Chapter 4: Generalized Linear Models-II

Dipankar Bandyopadhyay

Department of Biostatistics,
Virginia Commonwealth University

BIOS 625: Categorical Data \& GLM

[Acknowledgements to Tim Hanson and Haitao Chu]

4.3.3 Overdispersion for Poisson GLMs

- If data are truly Poisson, then we should have roughly
$E\left(Y_{i}\right)=\operatorname{var}\left(Y_{i}\right)=\mu_{i}$. Data can be grouped into like categories and this can be informally checked.
- For the horseshoe crab data we have the following (Table 4.4):

Width (cm)	Sample mean	Sample variance
<23.25	1.0	2.8
$23.25-24.25$	1.4	8.9
$24.25-25.25$	2.4	6.5
$25.25-26.25$	2.7	11.4
$26.25-27.25$	2.9	6.7
$27.25-28.25$	3.9	8.9
$28.25-29.25$	3.9	16.9
>29.25	5.1	8.3

- The sample variance tends to be 2-3 times as much as the mean. This is an example of overdispersion. There is greater variability in the data than we expect under our sampling model.
- Fixes:
- Find another sampling model!
- Include other important, explanatory covariates.
- Random effects as a proxy to unknown, latent covariates.
- Quasi-likelihood approach.
- We'll explore a common approach to the first fix above...

Review: PhD 2011 Exam Question on Linear Models, Q1

We say $Y \sim N B(\alpha, \beta)$, if $Y \mid \lambda \sim \operatorname{Poisson}(\lambda)$ and $\lambda \sim \operatorname{Gamma}(\alpha, \beta)$ with density $f(\lambda)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} \lambda^{\alpha-1} e^{-\lambda / \beta}, \alpha, \beta>0$.
Proof: The probability mass function for the Negative Binomial is

$$
\begin{aligned}
h(y) & =\int_{0}^{\infty} g(y \mid \lambda) f(\lambda) d \lambda \\
& =\int_{0}^{\infty} \frac{e^{-\lambda} \lambda^{y}}{y!} \frac{\lambda^{\alpha-1} e^{-\lambda / \beta}}{\Gamma(\alpha) \beta^{\alpha}} d \lambda \\
& =\frac{1}{\Gamma(y+1) \Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} \lambda^{y+\alpha-1} \exp \left[-\lambda\left(\frac{\beta}{\beta+1}\right)^{-1}\right] d \lambda
\end{aligned}
$$

The integrand is the kernel of a Gamma density with shape parameter $\alpha+y$ and scale parameter $\beta /(\beta+1)$.

To get a Gamma density and make the integral equal 1 , we divide the integrand by $\Gamma(\alpha+y) \times[\beta /(\beta+1)]^{\alpha+y}$ and of course to keep $h(y)$ from changing, we must multiply the factor outside the integral by that quantity. So

$$
\begin{aligned}
h(y) & =\frac{\Gamma(\alpha+y)[\beta /(\beta+1)]^{\alpha+y}}{\Gamma(y+1) \Gamma(\alpha) \beta^{\alpha}} \\
& =\frac{\Gamma(\alpha+y)}{\Gamma(y+1) \Gamma(\alpha)}\left(\frac{1}{1+\beta}\right)^{\alpha}\left(\frac{\beta}{1+\beta}\right)^{y}
\end{aligned}
$$

Recall that the Gamma distribution for λ has mean $\alpha \beta$ and variance $\alpha \beta^{2}$.
$E(y)=E[E(y \mid \lambda)]=E[\lambda]=\alpha \beta=\mu$ and
$\operatorname{Var}(Y)=E[\operatorname{Var}(Y \mid \lambda)]+\operatorname{Var}[E(Y \mid \lambda)]=E[\lambda]+\operatorname{Var}[\lambda]=\alpha \beta+\alpha \beta^{2}=$ $\mu+\mu \beta=\mu(1+\beta)$

4.3.4 Negative binomial regression

Let $k=\alpha$ and $\mu=\alpha \beta$, then $Y \sim \operatorname{negbin}(k, \mu)$ with

$$
p(y)=\frac{\Gamma(y+k)}{\Gamma(k) \Gamma(y+1)}\left(\frac{k}{\mu+k}\right)^{k}\left(1-\frac{k}{\mu+k}\right)^{y} \text { for } y=0,1,2,3, \ldots
$$

Then $E(Y)=\mu$ and $\operatorname{var}(Y)=\mu+\mu^{2} / k$.

