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5.1.1 Model Interpretation

The logistic regression model is

1+ exp(Bo + Bixin + -+ + Bp—1Xi p—1)

e x; = (1,xi1,...,x%ip—1) is a p-dimensional vector of explanatory
variables including a place holder for the intercept.

e B=(fo,...,Bp—1) is the p-dimensional vector of regression
coefficients. These are the unknown population parameters.

e n; = x,3 is called the linear predictor.

@ Many, many uses including credit scoring, genetics, disease
monitoring, etc, etc...

@ Many generalizations: ordinal data, complex random effects models,
discrete choice models, etc.
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Lets start with simple logistic regression:

. e tBxi
W ~ bin (n,—, m) .

An odds ratio: let's look at how the odds of success changes when we
increase x by one unit:

ea+BX+B 1
m(x+1)/[1 —m(x+1)] [1+ea+ﬂx+ﬁ] / [1+ea+ﬂx+5]
— - a+pBx
m(x)/[1 — m(x)] [1iea+ﬂx] / [H;W]
eotBxtf
= e =

When we increase x by one unit, the odds of an event occurring increases
by a factor of e, regardless of the value of x.
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So e” is an odds ratio. We also have

dn(x) _

2 = B0l - (]

Note that 7(x) changes more when 7(x) is away from zero or one than
when 7(x) is near 0.5.

This gives us approximately how 7(x) changes when x increases by a unit.
This increase depends on x, unlike the odds ratio.
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51 Model Interpretation
5.1.3 Horseshoe Crab Data

Let's look at Y; = 1 if a female crab has one or more satellites, and Y; =0

if not. So
ea+5x
) = e

is the probability of a female having more than her nest-mate around as a
function of her width x.

D. Bandyopadhyay (VCU) 5 /30



Standard Wald
Parameter DF Estimate Error Chi—Square
Intercept 1 —12.3508 2.6287 22.0749
width 1 0.4972 0.1017 23.8872
Odds Ratio Estimates
Point 95% Wald
Effect Estimate Confidence Limits
width 1.644 1.347 2.007

@ We estimate the probability of a satellite as

o~ 12.35+0.50x
it(x) = 1+ e 12351050x "

Pr > ChiSq
<.0001
<.0001

@ The odds of having a satellite increases by a factor between 1.3 and

2.0 times for every cm increase in carapace width.

o The coefficient table houses estimates [3;, se(f;), and the Wald
statistic zj2 = {Bj/se(B;)}? and p-value for testing Hp : 3 = 0.

@ What do we conclude here?

D. Bandyopadhyay (VCU)

6 /30



6l Do iz e
5.1.2 Looking at data

e With a single predictor x, can plot p; = y;/n; versus x;. This approach
works well when n; # 1. The plot should look like a “lazy s.”

o Alternatively, the sample logits log p; /(1 — p;) = log yi/(ni — yi)
versus x; should be approximately straight.

o If some categories have all successes or failures, an ad hoc adjustment
is log{(y; + 0.5)/(n; — yi + 0.5)}.

@ When many n; are small, you can group the data yourself into, say,
10-20 like categories and plot them.

For the horseshoe crab data let's use the categories defined in Chapter 4.
A new variable w is created that is the midpoint of the width categories:
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data crabl; input color spine width satell weight;
weight=weight/1000; color=color—1;
y=0; n=1; if satell >0 then y=1; w=22.75;

if
if
if
if
if
if
if

run;

width>23.25 then
width>24.25 then
width>25.25 then
width>26.25 then
width>27.25 then
width>28.25 then
width>29.25 then

w=23.75;
w=24.75;
w=25.75;
w=26.75;
w=27.75;
w=28.75;
w=29.75;

proc sort data=crabl; by w;
proc means data=crabl noprint; by w; var y n;
output out=crabs2 sum=sumy sumn;
data crabs3; set crabs2; p=sumy/sumn;
logit =log((sumy+0.5)/(sumn—sumy+0.5));
proc gplot; plot pxw; plot logit *w; run;
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Figure : Sample P & logit(P) versus width; Is it "lazy s” or “straight?”
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5.1.4 Retrospective sampling & logistic regression

@ In case-control studies the number of cases and the number of
controls are set ahead of time. It is not possible to estimate the
probability of being a case from the general population for these types
of data, but just as with a 2 x 2 table, we can still estimate an odds
ratio e”.

o Let Z indicate whether a subject is sampled (1=yes,0=no). Let
P; = P(Z = 1|y = 1) be the probability that a case is sampled and
let Py = P(Z = 1|y = 0) be the probability that a control is sampled.

