) = P(Y = 1|x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}.$$

- Assume that the probability of choosing a case is independent of x, P(Z=1|y=1,x)=P(Z=1|y=1) and the same for a control P(Z=1|y=0,x)=P(Z=1|y=0). This is the case, for instance, when a fixed number of cases and controls are sampled retrospectively, regardless of their x values.
- Bayes' rule gives us

$$P(Y = 1|z = 1, x) = \frac{P_1\pi(x)}{P_1\pi(x) + P_0(1 - \pi(x))}$$

= $\frac{e^{\alpha^* + \beta x}}{1 + e^{\alpha^* + \beta x}}$,

where $\alpha^* = \alpha + \log(P_1/P_0)$.

• The parameter β has the same interpretation in terms of odds ratios as with simple random sampling.

Comments:

- This is very powerful & another reason why logistic regression is widely used.
- Other links (e.g. identity, probit) do not have this property.
- Matched case/controls studies require more thought; Chapter 11.2.5.

5.2.1 Inference about Model Parameters and Probabilities

Consider the full model

$$\operatorname{logit}\{\pi(\mathbf{x})\} = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1} = \mathbf{x}' \boldsymbol{\beta}.$$

Most types of inferences are functions of β , say $g(\beta)$. Some examples:

- $g(\beta) = \beta_i$, j^{th} regression coefficient.
- $g(\beta) = e^{\beta_j}$, j^{th} odds ratio.
- $g(\beta) = e^{x'\beta}/(1 + e^{x'\beta})$, probability $\pi(x)$.

If $\hat{\beta}$ is the MLE of β , then $g(\hat{\beta})$ is the MLE of $g(\beta)$. This provides an estimate. The *delta method* is an all-purpose method for obtaining a standard error for $g(\hat{\beta})$.

$$\hat{\boldsymbol{\beta}} \overset{\bullet}{\sim} N_p(\boldsymbol{\beta}, \widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})).$$

Let $g(\beta)$ be a function from \mathbb{R}^p to \mathbb{R} . Taylor's theorem implies, as long as the MLE $\hat{\beta}$ is somewhat close to the true value β , that

$$g(\beta) \approx g(\hat{\beta}) + [Dg(\hat{\beta})](\beta - \hat{\beta}),$$

where $[Dg(\beta)]$ is the vector of first partial derivatives

$$Dg(oldsymbol{eta}) = \left[egin{array}{c} rac{\partial g(oldsymbol{eta})}{\partialeta_1} \ rac{\partial g(oldsymbol{eta})}{\partialeta_2} \ dots \ rac{\partial g(oldsymbol{eta})}{\partialeta_2} \end{array}
ight].$$

Then

$$(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{\bullet}{\sim} N_p(\mathbf{0}, \widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})),$$

implies

$$[\mathit{Dg}(\beta)]'(\hat{\beta}-\beta) \overset{\bullet}{\sim} \mathit{N}(0,[\mathit{Dg}(\beta)]'\widehat{\mathit{cov}}(\hat{\beta})[\mathit{Dg}(\beta)]),$$

and finally

$$g(\hat{\boldsymbol{\beta}}) \stackrel{\bullet}{\sim} N(g(\boldsymbol{\beta}), [Dg(\hat{\boldsymbol{\beta}})]'\widehat{\mathsf{cov}}(\hat{\boldsymbol{\beta}})[Dg(\hat{\boldsymbol{\beta}})]).$$

So

$$\mathsf{se}\{g(\hat{oldsymbol{eta}})\} = \sqrt{[Dg(\hat{oldsymbol{eta}})]'\widehat{\mathsf{cov}}(\hat{oldsymbol{eta}})[Dg(\hat{oldsymbol{eta}})]}.$$

This can be used to get confidence intervals for probabilities, etc.

```
proc logistic data=crabs1 descending;
   model y = width; output out=crabs2 pred=p lower=l upper=u;
proc sort data=crabs2; by width;
proc gplot data=crabs2;
   title "Estimated probabilities with pointwise 95% Cl's";
   symbol1 i=join color=black; symbol2 i=join color=red line=3;
   symbol3 i=join color=black; axis1 label =('');
   plot (l p u)*width / overlay vaxis=axis1;
```

run:

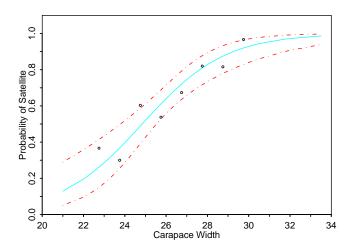


Figure: Fitted probability of satellite as a function of width & 95% Cls.

