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Chapter 4 4.1 Generalized Linear Models

The Blind Men and The Elephant
A group of blind men gathered around an elephant, trying to find out what
elephant look like.

The 1st one touched the tusk, and said: ‘It is just like a spear.’

The 2nd one touched the ear, and said: ‘It is just like a big fan.’

The 3rd one touched the knee, and said: ‘It is just like a tree.’

The 4th one touched the body, and said: ‘It is just like a wall.’

The 5th one touched the trunk, and said: ‘It is just like a snake.’

The last one touched the tail, and said: ‘It is just like a rope.’
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Chapter 4 4.1 Generalized Linear Models

Generalized linear models (GLMs) form a very large class that include
many highly used models as special cases: ANOVA, ANCOVA,
regression, logistic regression, Poisson regression, log-linear models,
etc.

By developing the GLM in the abstract, we can consider many
components that are similar across models (fitting techniques,
deviance, residuals, etc).

Each GLM is completely specified by three components:

(a) the distribution of the outcome Yi ,
(b) the linear predictor ηi , and
(c) the link function g(·).

D. Bandyopadhyay (VCU) 3 / 37



Chapter 4 4.1 Generalized Linear Models

4.1.1 Model components

1 Random component is response Y with independent realizations
Y = (Y1, . . . ,YN) from a distribution in a (one parameter)
exponential family:

f (yi |θi ) = a(θi )b(yi ) exp[yiQ(θi )].

I Members include chi-square, binomial, Poisson, and geometric
distributions.

I Q(θi ) is called the natural parameter.
I θi may depend on explanatory variables xi = (xi1, . . . , xip).

Two parameter exponential families include gamma, Weibull, normal,
beta, and negative binomial distributions.
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Chapter 4 4.1 Generalized Linear Models

2 The systematic components are η = (η1, . . . , ηN) where
ηi =

∑p
j=1 βjxij = β′xi .

I Called the linear predictor.
I Relates xi to θi via link function.
I Most models have an intercept and so often xi1 = 1 and

there are p − 1 actual predictors.

3 The link function g(·) connects the random Yi and systemic ηi
components. Let µi = E (Yi ). Then ηi = x′iβ = g(µi ).

I g(·) is monotone and smooth.
I g(m) = m is “identity link.”
I The g(·) such that g(µi ) = Q(θi ) is called the canonical link.
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Chapter 4 4.1 Generalized Linear Models

The model is

E (Yi ) = g−1(xi1β1 + xi2β2 + · · ·+ xipβp),

for i = 1, . . . ,N, where Yi is distributed according to a 1-parameter
exponential family (for now).
g−1(·) is called the inverse link function. Common choices are

1 g(x) = x so g−1(x) = x (identity link)

2 g(x) = log x so g−1(x) = ex (log-link)

3 g(x) = log{x/(1− x)} so g−1(x) = ex/(1 + ex) (logit link)

4 g(x) = F−1(x) so g−1(x) = F (x) where F (·) is a CDF (inverse-CDF
link)
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Chapter 4 4.1 Generalized Linear Models

4.1.2 Bernoulli response

Let Y ∼ Bern(π) = bin(1, π). Then

p(y) = πy (1− π)1−y = (1− π) exp{y log(π/(1− π))}.

So a(π) = 1− π, b(y) = 1, Q(π) = log
(

π
1−π

)
.

So g(π) = log
(

π
1−π

)
is the canonical link.

g(π) is the log-odds of Yi = 1, also called the logit of π:

logit(π) = log
(

π
1−π

)
.

Using the canonical link we have the GLM relating Yi to
xi = (1, xi1, . . . , xi ,p−1):

Yi ∼ Bern(πi ), log

(
πi

1− πi

)
= β0 + xi1β1 + · · ·+ xi ,p−1βp−1 = x′iβ,

the logistic regression model.
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Chapter 4 4.1 Generalized Linear Models

4.1.3 Poisson response

Let Yi ∼ Pois(µi ). Then

p(y) = e−µµy/y ! = e−µ(1/y !)ey log µ.

So a(µ) = e−µ, b(y) = 1/y !, Q(µ) = logµ.

So g(µ) = logµ is the canonical link.

Using the canonical link we have the GLM relating Yi to xi :

Yi ∼ Pois(µi ), logµi = β0 + xi1β1 + · · ·+ xi ,p−1βp−1,

the Poisson regression model.
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Chapter 4 4.1 Generalized Linear Models

4.1.5 Deviance

For a GLM, let µi = E (Yi ) for i = 1, . . . ,N. The GLM places
structure on the means µ = (µ1, . . . , µN); instead of N parameters in
µ we really only have p: β1, . . . , βp determines µ and data reduction
is obtained. So really, µ = µ(β) in a GLM through µi = g−1(xiβ).

Here’s the log likelihood in terms of (µ1, . . . , µN):

L(µ; y) =
N∑
i=1

log p(yi ;µi ).