@ In a simple random sample, P = P(Y =1) and
Po=P(Y=0)=1-P;.
@ Assume the logistic regression model
ea+,8x
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@ Assume that the probability of choosing a case is independent of x,
P(Z =1ly =1,x) = P(Z = 1|y = 1) and the same for a control
P(Z =1y =0,x) = P(Z = 1|y = 0). This is the case, for instance,
when a fixed number of cases and controls are sampled
retrospectively, regardless of their x values.

@ Bayes' rule gives us
P17T(X)

Pim(x) + Po(1 — m(x))
ea*-l—/o’x

P(Y =1jz=1,x)

14 ex™+8x’

where a* = a + log(P1/Pp).

@ The parameter 3 has the same interpretation in terms of odds ratios
as with simple random sampling.
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Comments:

@ This is very powerful & another reason why logistic regression is
widely used.

@ Other links (e.g. identity, probit) do not have this property.
e Matched case/controls studies require more thought; Chapter 11.2.5.
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5.2.1 Inference about Model Parameters and Probabilities

Consider the full model
logit{m(x)} = Bo + Bix1 + -+ + Bp—1Xp—1 = x'B.

Most types of inferences are functions of 3, say g(3). Some examples:
e g(B) =B, jt regression coefficient.
o g(B) = €%, j™ odds ratio.
o g(B) = &P /(1 + eP), probability 7(x).

If B is the MLE of 8, then g(3) is the MLE of g(3). This provides an

estimate. The delta method is an all-purpose method for obtaining a
standard error for g(3).
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We know A .
B ~ N,(B,cov(B)).

Let g(3) be a function from RP to R. Taylor's theorem implies, as long as
the MLE 3 is somewhat close to the true value 3, that

g(B) ~ g(B) + [Dg(BN(B — B),
where [Dg(/3)] is the vector of first partial derivatives

9g(B)
0p1
9g(B)

Dg(B) = | "
g.(ﬁ
9Bp

o5
—
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Then . .
(B = B) ~ Np(0,ov(B)),
implies
[Dg(B)]'(B — B) ~ N(0, [Dg(B))'cov(B)[De(B)]),
and finally
g(B) ~ N(g(B), [Dg(B)) cov(B)[Dg(B)))-
So

se{g(B)} = \/[Dg(B))'co(B)[Dg(B)].

This can be used to get confidence intervals for probabilities, etc.
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proc logistic data=crabsl descending;
model y = width; output out=crabs2 pred=p lower=| upper=u;
proc sort data=crabs2; by width;
proc gplot data=crabs2;
title "Estimated probabilities with pointwise 95% CI's";
symboll i=join color=black; symbol2 i=join color=red line=3;
symbol3 i=join color=black; axisl label =(");
plot (I p u)xwidth / overlay vaxis=axisl;
run;
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Figure : Fitted probability of satellite as a function of width & 95% Cls.
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5.2 Inferences for Logistic Regression
5.2.3 & 5.2.4 Goodness of fit

The deviance GOF statistic is defined to be

S
Yi ni — i
D=2 A v log [ —— T
,;{y’ > <”i7?i> + i i)leg (”i = n;ﬁ;)}’

n xiB .
where &; = —&—~ are fitted values.
1+exi5
Pearson’s GOF statistic is

2 (i — nifi)?
X = g TR
— n;#i(1—#;)

Both statistics are approximately Xz—p in large samples assuming that the

number of trials n =7, n; increases in such a way that each n;
increases.
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5.2 Inferences for Logistic Regression
5.2.5 Group your data

Binomial data is often recorded as individual (Bernoulli) records:

3

Xi
9
14
14
17
17
17
20

~NOoO oW -
H R RO RO o
H R R R e

Grouping the data yields an identical model:

ilyi ni X
110 1 9

211 2 14
312 3 17
411 1 20
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o 3, se(f5;), and L(B) don't care if data are grouped.