5.2.3 & 5.2.4 Goodness of fit

The deviance GOF statistic is defined to be

$$D = 2\sum_{i=1}^{s} \left\{ y_i \log \left(\frac{y_i}{n_i \hat{\pi}_i} \right) + (n_i - y_i) \log \left(\frac{n_i - y_i}{n_i - n_i \hat{\pi}_i} \right) \right\},$$

where $\hat{\pi}_i = \frac{e^{\mathbf{x}_i'\hat{\boldsymbol{\beta}}}}{1+e^{\mathbf{x}_i'\hat{\boldsymbol{\beta}}}}$ are fitted values.

Pearson's GOF statistic is

$$X^{2} = \sum_{i=1}^{s} \frac{(y_{i} - n_{i}\hat{\pi}_{i})^{2}}{n_{i}\hat{\pi}_{i}(1 - \hat{\pi}_{i})}.$$

Both statistics are approximately χ^2_{s-p} in large samples assuming that the number of *trials* $n = \sum_{i=1}^{s} n_i$ increases in such a way that each n_i increases.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 Q (*)

5.2.5 Group your data

Binomial data is often recorded as individual (Bernoulli) records:

i	Уi	ni	Xi
1	0	1	9
2	0	1	14
3	1	1	14
4	0	1	17
5	1	1	17
6	1	1	17
7	1	1	20

Grouping the data yields an identical model:

i	Уi	n _i	Xi
1	0	1	9
2	1	2	14
3	2	3	17
4	1	1	20

- $\hat{\beta}$, se($\hat{\beta}_i$), and $L(\hat{\beta})$ don't care if data are grouped.
- The quality of residuals and GOF statistics depend on how data are grouped. D and Pearson's X^2 will change!
- In PROC LOGISTIC type AGGREGATE and SCALE=NONE after the MODEL statement to get *D* and *X*² based on grouped data. This option *does not* compute residuals based on the grouped data. You can aggregate over all variables or a subset, e.g. AGGREGATE=(width).

- The Hosmer and Lemeshow test statistic orders observations (\mathbf{x}_i, Y_i) by fitted probabilities $\hat{\pi}(\mathbf{x}_i)$ from smallest to largest and divides them into (typically) g=10 groups of roughly the same size. A Pearson test statistic is computed from these g groups.
- The statistic would have a χ^2_{g-p} distribution if each group had exactly the same predictor ${\bf x}$ for all observations (but the observations in a group do not have the same predictor ${\bf x}$ and they do not share a common success probability). In general, the null distribution is approximately χ^2_{g-2} when the number of distinct patterns of covariate values equals the sample size (see text). Termed a "near-replicate GOF test" (Hosmer and Lemeshow 1980). The LACKFIT option in PROC LOGISTIC gives this statistic.
- Can also test logit $\{\pi(x)\} = \beta_0 + \beta_1 x$ versus more general model logit $\{\pi(x)\} = \beta_0 + \beta_1 x + \beta_2 x^2$ via $H_0: \beta_2 = 0$.

Raw (Bernoulli) data with aggregate scale=none lackfit;

Deviance and Pearson Goodness-of-Fit Statistics

Criterion	Value	DF	Value/DF	Pr > ChiSq
Deviance	69.7260	64	1.0895	0.2911
Pearson	55.1779	64	0.8622	0.7761

Number of unique profiles: 66

Partition for the Hosmer and Lemeshow Test

		У	= 1	У	= 0
Group	Total	Observed	Expected	Observed	Expected
1	19	5	5.39	14	13.61
2	18	8	7.62	10	10.38
3	17	11	8.62	6	8.38
4	17	8	9.92	9	7.08
5	16	11	10.10	5	5.90
6	18	11	12.30	7	5.70
7	16	12	12.06	4	3.94
8	16	12	12.90	4	3.10
9	16	13	13.69	3	2.31
10	20	20	18.41	0	1.59

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square Pr > ChiSq5.2465 0.7309

Comments:

- There are 66 distinct widths $\{\mathbf{x}_i\}$ out of N=173 crabs. For χ^2_{66-2} to hold, we must keep sampling crabs that only have one of the 66 fixed number of widths! Does that make sense here?
- The Hosmer and Lemeshow test gives a p-value of 0.73 based on g=10 groups. Are assumptions going into this p-value met?
- None of the GOF tests have assumptions that are met in practice for continuous predictors. Are they still useful?
- The raw statistics do not tell you where lack of fit occurs. Deviance and Pearson residuals do tell you this (later). Also, the table provided by the H-L tells you which groups are ill-fit should you reject H_0 : logistic model holds.
- GOF tests are meant to detect gross deviations from model assumptions. No model ever truly fits data except hypothetically.

5.3.1 Categorical predictors

Let's say we wish to include variable X, a categorical variable that takes on values $x \in \{1, 2, \dots, I\}$. We need to allow each level of X = x to affect $\pi(x)$ differently. This is accomplished by the use of dummy variables. This is typically done one of two ways.

