Chapter 4: Generalized Linear Models-II

Dipankar Bandyopadhyay

Department of Biostatistics, Virginia Commonwealth University

BIOS 625: Categorical Data & GLM

[Acknowledgements to Tim Hanson and Haitao Chu]

3

4.3.3 Overdispersion for Poisson GLMs

- If data are truly Poisson, then we should have roughly
 E(Y_i) = var(Y_i) = μ_i. Data can be grouped into like categories and
 this can be informally checked.
- For the horseshoe crab data we have the following (Table 4.4):

Width (cm)	Sample mean	Sample variance
< 23.25	1.0	2.8
23.25 - 24.25	1.4	8.9
24.25 - 25.25	2.4	6.5
25.25 - 26.25	2.7	11.4
26.25 - 27.25	2.9	6.7
27.25 - 28.25	3.9	8.9
28.25 - 29.25	3.9	16.9
> 29.25	5.1	8.3

• The sample variance tends to be 2-3 times as much as the mean. This is an example of overdispersion. There is greater variability in the data than we expect under our sampling model.

Fixes:

- Find another sampling model!
- Include other important, explanatory covariates.
- Random effects as a proxy to unknown, latent covariates.
- Quasi-likelihood approach.
- We'll explore a common approach to the first fix above...

• = • • = •

Review: PhD 2011 Exam Question on Linear Models, Q1

We say $Y \sim NB(\alpha, \beta)$, if $Y|\lambda \sim \text{Poisson}(\lambda)$ and $\lambda \sim \text{Gamma}(\alpha, \beta)$ with density $f(\lambda) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}\lambda^{\alpha-1}e^{-\lambda/\beta}, \alpha, \beta > 0$. Proof: The probability mass function for the Negative Binomial is

$$\begin{split} h(y) &= \int_0^\infty g(y|\lambda) f(\lambda) d\lambda \\ &= \int_0^\infty \frac{e^{-\lambda} \lambda^y}{y!} \frac{\lambda^{\alpha-1} e^{-\lambda/\beta}}{\Gamma(\alpha)\beta^{\alpha}} d\lambda \\ &= \frac{1}{\Gamma(y+1)\Gamma(\alpha)\beta^{\alpha}} \int_0^\infty \lambda^{y+\alpha-1} \exp\left[-\lambda \left(\frac{\beta}{\beta+1}\right)^{-1}\right] d\lambda \end{split}$$

The integrand is the kernel of a Gamma density with shape parameter $\alpha + y$ and scale parameter $\beta/(\beta + 1)$.

1

To get a Gamma density and make the integral equal 1, we divide the integrand by $\Gamma(\alpha + y) \times [\beta/(\beta + 1)]^{\alpha+y}$ and of course to keep h(y) from changing, we must multiply the factor outside the integral by that quantity. So

$$h(y) = \frac{\Gamma(\alpha + y)[\beta/(\beta + 1)]^{\alpha + y}}{\Gamma(y + 1)\Gamma(\alpha)\beta^{\alpha}}$$

= $\frac{\Gamma(\alpha + y)}{\Gamma(y + 1)\Gamma(\alpha)} \left(\frac{1}{1 + \beta}\right)^{\alpha} \left(\frac{\beta}{1 + \beta}\right)^{y}.$

Recall that the Gamma distribution for λ has mean $\alpha\beta$ and variance $\alpha\beta^2$. $E(y) = E[E(y|\lambda)] = E[\lambda] = \alpha\beta = \mu$ and $Var(Y) = E[Var(Y|\lambda)] + Var[E(Y|\lambda)] = E[\lambda] + Var[\lambda] = \alpha\beta + \alpha\beta^2 = \mu + \mu\beta = \mu(1 + \beta)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

4.3.4 Negative binomial regression Let $k = \alpha$ and $\mu = \alpha\beta$, then $Y \sim \text{negbin}(k, \mu)$ with

$$p(y) = \frac{\Gamma(y+k)}{\Gamma(k)\Gamma(y+1)} \left(\frac{k}{\mu+k}\right)^k \left(1 - \frac{k}{\mu+k}\right)^y \text{ for } y = 0, 1, 2, 3, \dots$$

Then $E(Y) = \mu$ and $var(Y) = \mu + \mu^2/k$.

- A sampling model that includes another parameter allows some separation between the mean and variance.
- The negative binomial distribution is a discrete probability distribution of the number of successes in a sequence of Bernoulli trials before a specified (non-random) number k of failures occurs.
- The index k^{-1} is called a *dispersion* parameter. As $k \to \infty$ the Poisson distribution is obtained.
- Here, the variance *increases* with the mean; is that appropriate for the crab data? Book looks at crab data on p. 127.
- Another modeling approach: adding a random effect for each crab, coming up toward the end of the semester.