- A sampling model that includes another parameter allows some separation between the mean and variance.
- The negative binomial distribution is a discrete probability distribution of the number of successes in a sequence of Bernoulli trials before a specified (non-random) number k of failures occurs.
- The index k^{-1} is called a dispersion parameter. As $k \rightarrow \infty$ the Poisson distribution is obtained.
- Here, the variance increases with the mean; is that appropriate for the crab data? Book looks at crab data on p. 127.
- Another modeling approach: adding a random effect for each crab, coming up toward the end of the semester.

4.4 Mean \& Variance for GLMs

- A two parameter exponential family includes a dispersion parameter ϕ :

$$
f\left(y_{i} \mid \theta_{i}, \phi\right)=\exp \left\{\left[y_{i} \theta_{i}-b\left(\theta_{i}\right)\right] / a(\phi)+c\left(y_{i}, \phi\right)\right\} .
$$

- When ϕ is known, it simplifies to $f\left(y_{i} \mid \theta_{i}\right)=a\left(\theta_{i}\right) b\left(y_{i}\right) \exp \left[y_{i} Q\left(\theta_{i}\right)\right]$, the nature one parameter exponential family.
- This includes binomial, negative binomial, Poisson, normal, and many others.
- Let $L_{i}=\log f\left(y_{i} ; \theta_{i}, \phi\right)$. This is the contribution of the $i^{\text {th }}$ observation to the likelihood in terms of θ_{i} and ϕ.
- Then $L(\boldsymbol{\theta}, \phi)=\sum_{i=1}^{N} \log f\left(y_{i} ; \theta_{i}, \phi\right)=\sum_{i=1}^{N} L_{i}$, where $L_{i}=\left[y_{i} \theta_{i}-b\left(\theta_{i}\right)\right] / a(\phi)+c\left(y_{i}, \phi\right)$.
- Then some work gives us

$$
\mu_{i}=E\left(Y_{i}\right)=b^{\prime}\left(\theta_{i}\right) \text { and } \operatorname{var}\left(Y_{i}\right)=b^{\prime \prime}\left(\theta_{i}\right) a(\phi)
$$

- The model imposes $\mu_{i}=b^{\prime}\left(\theta_{i}\right)=g^{-1}\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)$. The N-dimensional $\boldsymbol{\mu}$, or equivalently $\boldsymbol{\theta}$, is reduced to the p-dimensional $\boldsymbol{\beta}$ (and ϕ in a 2-parameter family). Then

$$
L(\boldsymbol{\beta}, \phi)=\sum_{i=1}^{N}\left[\frac{y_{i}\left(b^{\prime}\right)^{-1}\left(g^{-1}\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)-b\left(\left(b^{\prime}\right)^{-1}\left(g^{-1}\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)\right)}{a(\phi)}+c\left(y_{i}, \phi\right)\right]
$$

$$
\text { as } \theta_{i}=\left(b^{\prime}\right)^{-1}\left(g^{-1}\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) .
$$

- The MLEs $\hat{\boldsymbol{\beta}}$ and $\hat{\phi}$ are found by taking first derivatives of this, setting equal to zero, and solving (pp. 132-136). Things simplify when using the canonical link.
- The asymptotic covariance matrix for $\hat{\boldsymbol{\beta}}$ is the inverse of the fisher information matrix, $\operatorname{cov}(\hat{\boldsymbol{\beta}})$. This is a function of the unknown $\boldsymbol{\beta}$ and ϕ, and in practice we just plug in the MLE values $\hat{\boldsymbol{\beta}}$ and $\hat{\phi}$ yielding $\widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})$.
- Section 4.4.3 shows how Poisson and binomial GLMs fit into the general exponential family form and specifies corresponding $b\left(\theta_{i}\right)$, $a(\phi)$, and $c\left(y_{i}, \phi\right)$.
- Section 4.4.9 carries out computations leading to $\widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})$ in the Poisson regression model with a log link.

