
Chapter 4: Generalized Linear Models-II

Dipankar Bandyopadhyay

Department of Biostatistics,
Virginia Commonwealth University

BIOS 625: Categorical Data & GLM

[Acknowledgements to Tim Hanson and Haitao Chu]

D. Bandyopadhyay (VCU) 1 / 26



Chapter 4 4.3 Generalized Linear Models for Counts

4.3.3 Overdispersion for Poisson GLMs

If data are truly Poisson, then we should have roughly
E (Yi) = var(Yi ) = µi . Data can be grouped into like categories and
this can be informally checked.

For the horseshoe crab data we have the following (Table 4.4):

Width (cm) Sample mean Sample variance
< 23.25 1.0 2.8

23.25− 24.25 1.4 8.9
24.25− 25.25 2.4 6.5
25.25− 26.25 2.7 11.4
26.25− 27.25 2.9 6.7
27.25− 28.25 3.9 8.9
28.25− 29.25 3.9 16.9

> 29.25 5.1 8.3
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The sample variance tends to be 2-3 times as much as the mean.
This is an example of overdispersion. There is greater variability in
the data than we expect under our sampling model.

Fixes:
◮ Find another sampling model!
◮ Include other important, explanatory covariates.
◮ Random effects as a proxy to unknown, latent covariates.
◮ Quasi-likelihood approach.

We’ll explore a common approach to the first fix above...
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Review: PhD 2011 Exam Question on Linear Models, Q1

We say Y ∼ NB(α, β), if Y |λ ∼ Poisson(λ) and λ ∼ Gamma(α, β) with
density f (λ) = 1

Γ(α)βα λ
α−1e−λ/β , α, β > 0.

Proof: The probability mass function for the Negative Binomial is

h(y) =

∫
∞

0
g(y |λ)f (λ)dλ

=

∫
∞

0

e−λλy

y !

λα−1e−λ/β

Γ(α)βα
dλ

=
1

Γ(y + 1)Γ(α)βα

∫
∞

0
λy+α−1 exp

[
−λ

(
β

β + 1

)
−1

]
dλ

The integrand is the kernel of a Gamma density with shape parameter
α+ y and scale parameter β/(β + 1).
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To get a Gamma density and make the integral equal 1, we divide the
integrand by Γ(α+ y)× [β/(β + 1)]α+y and of course to keep h(y) from
changing, we must multiply the factor outside the integral by that
quantity. So

h(y) =
Γ(α+ y)[β/(β + 1)]α+y

Γ(y + 1)Γ(α)βα

=
Γ(α + y)

Γ(y + 1)Γ(α)

(
1

1 + β

)α ( β

1 + β

)y

.

Recall that the Gamma distribution for λ has mean αβ and variance αβ2.
E (y) = E [E (y |λ)] = E [λ] = αβ = µ and
Var(Y ) = E [Var(Y |λ)] + Var [E (Y |λ)] = E [λ] + Var [λ] = αβ + αβ2 =
µ+ µβ = µ(1 + β)
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4.3.4 Negative binomial regression
Let k = α and µ = αβ, then Y ∼ negbin(k , µ) with

p(y) =
Γ(y + k)

Γ(k)Γ(y + 1)

(
k

µ+ k

)k (
1− k

µ+ k

)y

for y = 0, 1, 2, 3, . . . .

Then E (Y ) = µ and var(Y ) = µ+ µ2/k .

A sampling model that includes another parameter allows some
separation between the mean and variance.

The negative binomial distribution is a discrete probability distribution
of the number of successes in a sequence of Bernoulli trials before a
specified (non-random) number k of failures occurs.

The index k−1 is called a dispersion parameter. As k → ∞ the
Poisson distribution is obtained.

Here, the variance increases with the mean; is that appropriate for the
crab data? Book looks at crab data on p. 127.

Another modeling approach: adding a random effect for each crab,
coming up toward the end of the semester.
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4.4 Mean & Variance for GLMs

A two parameter exponential family includes a dispersion parameter φ:

f (yi |θi , φ) = exp{[yiθi − b(θi)]/a(φ) + c(yi , φ)}.

When φ is known, it simplifies to f (yi |θi) = a(θi)b(yi ) exp[yiQ(θi )],
the nature one parameter exponential family.

This includes binomial, negative binomial, Poisson, normal, and many
others.

Let Li = log f (yi ; θi , φ). This is the contribution of the i th

observation to the likelihood in terms of θi and φ.

Then L(θ, φ) =
∑N

i=1 log f (yi ; θi , φ) =
∑N

i=1 Li , where
Li = [yiθi − b(θi)]/a(φ) + c(yi , φ).
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Then some work gives us

µi = E (Yi) = b′(θi ) and var(Yi ) = b′′(θi)a(φ).