4.4 Mean & Variance for GLMs

• A two parameter exponential family includes a *dispersion parameter* ϕ :

$$f(y_i|\theta_i,\phi) = \exp\{[y_i\theta_i - b(\theta_i)]/a(\phi) + c(y_i,\phi)\}$$

- When ϕ is known, it simplifies to $f(y_i|\theta_i) = a(\theta_i)b(y_i)\exp[y_iQ(\theta_i)]$, the nature one parameter exponential family.
- This includes binomial, negative binomial, Poisson, normal, and many others.
- Let L_i = log f(y_i; θ_i, φ). This is the contribution of the ith observation to the likelihood in terms of θ_i and φ.

• Then
$$L(\theta, \phi) = \sum_{i=1}^{N} \log f(y_i; \theta_i, \phi) = \sum_{i=1}^{N} L_i$$
, where $L_i = [y_i \theta_i - b(\theta_i)]/a(\phi) + c(y_i, \phi)$.

<ロ> (四) (四) (三) (三) (三) (三)

• Then some work gives us

$$\mu_i = E(Y_i) = b'(heta_i)$$
 and $\operatorname{var}(Y_i) = b''(heta_i)a(\phi)$.

The model imposes μ_i = b'(θ_i) = g⁻¹(**x**'_iβ). The *N*-dimensional μ, or equivalently θ, is reduced to the *p*-dimensional β (and φ in a 2-parameter family). Then

$$L(\beta,\phi) = \sum_{i=1}^{N} \left[\frac{y_i(b')^{-1}(g^{-1}(\mathbf{x}'_i\beta)) - b((b')^{-1}(g^{-1}(\mathbf{x}'_i\beta)))}{a(\phi)} + c(y_i,\phi) \right],$$

as $\theta_i = (b')^{-1}(g^{-1}(\mathbf{x}'_i\beta)).$

• The MLEs $\hat{\beta}$ and $\hat{\phi}$ are found by taking first derivatives of this, setting equal to zero, and solving (pp. 132-136). Things simplify when using the canonical link.

- The asymptotic covariance matrix for β̂ is the inverse of the fisher information matrix, cov(β̂). This is a function of the unknown β and φ, and in practice we just plug in the MLE values β̂ and φ̂ yielding cov(β̂).
- Section 4.4.3 shows how Poisson and binomial GLMs fit into the general exponential family form and specifies corresponding b(θ_i), a(φ), and c(y_i, φ).
- Section 4.4.9 carries out computations leading to $\widehat{\text{cov}}(\hat{\beta})$ in the Poisson regression model with a log link.

4.5.1 Deviance and GOF

- For now assume we're able to get $\hat{\beta}$. Anyway, we *are* able to, in SAS or R!
- Recall that the saturated model estimates the N μ_is with the N y_is, providing perfect fit. This model does not reduce data, provide a means for prediction for arbitrary covariate values x, allow for meaningful hypotheses to be tested, etc.
- However, we can use the saturated model to check the fit of a "real" GLM.
- If, essentially, the number of distinct covariate vectors remains fixed but N increases then $G^2 = -2 \log \mathcal{L}(\mu(\hat{\beta}), \hat{\phi}_r; \mathbf{y}) \log \mathcal{L}(\mathbf{y}, \hat{\phi}_f; \mathbf{y})]$ is the LRT statistic for testing $H_0 : g(\mu_i) = \mathbf{x}'_i \beta$ relative to the alternative that the means μ are unstructured.

- In Poisson and binomial regression models a(φ) = 1, i.e. there is no dispersion parameter, and this LRT statistic is equal to the model deviance as described last time for grouped data.
- When there is a dispersion parameter φ (e.g. normal, negative binomial, or gamma regression models), -2 times the difference in saturated and reduced models log-likelihood is D/φ in most models, called the scaled deviance; see top, p. 137.
- The scaled deviance has an approximate chi-squared distribution when the reduced model holds.