4.5.1 Deviance and GOF

- For now assume we're able to get $\hat{\beta}$. Anyway, we are able to, in SAS or R!
- Recall that the saturated model estimates the $N \mu_{i} s$ with the $N y_{i} \mathrm{~s}$, providing perfect fit. This model does not reduce data, provide a means for prediction for arbitrary covariate values \mathbf{x}, allow for meaningful hypotheses to be tested, etc.
- However, we can use the saturated model to check the fit of a "real" GLM.
- If, essentially, the number of distinct covariate vectors remains fixed but N increases then $\left.G^{2}=-2 \log \mathcal{L}\left(\boldsymbol{\mu}(\hat{\boldsymbol{\beta}}), \hat{\phi}_{r} ; \mathbf{y}\right)-\log \mathcal{L}\left(\mathbf{y}, \hat{\phi}_{f} ; \mathbf{y}\right)\right]$ is the LRT statistic for testing $H_{0}: g\left(\mu_{i}\right)=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$ relative to the alternative that the means $\boldsymbol{\mu}$ are unstructured.
- In Poisson and binomial regression models $a(\phi)=1$, i.e. there is no dispersion parameter, and this LRT statistic is equal to the model deviance as described last time for grouped data.
- When there is a dispersion parameter ϕ (e.g. normal, negative binomial, or gamma regression models), -2 times the difference in saturated and reduced models log-likelihood is D / ϕ in most models, called the scaled deviance; see top, p. 137.
- The scaled deviance has an approximate chi-squared distribution when the reduced model holds.

4.5.4 LR model comparison

- In Poisson and binomial regression, $D_{r}=-2\left[L_{r}-L_{s}\right]$ where D is deviance, L_{r} is log-likelihood evaluated at $\hat{\boldsymbol{\beta}}$ for the GLM, and L_{s} is log-likelihood evaluated at $\hat{\mu}_{i}=y_{i}$ under the saturated model.
- Say we add a few more predictors to the model so the dimension of $\boldsymbol{\beta}$ goes from p to $p+q$. Compute the deviance from the smaller model $\left(D_{r}\right)$ and the larger model $\left(D_{f}\right)$. Then $D_{r}-D_{f}$ is the likelihood ratio test statistic for testing H_{0} : smaller model holds, and is asymptotically χ_{q}^{2} when H_{0} is true. The larger this difference, the more evidence there is that the new predictors significantly improve model fit (and hence significantly reduce model deviance).
- Often data are not grouped; in this case it's safer to use $L(\boldsymbol{\beta} ; \mathbf{y})$ directly from the output!

4.5.6 Residuals for GLMs

- Residuals indicate where model fit is inadequate.
- The deviance residual d_{i} is defined in such a way that $\sum_{i=1}^{N} d_{i}^{2}=D$, see p. 141.
- The Pearson residual is given by $e_{i}=\frac{y_{i}-\hat{\mu}_{i}}{\sqrt{\operatorname{\operatorname {Var}(Y_{i})}} \text {. These have variance }}$ <1.
- The standardized Pearson residuals r_{i} properly standardize the residual to have variance one and in large samples are $N(0,1)$ if the model holds. This means reasonably large n_{i} for binomial data and reasonably large counts for Poisson data. So residuals $\left|r_{i}\right|>3$ show rather extreme lack of fit for (\mathbf{x}_{i}, Y_{i}) according to the model.
- Residuals can be plotted versus predictors or against the linear predictor $\hat{\eta}_{i}=\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}$ to assess systematic departures from model assumptions.
- Note: $X^{2}=\sum_{i=1}^{N} e_{i}^{2} \dot{\sim} \chi_{s-p}^{2}$ when $H_{0}: g\left(\mu_{i}\right)=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$ is true.