The model imposes µi = b′(θi) = g−1(x′iβ). The N-dimensional µ,
or equivalently θ, is reduced to the p-dimensional β (and φ in a
2-parameter family). Then

L(β, φ) =

N∑

i=1

[
yi(b

′)−1(g−1(x′iβ))− b((b′)−1(g−1(x′iβ)))

a(φ)
+ c(yi , φ)

]
,

as θi = (b′)−1(g−1(x′iβ)).

The MLEs β̂ and φ̂ are found by taking first derivatives of this,
setting equal to zero, and solving (pp. 132-136). Things simplify
when using the canonical link.
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The asymptotic covariance matrix for β̂ is the inverse of the fisher
information matrix, cov(β̂). This is a function of the unknown β and
φ, and in practice we just plug in the MLE values β̂ and φ̂ yielding
ĉov(β̂).

Section 4.4.3 shows how Poisson and binomial GLMs fit into the
general exponential family form and specifies corresponding b(θi ),
a(φ), and c(yi , φ).

Section 4.4.9 carries out computations leading to ĉov(β̂) in the
Poisson regression model with a log link.
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4.5.1 Deviance and GOF

For now assume we’re able to get β̂. Anyway, we are able to, in SAS
or R!

Recall that the saturated model estimates the N µis with the N yis,
providing perfect fit. This model does not reduce data, provide a
means for prediction for arbitrary covariate values x, allow for
meaningful hypotheses to be tested, etc.

However, we can use the saturated model to check the fit of a “real”
GLM.

If, essentially, the number of distinct covariate vectors remains fixed
but N increases then G 2 = −2 logL(µ(β̂), φ̂r ; y) − logL(y, φ̂f ; y)] is
the LRT statistic for testing H0 : g(µi ) = x′iβ relative to the
alternative that the means µ are unstructured.
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In Poisson and binomial regression models a(φ) = 1, i.e. there is no
dispersion parameter, and this LRT statistic is equal to the model
deviance as described last time for grouped data.

When there is a dispersion parameter φ (e.g. normal, negative
binomial, or gamma regression models), −2 times the difference in
saturated and reduced models log-likelihood is D/φ in most models,
called the scaled deviance; see top, p. 137.

The scaled deviance has an approximate chi-squared distribution
when the reduced model holds.
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4.5.4 LR model comparison

In Poisson and binomial regression, Dr = −2[Lr − Ls ] where D is
deviance, Lr is log-likelihood evaluated at β̂ for the GLM, and Ls is
log-likelihood evaluated at µ̂i = yi under the saturated model.

Say we add a few more predictors to the model so the dimension of β
goes from p to p + q. Compute the deviance from the smaller model
(Dr ) and the larger model (Df ). Then Dr − Df is the likelihood ratio
test statistic for testing H0 : smaller model holds, and is
asymptotically χ2

q when H0 is true. The larger this difference, the
more evidence there is that the new predictors significantly improve
model fit (and hence significantly reduce model deviance).

Often data are not grouped; in this case it’s safer to use L(β; y)
directly from the output!
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4.5.6 Residuals for GLMs

Residuals indicate where model fit is inadequate.

The deviance residual di is defined in such a way that
∑N

i=1 d
2
i = D,

see p. 141.

The Pearson residual is given by ei =
yi−µ̂i√
v̂ar(Yi )

. These have variance

< 1.

The standardized Pearson residuals ri properly standardize the
residual to have variance one and in large samples are N(0, 1) if the
model holds. This means reasonably large ni for binomial data and
reasonably large counts for Poisson data. So residuals |ri | > 3 show
rather extreme lack of fit for (xi ,Yi ) according to the model.

Residuals can be plotted versus predictors or against the linear
predictor η̂i = x′i β̂ to assess systematic departures from model
assumptions.

Note: X 2 =
∑N

i=1 e
2
i

•∼ χ2
s−p when H0 : g(µi ) = x′iβ is true.
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Newton-Raphson Method in One Dimension

Say we want to find where f (x) = 0 for differentiable f (x). Let x0 be such
that f (x0) = 0. Taylor’s theorem tells us

f (x0) ≈ f (x) + f ′(x)(x0 − x).

Plugging in f (x0) = 0 and solving for x0 we get x̂0 = x − f (x)
f ′(x) . Starting at

an x near x0, x̂0 should be closer to x0 than x was. Let’s iterate this idea t

times:

x(t+1) = x(t) − f (x(t))

f ′(x(t))
.

Eventually, if things go right, x(t) should be close to x0.
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If f(x) : Rp → R
p, the idea works the same, but in vector/matrix terms.

Start with an initial guess x(0) and iterate

x(t+1) = x(t) − [Df(x(t))]−1f(x(t)).