・ロト ・回ト ・ヨト ・ヨト

4.5.4 LR model comparison

- In Poisson and binomial regression, $D_r = -2[L_r L_s]$ where D is deviance, L_r is log-likelihood evaluated at $\hat{\beta}$ for the GLM, and L_s is log-likelihood evaluated at $\hat{\mu}_i = y_i$ under the saturated model.
- Say we add a few more predictors to the model so the dimension of β goes from p to p + q. Compute the deviance from the smaller model (D_r) and the larger model (D_f) . Then $D_r D_f$ is the likelihood ratio test statistic for testing H_0 : smaller model holds, and is asymptotically χ_q^2 when H_0 is true. The larger this difference, the more evidence there is that the new predictors significantly improve model fit (and hence significantly reduce model deviance).
- Often data are not grouped; in this case it's safer to use L(β; y) directly from the output!

<ロ> (四) (四) (三) (三) (三) (三)

4.5.6 Residuals for GLMs

- Residuals indicate where model fit is inadequate.
- The deviance residual d_i is defined in such a way that $\sum_{i=1}^{N} d_i^2 = D$, see p. 141.
- The Pearson residual is given by $e_i = \frac{y_i \hat{\mu}_i}{\sqrt{\widehat{var}(Y_i)}}$. These have variance < 1.
- The standardized Pearson residuals r_i properly standardize the residual to have variance one and in large samples are N(0, 1) if the model holds. This means reasonably large n_i for binomial data and reasonably large counts for Poisson data. So residuals $|r_i| > 3$ show rather extreme lack of fit for (\mathbf{x}_i, Y_i) according to the model.
- Residuals can be plotted versus predictors or against the linear predictor $\hat{\eta}_i = \mathbf{x}'_i \hat{\boldsymbol{\beta}}$ to assess systematic departures from model assumptions.

• Note: $X^2 = \sum_{i=1}^{N} e_i^2 \stackrel{\bullet}{\sim} \chi^2_{s-p}$ when $H_0: g(\mu_i) = \mathbf{x}'_i \boldsymbol{\beta}$ is true.

Newton-Raphson Method in One Dimension

Say we want to find where f(x) = 0 for differentiable f(x). Let x_0 be such that $f(x_0) = 0$. Taylor's theorem tells us

$$f(x_0)\approx f(x)+f'(x)(x_0-x).$$

Plugging in $f(x_0) = 0$ and solving for x_0 we get $\hat{x}_0 = x - \frac{f(x)}{f'(x)}$. Starting at an x near x_0 , \hat{x}_0 should be closer to x_0 than x was. Let's iterate this idea t times:

$$x^{(t+1)} = x^{(t)} - \frac{f(x^{(t)})}{f'(x^{(t)})}.$$

Eventually, if things go right, $x^{(t)}$ should be close to x_0 .

If $\mathbf{f}(\mathbf{x}) : \mathbb{R}^p \to \mathbb{R}^p$, the idea works the same, but in vector/matrix terms. Start with an initial guess $\mathbf{x}^{(0)}$ and iterate

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - [D\mathbf{f}(\mathbf{x}^{(t)})]^{-1}\mathbf{f}(\mathbf{x}^{(t)})$$

If things are "done right," then this should converge to \mathbf{x}_0 such that $\mathbf{f}(\mathbf{x}_0) = \mathbf{0}$. We are interested in solving $DL(\beta) = \mathbf{0}$ (the score, or likelihood equations!) where

$$DL(\beta) = \begin{bmatrix} \frac{\partial L(\beta)}{\partial \beta_1} \\ \vdots \\ \frac{\partial L(\beta)}{\partial \beta_p} \end{bmatrix} \text{ and } D^2L(\beta) = \begin{bmatrix} \frac{\partial L(\beta)}{\partial \beta_1^2} & \cdots & \frac{\partial L(\beta)}{\partial \beta_1 \partial \beta_p} \\ \vdots & \ddots & \vdots \\ \frac{\partial L(\beta)}{\partial \beta_p \partial \beta_1} & \cdots & \frac{\partial L(\beta)}{\partial \beta_p^2} \end{bmatrix}$$

So for us, we start with $\beta^{(0)}$ (maybe through a MOM or least squares estimate) and iterate

$$\beta^{(t+1)} = \beta^{(t)} - [D^2 L(\beta^{(t)})]^{-1} D L(\beta^{(t)}).$$

This is (4.45) on p. 143 disguised.

The process is typically stopped when $|\beta^{(t+1)} - \beta^{(t)}| < \epsilon$.

- Newton-Raphson uses $D^2L(\beta)$ as is, with the **y** plugged in.
- Fisher scoring instead uses E{D²L(β)}, with expectation taken over
 Y, which is *not* a function of the observed y, but harder to get.
- The latter approach is harder to implement, but conveniently yields $\widehat{\text{cov}}(\hat{\beta}) \approx [-E\{D^2L(\beta)\}]^{-1}$ evaluated at $\hat{\beta}$ when the process is done.