Newton-Raphson Method in One Dimension

Say we want to find where $f(x)=0$ for differentiable $f(x)$. Let x_{0} be such that $f\left(x_{0}\right)=0$. Taylor's theorem tells us

$$
f\left(x_{0}\right) \approx f(x)+f^{\prime}(x)\left(x_{0}-x\right)
$$

Plugging in $f\left(x_{0}\right)=0$ and solving for x_{0} we get $\hat{x}_{0}=x-\frac{f(x)}{f^{\prime}(x)}$. Starting at an x near x_{0}, \hat{x}_{0} should be closer to x_{0} than x was. Let's iterate this idea t times:

$$
x^{(t+1)}=x^{(t)}-\frac{f\left(x^{(t)}\right)}{f^{\prime}\left(x^{(t)}\right)}
$$

Eventually, if things go right, $x^{(t)}$ should be close to x_{0}.

If $\mathbf{f}(\mathbf{x}): \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$, the idea works the same, but in vector/matrix terms. Start with an initial guess $\mathbf{x}^{(0)}$ and iterate

$$
\mathbf{x}^{(t+1)}=\mathbf{x}^{(t)}-\left[D \mathbf{f}\left(\mathbf{x}^{(t)}\right)\right]^{-1} \mathbf{f}\left(\mathbf{x}^{(t)}\right)
$$

If things are "done right," then this should converge to \mathbf{x}_{0} such that $\mathbf{f}\left(\mathbf{x}_{0}\right)=\mathbf{0}$.
We are interested in solving $D L(\boldsymbol{\beta})=\mathbf{0}$ (the score, or likelihood equations!) where

$$
D L(\boldsymbol{\beta})=\left[\begin{array}{c}
\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{1}} \\
\vdots \\
\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{p}}
\end{array}\right] \text { and } D^{2} L(\boldsymbol{\beta})=\left[\begin{array}{ccc}
\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{1}^{2}} & \cdots & \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{1} \partial \beta_{p}} \\
\vdots & \ddots & \vdots \\
\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{p} \partial \beta_{1}} & \cdots & \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{p}^{2}}
\end{array}\right]
$$

So for us, we start with $\boldsymbol{\beta}^{(0)}$ (maybe through a MOM or least squares estimate) and iterate

$$
\boldsymbol{\beta}^{(t+1)}=\boldsymbol{\beta}^{(t)}-\left[D^{2} L\left(\boldsymbol{\beta}^{(t)}\right)\right]^{-1} D L\left(\boldsymbol{\beta}^{(t)}\right)
$$

This is (4.45) on p. 143 disguised.
The process is typically stopped when $\left|\boldsymbol{\beta}^{(t+1)}-\boldsymbol{\beta}^{(t)}\right|<\epsilon$.

- Newton-Raphson uses $D^{2} L(\boldsymbol{\beta})$ as is, with the \mathbf{y} plugged in.
- Fisher scoring instead uses $E\left\{D^{2} L(\boldsymbol{\beta})\right\}$, with expectation taken over \mathbf{Y}, which is not a function of the observed \mathbf{y}, but harder to get.
- The latter approach is harder to implement, but conveniently yields $\widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}}) \approx\left[-E\left\{D^{2} L(\boldsymbol{\beta})\right\}\right]^{-1}$ evaluated at $\hat{\boldsymbol{\beta}}$ when the process is done.
- The MLE $\boldsymbol{\beta}$ satisfies:

$$
u_{j}(\boldsymbol{\beta})=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right) x_{i j}}{v\left(\mu_{i}\right)}\left(\frac{\partial g^{-1}\left(\eta_{i}\right)}{\partial \eta_{i}}\right)=0, \quad j=1, \ldots, p
$$

where $\eta_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$ and $v\left(\mu_{i}\right)=\operatorname{var}\left(Y_{i}\right)$, a function of μ_{i}.