@ The quality of residuals and GOF statistics depend on how data are
grouped. D and Pearson's X2 will change!

@ In PROC LOGISTIC type AGGREGATE and SCALE=NONE after the
MODEL statement to get D and X? based on grouped data. This
option does not compute residuals based on the grouped data. You

can aggregate over all variables or a subset, e.g.
AGGREGATE=(width).
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@ The Hosmer and Lemeshow test statistic orders observations (x;, Y;)
by fitted probabilities 7(x;) from smallest to largest and divides them
into (typically) g = 10 groups of roughly the same size. A Pearson
test statistic is computed from these g groups.

@ The statistic would have a Xé,p distribution if each group had
exactly the same predictor x for all observations (but the observations
in a group do not have the same predictor x and they do not share a
common success probability). In general, the null distribution is
approximately ngz when the number of distinct patterns of covariate
values equals the sample size (see text). Termed a “near-replicate
GOF test” (Hosmer and Lemeshow 1980). The LACKFIT option in
PROC LOGISTIC gives this statistic.

e Can also test logit{m(x)} = fo + [1x versus more general model
logit{m(x)} = Bo + B1x + B2x? via Hp : 32 = 0.
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Raw (Bernoulli) data with aggregate scale=none lackfit;

Deviance and Pearson Goodness—of—Fit Statistics

Number of unique profiles:
the Hosmer and Lemeshow Test

Criterion Value

Deviance 69.7260

Pearson 55.1779

Partition for

Group Total Observed
1 19 5
2 18 8
3 17 11
4 17 8
5 16 11
6 18 11
7 16 12
8 16 12
9 16 13
10 20 20

DF
64
64

y =

Value /DF
1.0895
0.8622

Pr

66

1

Expected Observed
5.39 14
7.62 10
8.62 6
9.92 9
10.10 5
12.30 7
12.06 4
12.90 4
13.69 3
18.41 0

Hosmer and Lemeshow Goodness—of—Fit Test

Chi—Square
5.2465

DF
8

Pr > ChiSq
0.7309
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> ChiSq
0.2911
0.7761

y =20
Expected
13.61
10.38
.38
08
90
70
94
10
31
59

N WWOo o N
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Comments:

@ There are 66 distinct widths {x;} out of N = 173 crabs. For x35_, to
hold, we must keep sampling crabs that only have one of the 66 fixed
number of widths! Does that make sense here?

@ The Hosmer and Lemeshow test gives a p-value of 0.73 based on
g = 10 groups. Are assumptions going into this p-value met?

@ None of the GOF tests have assumptions that are met in practice for
continuous predictors. Are they still useful?

@ The raw statistics do not tell you where lack of fit occurs. Deviance
and Pearson residuals do tell you this (later). Also, the table provided
by the H-L tells you which groups are ill-fit should you reject Hj :
logistic model holds.

@ GOF tests are meant to detect gross deviations from model
assumptions. No model ever truly fits data except hypothetically.
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5.3.1 Categorical predictors

Let's say we wish to include variable X, a categorical variable that takes
on values x € {1,2,...,/}. We need to allow each level of X = x to affect
m(x) differently. This is accomplished by the use of dummy variables. This
is typically done one of two ways.