If we forget about the model (with parameter β) and just “fit”
µ̂i = yi , the observed data, we obtain the largest the likelihood can be
when the µ have no structure at all; we get L(µ̂; y) = L(y; y). This is
the largest the log-likelihood can be, when µ is unstructured and
estimated by plugging in y.
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This terrible “model,” called the saturated model, is not useful for
succinctly explaining data or prediction, but rather serves as a
reference point for real models with µi = g−1(β′xi ).

We can compare the fit of a real GLM to the saturated model, or to
other GLMs with additional or fewer predictors, through the drop in
deviance.

Let L(µ(β̂); y) be the log likelihood evaluated at the MLE of β. The
deviance of the model is D = −2[L(µ(β̂); y)− L(y; y)].

Here we are plugging in µ̂i = g−1(β̂
′
xi ) for the first part and µ̂i = yi

for the second.
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Chapter 4 4.1 Generalized Linear Models

Using D for goodness-of-fit

If the sample size N if fixed, but the data are recorded in such a way
that each yi gets more observations (this can happen with Poisson

and binomial data), then D
•∼ χ2

N−p tests H0 : µi = g−1(β′xi ) versus
H1 : µi arbitrary. GOF statistic.

For example, let Yi is the number of diabetics yi out of ni at three
different BMI levels. A more realistic scenario is that as more data are
collected, N increases. In this case, a rule-of-thumb is to look at
D/(N − p); D/(N − p) > 2 indicates some lack-of-fit.

Then, we can try modeling the mean more flexibly. If this does not
help, then including random effects or the use of quasi-likelihood (a
variance fix) can help.

Alternatively, one can resort to a different sampling model, i.e.,
negative binomial instead of Poisson.
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Chapter 4 4.2 GLMS for Binary Response Data

4.2 Binary response regression

Let Yi ∼ Bern(πi ). Yi might indicate the presence/absence of a
disease, whether someone has obtained their drivers license or not,
etc.

Through a GLM we wish to relate the probability of “success” to
explanatory covariates xi = (xi1, . . . , xip) through
πi = π(xi ) = g−1(x′iβ).

So then,
Yi ∼ Bern(π(xi )),

and E (Yi ) = π(xi ) and var(Yi ) = π(xi )[1− π(xi )].
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Chapter 4 4.2 GLMS for Binary Response Data

4.2.1 Simplest link, g(x) = x

When g(x) = x , the identity link, we have π(xi ) = β′xi . When xi = xi is
one-dimensional, this reduces to

Yi ∼ Bern(α + βxi ).

When xi large or small, π(xi ) can be less than zero or greater than
one.

Appropriate for a restricted range of xi values.

Can of course be extended to π(xi ) = β′xi where
xi = (1, xi1, . . . , xip).

Can be fit in SAS proc genmod.
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Example

Association between snoring (as measured by a snoring score) and heart
disease. Let s be someone’s snoring score, s ∈ {0, 2, 4, 5} (see text, p.
118).

Heart disease Proportion Linear Logit
Snoring s yes no yes fit fit
Never 0 24 1355 0.017 0.017 0.021
Occasionally 2 35 603 0.055 0.057 0.044
Nearly every night 4 21 192 0.099 0.096 0.093
Every night 5 30 224 0.118 0.116 0.132
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Chapter 4 4.2 GLMS for Binary Response Data

This is fit in proc genmod:

data glm;
input snoring disease total @@;
datalines ;
0 24 1379 2 35 638 4 21 213 5 30 254
;

proc genmod;
model disease/ total = snoring / dist =bin link=identity ;

run;
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Chapter 4 4.2 GLMS for Binary Response Data

The GENMOD P r o c e d u r e
Model I n f o r m a t i o n

Number o f O b s e r v a t i o n s Read 4
Number o f O b s e r v a t i o n s Used 4
Number o f Ev e nt s 110
Number o f T r i a l s 2484

Response P r o f i l e
Ordered B i n a r y T o t a l

Value Outcome Frequency
1 Event 110
2 Nonevent 2374

C r i t e r i a For A s s e s s i n g Goodness Of F i t
C r i t e r i o n DF Value Value /DF
Dev iance 2 0 .0692 0 .0346
S c a l e d Dev iance 2 0 .0692 0 .0346
Pearson Chi−Square 2 0 .0688 0 .0344
S c a l e d Pearson X2 2 0.0688 0 .0344
Log L i k e l i h o o d −417.4960
F u l l Log L i k e l i h o o d −10.1609
AIC ( s m a l l e r i s b e t t e r ) 24 .3217
AICC ( s m a l l e r i s b e t t e r ) 36 .3217
BIC ( s m a l l e r i s b e t t e r ) 23 .0943

A l g o r i t h m c o n v e r g e d .

A n a l y s i s Of Maximum L i k e l i h o o d Parameter E s t i m a t e s
Standard Wald 95% C o n f i d e n c e Wald

Parameter DF E s t i m a t e E r r o r L i m i t s Chi−Square Pr > ChiSq
I n t e r c e p t 1 .0172466 .0034369 .0105104 .0239829 2 5 . 1 8 <.0001
s n o r i n g 1 .0197778 .0027978 .0142942 .0252615 4 9 . 9 7 <.0001
S c a l e 0 1 .000000 .0000000 1.000000 1.000000
NOTE: The s c a l e p a r a m e t e r was h e l d f i x e d .
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Interpretation?