Define $z_1, z_2, \ldots, z_{l-1}$ as follows:

$$z_j = \left\{ \begin{array}{cc} 1 & X = j \\ -1 & X \neq j \end{array} \right.$$

This is the default in PROC LOGISTIC with a CLASS X statement. Say I=3, then the model is

logit
$$\pi(x) = \beta_0 + \beta_1 z_1 + \beta_2 z_2$$
.

which gives

At alternative method uses "zero/one" dummies instead:

$$z_j = \left\{ \begin{array}{ll} 1 & X = j \\ 0 & X \neq j \end{array} \right.$$

This is the default if PROC GENMOD with a CLASS X statement. This can also be obtained in PROC LOGISTIC with the PARAM=REF option. This sets class X = I as baseline. Say I = 3, then the model is

logit
$$\pi(x) = \beta_0 + \beta_1 z_1 + \beta_2 z_2$$
.

which gives

I prefer the latter method because it's easier to think about for me. You can choose a different baseline category with REF=FIRST next to the variable name in the CLASS statement. Table 3.7 (p. 89):

	Drinks per day				
Malformation	0	< 1	1 - 2	3 - 5	≥ 6
Absent	17,066	14,464	788	126	37
Present	48	38	5	1	1

```
input cons present absent score @@;
total = present+absent;
datalines;
1 48 17066 0 2 38 14464 0.5 3 5 788 1.5 4 1 126 4.0 5 1 37 7.0;
run;
proc logistic data=mal;
class cons / param=ref ref=last;
model present/total = cons;
run:
```

data mal:

Testing Global Null Hypothesis: BETA=0

Test		Chi—Square	DF	Pr > ChiSq
Likelihood	Ratio	6.2020	4	0.1846
Score		12.0821	4	0.0168
Wald		9.2811	4	0.0544

Type 3 Analysis of Effects Wald

Effect	DF	Chi-Square	Pr > ChiSq
cons	4	9.2811	0.0544

		Analy	rsis of Maximu	ım Likelihood	Estimates	
				Standard	Wald	
Paramet	er	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Interce	рt	1	-3.6109	1.0134	12.6956	0.0004
cons	1	1	-2.2627	1.0237	4.8858	0.0271
cons	2	1	-2.3309	1.0264	5.1577	0.0231
cons	3	1	-1.4491	1.1083	1.7097	0.1910
cons	4	1	-1.2251	1.4264	0.7377	0.3904

Odds Ratio Estimates

	Point	95% Wa	ld
Effect	Estimate	Confidence	Limits
cons 1 vs 5	0.104	0.014	0.774
cons 2 vs 5	0.097	0.013	0.727
cons 3 vs 5	0.235	0.027	2.061
cons 4 vs 5	0.294	0.018	4.810

The model is

logit
$$\pi(X) = \beta_0 + \beta_1 I\{X = 1\} + \beta_2 I\{X = 2\} + \beta_3 I\{X = 3\} + \beta_4 I\{X = 4\}$$

where X denotes alcohol consumption X = 1, 2, 3, 4, 5.

- Type 3 analyses test whether all dummy variables associated with a categorical predictor are simultaneously zero, here $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$. If we accept this then the categorical predictor is not needed in the model.
- PROC LOGISTIC gives estimates and CIs for e^{β_j} for i = 1, 2, 3, 4. Here, these are interpreted as the odds of developing malformation when X = 1, 2, 3, or 4 versus the odds when X = 5.
- We are not as interested in the *individual* Wald tests $H_0: \beta_i = 0$ for a categorical predictor. Why is that? Because they only compare a level X = 1, 2, 3, 4 to baseline X = 5, not to each other.

- The Testing Global Null Hypothesis: BETA=0 are three tests that no predictor is needed; $H_0: \operatorname{logit}\{\pi(x)\} = \beta_0$ versus $H_1: \operatorname{logit}\{\pi(x)\} = \mathbf{x}'\boldsymbol{\beta}$.
- Anything wrong here? 1) p-values = 0.18, 0.02, 0.05 from LR, Score and Wald tests respectively; 2) the p-vlues using the exact conditional distribution of X^2 and G^2 are 0.03 and 0.13, providing mixed signals. The table 3.7 has a mixture of very small, moderate, and extremely large counts, even though n=32,574, the null distributions of X^2 and G^2 may not be close to chi-squared. In any case, these statistics ignore the ordinality of alcohol consumption.

- Note that the Wald test for $H_0: \beta = 0$ is the same as the Type III test that consumption is not important. Why is that?
- Let Y=1 denote malformation for a randomly sampled individual. To get an odds ratio for malformation from increasing from, say, X = 2 to X = 4, note that

$$\frac{P(Y=1|X=2)/P(Y=0|X=2)}{P(Y=1|X=4)/P(Y=0|X=4)} = e^{\beta_2 - \beta_4}.$$

This is estimated with the CONTRAST command.