If things are “done right,” then this should converge to x0 such that
f(x0) = 0.
We are interested in solving DL(β) = 0 (the score, or likelihood
equations!) where

DL(β) =




∂L(β)
∂β1
...

∂L(β)
∂βp


 and D2L(β) =




∂L(β)

∂β2
1

· · · ∂L(β)
∂β1∂βp

...
. . .

...
∂L(β)
∂βp∂β1

· · · ∂L(β)
∂β2

p


 .
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So for us, we start with β(0) (maybe through a MOM or least squares
estimate) and iterate

β(t+1) = β(t) − [D2L(β(t))]−1DL(β(t)).

This is (4.45) on p. 143 disguised.
The process is typically stopped when |β(t+1) − β(t)| < ǫ.

Newton-Raphson uses D2L(β) as is, with the y plugged in.

Fisher scoring instead uses E{D2L(β)}, with expectation taken over
Y, which is not a function of the observed y, but harder to get.

The latter approach is harder to implement, but conveniently yields
ĉov(β̂) ≈ [−E{D2L(β)}]−1 evaluated at β̂ when the process is done.
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Chapter 4 4.7 Quasi-likelihood and Overdispersion

The MLE β satisfies:

uj(β) =

N∑

i=1

(yi − µi)xij
v(µi )

(
∂g−1(ηi )

∂ηi

)
= 0, j = 1, . . . , p,

where ηi = x′iβ and v(µi ) = var(Yi ), a function of µi .

These are the partial derivatives of the log-likelihood function set to
zero, also called the score equations.

In exponential families, a given µi = E (Yi ) and v(µi ) = var(Yi )
uniquely determines the distribution. For example, if we say
E (Yi) = µi and var(Yi) = v(µi) = µi , and that Yi is a distribution in
the exponential family, then Yi has to be Poisson.
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For Poisson data, we know v(µi ) = µi ; for Binomial data
(E (Yi ) = µi = niπi ), we have v(πi ) = niπi(1− πi).

If we add a dispersion parameter φ and declare that v(µi) = φµi

(Poisson) or v(πi) = φniπi(1− πi) (binomial), the resulting family
may not be exponential, or not even unique, but the score equations
on the previous slide remain the same.

So β̂ does not change.

What does change is the estimate ĉov(β̂). This estimate is the same
as from the original model (where v(µi) = µi or v(πi) = niπi (1− πi )
for Poisson or Binomial respectively) except multiplied by φ.
Therefore regression effect standard errors are simply multiplied by√

φ̂ where φ̂ is an estimate of φ.
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Let X 2 =
∑N

i=1(yi − µ̂i)
2/µ̂i for Poisson and

X 2 =
∑N

i=1(yi − ni π̂i )
2/[ni π̂i(1− π̂i)] for binomial, the Pearson

statistic for assessing (original) model fit.

φ is not in the score equations, however, X 2/φ
•∼ χ2

s−p (when the
dispersion model is true) where s is the number of unique covariate
vectors in {xi}. Since E (χ2

df ) = df , a MOM estimate of φ is

φ̂ = X 2/(s − p). When data are grouped, s = N.

The adjusted estimate is ĉova(β̂) = φ̂ ĉov(β̂). When φ̂ > 1, which
happens with overdispersed data, standard errors get properly inflated.

This is an easy, ad hoc fix to overdispersion, but commonly done and
useful.

SAS does everything automatically when you specify
SCALE=PEARSON in the MODEL statement of GENMOD. Also:
SCALE=DEVIANCE works similarly.
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To recall, SAS code for crab data without dispersion parameter:

proc genmod; model satell = width / dist=poisson link=identity ;

Output:

The GENMOD Procedure
Model I n f o rma t i o n

C r i t e r i a For A s s e s s i n g Goodness Of F i t
C r i t e r i o n DF Value Value /DF
Deviance 171 557.7083 3.2615
Sca l e d Deviance 171 557.7083 3.2615
Pearson Chi−Square 171 542.4854 3.1724
Sca l e d Pearson X2 171 542.4854 3.1724
Log L i k e l i h o o d 73.5314
F u l l Log L i k e l i h o o d −456.5030
AIC ( sma l l e r i s b e t t e r ) 917.0060
AICC ( sma l l e r i s b e t t e r ) 917.0766
BIC ( sma l l e r i s b e t t e r ) 923.3126

A l go r i t hm conve rged .