• The MLE β satisfies:

$$u_j(\beta) = \sum_{i=1}^N \frac{(y_i - \mu_i) x_{ij}}{v(\mu_i)} \left(\frac{\partial g^{-1}(\eta_i)}{\partial \eta_i} \right) = 0, \quad j = 1, \dots, p,$$

where $\eta_i = \mathbf{x}'_i \boldsymbol{\beta}$ and $v(\mu_i) = var(Y_i)$, a function of μ_i .

- These are the partial derivatives of the log-likelihood function set to zero, also called the *score* equations.
- In exponential families, a given μ_i = E(Y_i) and v(μ_i) = var(Y_i) uniquely determines the distribution. For example, if we say E(Y_i) = μ_i and var(Y_i) = v(μ_i) = μ_i, and that Y_i is a distribution in the exponential family, then Y_i has to be Poisson.

- For Poisson data, we know $v(\mu_i) = \mu_i$; for Binomial data $(E(Y_i) = \mu_i = n_i \pi_i)$, we have $v(\pi_i) = n_i \pi_i (1 \pi_i)$.
- If we add a dispersion parameter ϕ and declare that $v(\mu_i) = \phi \mu_i$ (Poisson) or $v(\pi_i) = \phi n_i \pi_i (1 - \pi_i)$ (binomial), the resulting family may not be exponential, or not even unique, but the score equations on the previous slide *remain the same*.
- So $\hat{\beta}$ does not change.
- What does change is the estimate $\widehat{\operatorname{cov}}(\hat{\beta})$. This estimate is the same as from the original model (where $v(\mu_i) = \mu_i$ or $v(\pi_i) = n_i \pi_i (1 \pi_i)$ for Poisson or Binomial respectively) except multiplied by ϕ . Therefore regression effect standard errors are simply multiplied by $\sqrt{\hat{\phi}}$ where $\hat{\phi}$ is an estimate of ϕ .

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

- Let $X^2 = \sum_{i=1}^{N} (y_i \hat{\mu}_i)^2 / \hat{\mu}_i$ for Poisson and $X^2 = \sum_{i=1}^{N} (y_i n_i \hat{\pi}_i)^2 / [n_i \hat{\pi}_i (1 \hat{\pi}_i)]$ for binomial, the Pearson statistic for assessing (original) model fit.
- φ is not in the score equations, however, X²/φ [•] χ²_{s-p} (when the dispersion model is true) where s is the number of unique covariate vectors in {x_i}. Since E(χ²_{df}) = df, a MOM estimate of φ is φ̂ = X²/(s − p). When data are grouped, s = N.
- The adjusted estimate is $\widehat{cov}_a(\hat{\beta}) = \hat{\phi} \ \widehat{cov}(\hat{\beta})$. When $\hat{\phi} > 1$, which happens with overdispersed data, standard errors get properly inflated.
- This is an easy, *ad hoc* fix to overdispersion, but commonly done and useful.
- SAS does everything automatically when you specify SCALE=PEARSON in the MODEL statement of GENMOD. Also: SCALE=DEVIANCE works similarly.

To recall, SAS code for crab data without dispersion parameter: proc genmod; model satell = width / dist=poisson link=identity; Output:

	GENMOD Pro		
		Goodness Of Fit	
Criterion	DF	Value	Value/DF
Deviance	171	557.7083	3.2615
Scaled Deviance	171	557.7083	3.2615
Pearson Chi-Square	171	542.4854	3.1724
Scaled Pearson X2	171	542.4854	3.1724
Log Likelihood		73.5314	
Full Log Likelihood		-456.5030	
AIC (smaller is better)		917.0060	
AICC (smaller is better)		917.0766	
BIC (smaller is better)		923.3126	

Algorithm converged.

		Analys	is Of Maximum	Likelihood	l Parameter	Estimates	
			Standard	Wald 95%	Confidence	Wald	
Parameter	DF	Estimate	Error	Lir	mits	Chi—Square	$\Pr > ChiSq$
Intercept	1	-11.5321	1.510400	-14.4924	-8.57173	58.29	<.0001
width	1	.5494968	.0592926	.4332855	.6657082	85.89	<.0001
Scale	0	1.000000	.0000000	1.000000	1.000000		

SAS code for crab data with dispersion parameter:

proc genmod; model satell = width / dist=poisson link=identity scale=pearson; Output:

The	GENMOD Pr	ocedure	
Criteria For	Assessing	Goodness Of Fit	
Criterion	DF	Value	Value/DF
Deviance	171	557.7083	3.2615
Scaled Deviance	171	175.7985	1.0281
Pearson Chi—Square	171	542.4854	3.1724
Scaled Pearson X2	171	171.0000	1.0000
Log Likelihood		23.1783	
Full Log Likelihood		-143.8970	
AIC (smaller is better)		291.7939	
AICC (smaller is better)		291.8645	
BIC (smaller is better)		298.1005	
Algorithm converged			

Algorithm converged.