Define z1, 25, ..., z/_1 as follows:

o 1 X=j
TTU -1 X #)
This is the default in PROC LOGISTIC with a CLASS X statement. Say
I = 3, then the model is

logit 7(x) = fo + f121 + B2z
which gives
logit m(x) = Bo+ 1 — B2 when X =1
logit m(x) = Bo — 1+ B2 when X =2
logit m(x) = o — /1 — B2 when X =3
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At alternative method uses “zero/one” dummies instead:
1 X=j
%= i
0 X#J
This is the default if PROC GENMOD with a CLASS X statement. This

can also be obtained in PROC LOGISTIC with the PARAM=REF option.
This sets class X = [ as baseline. Say I = 3, then the model is

logit w(x) = Bo + f1z1 + P220.
which gives

logit 7(x) = B0+ 51 when X =1
logit 7(x) = fo+ 2 when X =2
logit 7(x) = Bo when X =3
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| prefer the latter method because it's easier to think about for me. You
can choose a different baseline category with REF=FIRST next to the
variable name in the CLASS statement. Table 3.7 (p. 89):

Drinks per day

Malformation 0 <1 1-2 3-5 >6
Absent 17,066 14,464 788 126 37
Present 48 38 5 1 1
data mal;
input cons present absent score QQ;
total = present+absent;
datalines ;

14817066 02 38 14464 053578815 411264051 37 7.0;
run;
proc logistic data=mal;

class cons / param=ref ref=last;

model present/total = cons;
run;
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Testing Global Null Hypothesis: BETA=0
Test Chi—Square DF Pr > ChiSq
Likelihood Ratio 6.2020 4 0.1846
Score 12.0821 4 0.0168
Wald 9.2811 4 0.0544
Type 3 Analysis of Effects
Wald
Effect DF Chi—Square Pr > ChiSq
cons 4 9.2811 0.0544
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi—Square Pr > ChiSq
Intercept 1 —3.6109 1.0134 12.6956 0.0004
cons 1 1 —2.2627 1.0237 4.8858 0.0271
cons 2 1 —2.3309 1.0264 5.1577 0.0231
cons 3 1 —1.4491 1.1083 1.7097 0.1910
cons 4 1 —1.2251 1.4264 0.7377 0.3904
Odds Ratio Estimates
Point 95% Wald
Effect Estimate Confidence Limits
cons 1 vs 5 0.104 0.014 0.774
cons 2 vs 5 0.097 0.013 0.727
cons 3 vs 5 0.235 0.027 2.061
cons 4 vs 5 0.294 0.018 4.810
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The model is
logit m(X) = fo + B1/{X = 1} + Bol{X = 2} + B3/ {X = 3} + Bl {X = 4}

where X denotes alcohol consumption X =1,2,3,4,5.

@ Type 3 analyses test whether all dummy variables associated with a
categorical predictor are simultaneously zero, here
Ho : B1 = B2 = B3 = B4 = 0. If we accept this then the categorical
predictor is not needed in the model.

e PROC LOGISTIC gives estimates and Cls for % for j = 1,2, 3, 4.
Here, these are interpreted as the odds of developing malformation
when X = 1,2, 3, or 4 versus the odds when X = 5.

@ We are not as interested in the individual Wald tests Hp : 3; = 0 for a
categorical predictor. Why is that? Because they only compare a level
X =1,2,3,4 to baseline X = 5, not to each other.
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@ The Testing Global Null Hypothesis: BETA=0 are three tests
that no predictor is needed; Hp : logit{m(x)} = By versus
Hi : logit{n(x)} = x'3.

@ Anything wrong here? 1) p-values = 0.18, 0.02, 0.05 from LR, Score
and Wald tests respectively; 2) the p-vlues using the exact conditional
distribution of X2 and G2 are 0.03 and 0.13, providing mixed signals.
The table 3.7 has a mixture of very small, moderate, and extremely
large counts, even though n=32,574, the null distributions of X2 and
G2 may not be close to chi-squared. In any case, these statistics
ignore the ordinality of alcohol consumption.
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@ Note that the Wald test for Hp : 3 = 0 is the same as the Type IlI
test that consumption is not important. Why is that?

@ Let Y = 1 denote malformation for a randomly sampled individual.

To get an odds ratio for malformation from increasing from, say,
X =2 to X = 4, note that

P(Y =1|X=2)/P(Y =0|X =2) _ BB

P(Y =1|X =4)/P(Y =0|X =4) ’

This is estimated with the CONTRAST command.
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