An a l y s i s Of Maximum L i k e l i h o o d Paramete r E s t imate s
Standard Wald 95% Conf i denc e Wald

Paramete r DF Es t imate E r r o r L im i t s Chi−Square Pr > ChiSq
I n t e r c e p t 1 −11.5321 1.510400 −14.4924 −8.57173 58.29 <.0001
width 1 .5494968 .0592926 .4332855 .6657082 85.89 <.0001
Sca l e 0 1.000000 .0000000 1.000000 1.000000

D. Bandyopadhyay (VCU) 20 / 26



Chapter 4 4.7 Quasi-likelihood and Overdispersion

SAS code for crab data with dispersion parameter:

proc genmod; model satell = width / dist=poisson link=identity scale=pearson;

Output:

The GENMOD Procedure
C r i t e r i a For A s s e s s i n g Goodness Of F i t

C r i t e r i o n DF Value Value /DF
Deviance 171 557.7083 3.2615
Sca l e d Deviance 171 175.7985 1.0281
Pearson Chi−Square 171 542.4854 3.1724
Sca l e d Pearson X2 171 171.0000 1.0000
Log L i k e l i h o o d 23.1783
F u l l Log L i k e l i h o o d −143.8970
AIC ( sma l l e r i s b e t t e r ) 291.7939
AICC ( sma l l e r i s b e t t e r ) 291.8645
BIC ( sma l l e r i s b e t t e r ) 298.1005

A l go r i t hm conve rged .

An a l y s i s Of Maximum L i k e l i h o o d Paramete r E s t imate s
Standard Wald 95% Conf i denc e Wald

Paramete r DF Es t imate E r r o r L im i t s Chi−Square Pr > ChiSq
I n t e r c e p t 1 −11.5321 2.690221 −16.8048 −6.25932 18.38 <.0001
width 1 .5494968 .1056079 .3425092 .7564845 27.07 <.0001
Sca l e 0 1.781132 .0000000 1.781132 1.781132
NOTE: The s c a l e paramete r was e s t imated by the squa r e root o f Pearson ’ s Chi−Squared /DOF.

Note that β̂ is the same with or without the dispersion parameter. What
changes are se(β̂j ).

D. Bandyopadhyay (VCU) 21 / 26



Chapter 4 4.7 Quasi-likelihood and Overdispersion

This approach to handling overdispersion works well when the mean
structure is well modeled. Otherwise, what does φ̂ really estimate?

This was a lot of information thrown at you very quickly. Meant to
introduce notation and be an overview of things to come.

We will slow down and investigate specific models in more detail.

Be careful distinguishing s from N! In the saturated model, s is the
number of distinct categories that data fall into. However, SAS takes
the df for deviance to be the number of records N regardless. Data
should be grouped in as few groups as possible when checking for
dispersion. See 4.5.3, pp. 137-138.
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4.7.4 Teratology example

Female rats given one of four treatments: placebo, weekly iron
supplement, days 7 & 10, days 0 & 7. See p. 152 for the data. The
number dead yij out of litter size nij was recorded where i = 1, 2, 3, 4
is the treatment group, and j = 1, . . . ,mi is the number of litters in
group i (31, 12, 5, 10).

Let πi denote the probability of death in group i . The model is simply
Yij ∼ bin(nij , πi ).

The sum of two independent binomials with the same probability is
also binomial. So according to the model, there really is only four
observations:

i yi+ ni+
1 248 327
2 12 118
3 2 58
4 5 104
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The idea behind this example is that there is litter-to-litter variability
and so the data are really a mixture of binomial distributions and
overdispersion might be present.

If we do not group the data, then

X 2 =

4∑

i=1

mi∑

j=1

(yij − nij π̂i)
2

nij π̂i(1− π̂i)
.

This has an approximate χ2
58−4 distribution when we think of litter

sizes nij → ∞. Then φ̂ = 2.86 and there’s evidence of overdispersion.

According to the model, the groupings are arbitrary; we cannot tell
the difference between litters. If we group the data then

X 2 =
4∑

i=1

(yi+ − ni+π̂i)
2

ni+π̂i (1− π̂i)
= 0.
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The problem is that the latter model being fit is the saturated model.
There is no way to check for overdispersion using the grouped data.

However, according to the model, the groupings according to data
recorded in terms on litters are arbitrary. We know this isn’t the case,
but the model cannot tell the difference between litters, only
treatments.

We are using information on litters to assess overdispersion, but not
explicitly including this information in a real probability model, but
rather through φ. (Better than ignoring the possibility entirely!)

A possibly better approach is to include a separate term for each
litter!

Yij ∼ bin(nij , µij), logit(µij) = πi + γij ,

where γij
iid∼ N(0, σ2). This random effects model explicitly includes

litter-to-litter heterogeneity in the model. The γij serve as a proxy to
unmeasured, latent genetic differences among litters.
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Comments:

Which approach is better, estimating φ and inflating the se’s for π̂i or
the random effects model?

What assumptions under the random effects model might be
violated? What strengths does it have?

What assumptions using v(πi ) = φniπi(1− πi ) might be violated?
How does this affect the model? Can you see a potentially bigger
problem here in using an estimate φ̂?

How would I analyze these data? With a random effects model, then
examine γ̂ij to check the normality assumption.
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