- These are the partial derivatives of the log-likelihood function set to zero, also called the score equations.
- In exponential families, a given $\mu_{i}=E\left(Y_{i}\right)$ and $v\left(\mu_{i}\right)=\operatorname{var}\left(Y_{i}\right)$ uniquely determines the distribution. For example, if we say $E\left(Y_{i}\right)=\mu_{i}$ and $\operatorname{var}\left(Y_{i}\right)=v\left(\mu_{i}\right)=\mu_{i}$, and that Y_{i} is a distribution in the exponential family, then Y_{i} has to be Poisson.
- For Poisson data, we know $v\left(\mu_{i}\right)=\mu_{i}$; for Binomial data $\left(E\left(Y_{i}\right)=\mu_{i}=n_{i} \pi_{i}\right)$, we have $v\left(\pi_{i}\right)=n_{i} \pi_{i}\left(1-\pi_{i}\right)$.
- If we add a dispersion parameter ϕ and declare that $v\left(\mu_{i}\right)=\phi \mu_{i}$ (Poisson) or $v\left(\pi_{i}\right)=\phi n_{i} \pi_{i}\left(1-\pi_{i}\right)$ (binomial), the resulting family may not be exponential, or not even unique, but the score equations on the previous slide remain the same.
- So $\hat{\boldsymbol{\beta}}$ does not change.
- What does change is the estimate $\widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})$. This estimate is the same as from the original model (where $v\left(\mu_{i}\right)=\mu_{i}$ or $v\left(\pi_{i}\right)=n_{i} \pi_{i}\left(1-\pi_{i}\right)$ for Poisson or Binomial respectively) except multiplied by ϕ. Therefore regression effect standard errors are simply multiplied by $\sqrt{\hat{\phi}}$ where $\hat{\phi}$ is an estimate of ϕ.
- Let $X^{2}=\sum_{i=1}^{N}\left(y_{i}-\hat{\mu}_{i}\right)^{2} / \hat{\mu}_{i}$ for Poisson and $X^{2}=\sum_{i=1}^{N}\left(y_{i}-n_{i} \hat{\pi}_{i}\right)^{2} /\left[n_{i} \hat{\pi}_{i}\left(1-\hat{\pi}_{i}\right)\right]$ for binomial, the Pearson statistic for assessing (original) model fit.
- ϕ is not in the score equations, however, $X^{2} / \phi \dot{\sim} \chi_{s-p}^{2}$ (when the dispersion model is true) where s is the number of unique covariate vectors in $\left\{\mathbf{x}_{i}\right\}$. Since $E\left(\chi_{d f}^{2}\right)=d f$, a MOM estimate of ϕ is $\hat{\phi}=X^{2} /(s-p)$. When data are grouped, $s=N$.
- The adjusted estimate is $\widehat{\operatorname{cov}}_{a}(\hat{\boldsymbol{\beta}})=\hat{\phi} \widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})$. When $\hat{\phi}>1$, which happens with overdispersed data, standard errors get properly inflated.
- This is an easy, ad hoc fix to overdispersion, but commonly done and useful.
- SAS does everything automatically when you specify SCALE=PEARSON in the MODEL statement of GENMOD. Also: SCALE=DEVIANCE works similarly.

To recall, SAS code for crab data without dispersion parameter:

 proc genmod; model satell $=$ width $/$ dist=poisson link=identity;
Output:

SAS code for crab data with dispersion parameter:

proc genmod; model satell $=$ width $/$ dist=poisson link=identity scale=pearson;

Output:

Criteria For	GENMOD Pr Assessing	ocedure Goodness Of Fit	
Criterion	DF	Value	Value /DF
Deviance	171	557.7083	3.2615
Scaled Deviance	171	175.7985	1.0281
Pearson Chi-Square	171	542.4854	3.1724
Scaled Pearson X2	171	171.0000	1.0000
Log Likelihood		23.1783	
Full Log Likelihood		-143.8970	
AIC (smaller is better)		291.7939	
AICC (smaller is better)		291.8645	
BIC (smaller is better)		298.1005	

Parameter	DF	Analysis Of Maximum		Likelihood Parameter		Estimates	
		Estimate	Standard Error	Wald 95	Confidence mits	Wald Chi-Square	$\mathrm{Pr}>\mathrm{ChiSq}$
Intercept	1	-11.5321	2.690221	-16.8048	-6.25932	18.38	<. 0001
width	1	. 5494968	. 1056079	3425092	. 7564845	27.07	<. 0001
Scale	0	1.781132	. 0000000	1.781132	1.781132		
OTE: The		eter	timated by	he sq	root of	on 's	d

Note that $\hat{\boldsymbol{\beta}}$ is the same with or without the dispersion parameter. What changes are $\operatorname{se}\left(\hat{\beta}_{j}\right)$.