		Analys	is Of Maximum	Likelihood	Parameter	Estimates	
			Standard	Wald 95%	Confidence	Wald	
Parameter	DF	Estimate	Error	Lim	its	Chi—Square	$\Pr > ChiSq$
Intercept	1	-11.5321	2.690221	-16.8048	-6.25932	18.38	<.0001
width	1	.5494968	.1056079	.3425092	.7564845	27.07	<.0001
Scale	0	1.781132	.0000000	1.781132	1.781132		
NOTE: The	scale	parameter was	estimated by	the square	root of P	earson's Chi—	Squared /DOF.

Note that $\hat{\beta}$ is the same with or without the dispersion parameter. What changes are se $(\hat{\beta}_j)$.

- This approach to handling overdispersion works well when the mean structure is well modeled. Otherwise, what does $\hat{\phi}$ really estimate?
- This was a lot of information thrown at you very quickly. Meant to introduce notation and be an overview of things to come.
- We will slow down and investigate specific models in more detail.
- Be careful distinguishing *s* from *N*! In the saturated model, *s* is the number of distinct *categories* that data fall into. However, SAS takes the *df* for deviance to be the number of records *N* regardless. Data should be grouped in as few groups as possible when checking for dispersion. See 4.5.3, pp. 137-138.

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

4.7.4 Teratology example

- Female rats given one of four treatments: placebo, weekly iron supplement, days 7 & 10, days 0 & 7. See p. 152 for the data. The number dead y_{ij} out of litter size n_{ij} was recorded where i = 1, 2, 3, 4 is the treatment group, and j = 1, ..., m_i is the number of litters in group i (31, 12, 5, 10).
- Let π_i denote the probability of death in group *i*. The model is simply $Y_{ij} \sim bin(n_{ij}, \pi_i)$.
- The sum of two independent binomials with the same probability is also binomial. So according to the *model*, there really is only four observations:

- The idea behind this example is that there is litter-to-litter variability and so the data are really a mixture of binomial distributions and overdispersion might be present.
- If we do not group the data, then

$$X^2 = \sum_{i=1}^{4} \sum_{j=1}^{m_i} \frac{(y_{ij} - n_{ij}\hat{\pi}_i)^2}{n_{ij}\hat{\pi}_i(1 - \hat{\pi}_i)}.$$

This has an approximate χ^2_{58-4} distribution when we think of litter sizes $n_{ij} \to \infty$. Then $\hat{\phi} = 2.86$ and there's evidence of overdispersion.

• According to the model, the groupings are *arbitrary*; we cannot tell the difference between litters. If we group the data then

$$X^{2} = \sum_{i=1}^{4} \frac{(y_{i+} - n_{i+}\hat{\pi}_{i})^{2}}{n_{i+}\hat{\pi}_{i}(1 - \hat{\pi}_{i})} = 0.$$

- The problem is that the latter model being fit *is the saturated model*. There is no way to check for overdispersion using the grouped data.
- However, according to the model, the groupings according to data recorded in terms on litters are arbitrary. We know this isn't the case, but *the model* cannot tell the difference between litters, only treatments.
- We are using information on litters to assess overdispersion, but not explicitly including this information in a real probability model, but rather through ϕ . (Better than ignoring the possibility entirely!)
- A possibly better approach is to include a separate term for each litter!

$$Y_{ij} \sim \mathsf{bin}(n_{ij}, \mu_{ij}), \ \mathsf{logit}(\mu_{ij}) = \pi_i + \gamma_{ij},$$

where $\gamma_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$. This random effects model explicitly includes litter-to-litter heterogeneity in the model. The γ_{ij} serve as a proxy to unmeasured, latent genetic differences among litters.

Comments:

- Which approach is better, estimating φ and inflating the se's for π̂_i or the random effects model?
- What assumptions under the random effects model might be violated? What strengths does it have?
- What assumptions using ν(π_i) = φn_iπ_i(1 π_i) might be violated? How does this affect the model? Can you see a potentially bigger problem here in using an estimate φ̂?
- How would I analyze these data? With a random effects model, then examine $\hat{\gamma}_{ij}$ to check the normality assumption.