- This approach to handling overdispersion works well when the mean structure is well modeled. Otherwise, what does $\hat{\phi}$ really estimate?
- This was a lot of information thrown at you very quickly. Meant to introduce notation and be an overview of things to come.
- We will slow down and investigate specific models in more detail.
- Be careful distinguishing s from N ! In the saturated model, s is the number of distinct categories that data fall into. However, SAS takes the $d f$ for deviance to be the number of records N regardless. Data should be grouped in as few groups as possible when checking for dispersion. See 4.5.3, pp. 137-138.

4.7.4 Teratology example

- Female rats given one of four treatments: placebo, weekly iron supplement, days $7 \& 10$, days $0 \& 7$. See $p .152$ for the data. The number dead $y_{i j}$ out of litter size $n_{i j}$ was recorded where $i=1,2,3,4$ is the treatment group, and $j=1, \ldots, m_{i}$ is the number of litters in group $i(31,12,5,10)$.
- Let π_{i} denote the probability of death in group i. The model is simply $Y_{i j} \sim \operatorname{bin}\left(n_{i j}, \pi_{i}\right)$.
- The sum of two independent binomials with the same probability is also binomial. So according to the model, there really is only four observations:

i	y_{i+}	n_{i+}
1	248	327
2	12	118
3	2	58
4	5	104

- The idea behind this example is that there is litter-to-litter variability and so the data are really a mixture of binomial distributions and overdispersion might be present.
- If we do not group the data, then

$$
X^{2}=\sum_{i=1}^{4} \sum_{j=1}^{m_{i}} \frac{\left(y_{i j}-n_{i j} \hat{\pi}_{i}\right)^{2}}{n_{i j} \hat{\pi}_{i}\left(1-\hat{\pi}_{i}\right)}
$$

This has an approximate χ_{58-4}^{2} distribution when we think of litter sizes $n_{i j} \rightarrow \infty$. Then $\hat{\phi}=2.86$ and there's evidence of overdispersion.

- According to the model, the groupings are arbitrary; we cannot tell the difference between litters. If we group the data then

$$
X^{2}=\sum_{i=1}^{4} \frac{\left(y_{i+}-n_{i+} \hat{\pi}_{i}\right)^{2}}{n_{i+} \hat{\pi}_{i}\left(1-\hat{\pi}_{i}\right)}=0
$$

- The problem is that the latter model being fit is the saturated model. There is no way to check for overdispersion using the grouped data.
- However, according to the model, the groupings according to data recorded in terms on litters are arbitrary. We know this isn't the case, but the model cannot tell the difference between litters, only treatments.
- We are using information on litters to assess overdispersion, but not explicitly including this information in a real probability model, but rather through ϕ. (Better than ignoring the possibility entirely!)
- A possibly better approach is to include a separate term for each litter!

$$
Y_{i j} \sim \operatorname{bin}\left(n_{i j}, \mu_{i j}\right), \operatorname{logit}\left(\mu_{i j}\right)=\pi_{i}+\gamma_{i j}
$$

where $\gamma_{i j} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$. This random effects model explicitly includes litter-to-litter heterogeneity in the model. The $\gamma_{i j}$ serve as a proxy to unmeasured, latent genetic differences among litters.

Comments:

- Which approach is better, estimating ϕ and inflating the se's for $\hat{\pi}_{i}$ or the random effects model?
- What assumptions under the random effects model might be violated? What strengths does it have?
- What assumptions using $v\left(\pi_{i}\right)=\phi n_{i} \pi_{i}\left(1-\pi_{i}\right)$ might be violated? How does this affect the model? Can you see a potentially bigger problem here in using an estimate $\hat{\phi}$?
- How would I analyze these data? With a random effects model, then examine $\hat{\gamma}_{i j}$ to check the normality assumption.