The fitted model is

π̂(s) = 0.0172 + 0.0198s.

For every unit increase in snoring score s, the probability of heart
disease increases by about 2%.

The p-values test H0 : α = 0 and H0 : β = 0. The latter is more
interesting and we reject at the α = 0.001 level. The probability of
heart disease is strongly, linearly related to the snoring score.

What do you think that SCALE term is in the output? Note:
P(χ2

2 > 0.0692) ≈ 0.966.
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Chapter 4 4.2 GLMS for Binary Response Data

4.2.3 Logistic regression

Often a fixed change in x has less impact when π(x) is near zero or
one.
Example: Let π(x) be probability of getting an A in a statistics class
and x is the number of hours a week you work on homework. When
x = 0, increasing x by 1 will change your (very small) probability of
an A very little. When x = 4, adding an hour will change your
probability quite a bit. When x = 20, that additional hour probably
wont improve your chances of getting an A much. You were at
essentially π(x) ≈ 1 at x = 10. Of course, this is a mean model.
Individuals will vary.
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Chapter 4 4.2 GLMS for Binary Response Data

The most widely used nonlinear function to model probabilities is the
canonical, logit link:

logit(πi ) = α + βxi .

Solving for πi and then dropping the subscripts we get the probability
of success (Y = 1) as a function of x :

π(x) =
exp(α + βx)

1 + exp(α + βx)
.

When β > 0 the function increases from 0 to 1; when β < 0 it
decreases. When β = 0 the function is constant for all values of x
and Y is unrelated to x .

The logistic (or anti-logit) function is logit−1(x) = ex/(1 + ex).

To fit the snoring data to the logistic regression model we use the
same SAS code as before (proc genmod) except specify
LINK=LOGIT and obtain α̂ = −3.87 and β̂ = 0.40 as maximum
likelihood estimates.
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Chapter 4 4.2 GLMS for Binary Response Data

0.
2

0.
4

0.
6

0.
8

1.
0

−10 −5 0 5 10

(0, 1)
(0, 0.4)
(−2, 0.4)
(−3, −1)

Figure : Logistic curves π(x) = eα+βx/(1 + eα+βx) with (α, β) = (0, 1), (0, 0.4),
(−2, 0.4), (−3,−1). What about (α, β) = (log 2, 0)?
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Chapter 4 4.2 GLMS for Binary Response Data

C r i t e r i a For A s s e s s i n g Goodness Of F i t
C r i t e r i o n DF Value Value /DF
Dev iance 2 2 .8089 1 .4045
S c a l e d Dev iance 2 2 .8089 1 .4045
Pearson Chi−Square 2 2 .8743 1 .4372
S c a l e d Pearson X2 2 2.8743 1 .4372
Log L i k e l i h o o d −418.8658
F u l l Log L i k e l i h o o d −11.5307
AIC ( s m a l l e r i s b e t t e r ) 27 .0615
AICC ( s m a l l e r i s b e t t e r ) 39 .0615
BIC ( s m a l l e r i s b e t t e r ) 25 .8341

A l g o r i t h m c o n v e r g e d .

A n a l y s i s Of Maximum L i k e l i h o o d Parameter E s t i m a t e s
Standard Wald 95% C o n f i d e n c e Wald

Parameter DF E s t i m a t e E r r o r L i m i t s Chi−Square Pr > ChiSq
I n t e r c e p t 1 −3.86625 .1662144 −4.19202 −3.54047 541 .06 <.0001
s n o r i n g 1 .3973366 .0500107 .2993175 .4953557 6 3 . 1 2 <.0001
S c a l e 0 1 .000000 .0000000 1.000000 1.000000

NOTE: The s c a l e p a r a m e t e r was h e l d f i x e d .

You can also use proc logistic to fit binary regression models.

proc logistic ; model disease/ total = snoring; run;
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The LOGISTIC P r o c e d u r e
Model I n f o r m a t i o n

Data Set WORK.GLM
Response V a r i a b l e ( E v en t s ) d i s e a s e
Response V a r i a b l e ( T r i a l s ) t o t a l
Model b i n a r y l o g i t
O p t i m i z a t i o n Technique F i s h e r ’ s s c o r i n g

Number o f O b s e r v a t i o n s Read 4
Number o f O b s e r v a t i o n s Used 4
Sum o f F r e q u e n c i e s Read 2484
Sum o f F r e q u e n c i e s Used 2484

Response P r o f i l e
Ordered B i n a r y T o t a l

Value Outcome Frequency
1 Event 110
2 Nonevent 2374

Model Convergence S t a t u s
Convergence c r i t e r i o n (GCONV=1E−8) s a t i s f i e d .

Model F i t S t a t i s t i c s
I n t e r c e p t

I n t e r c e p t and
C r i t e r i o n Only C o v a r i a t e s
AIC 902.827 841.732
SC 908.645 853.367
−2 Log L 900.827 837.732

T e s t i n g G l o b a l N u l l H y p o t h e s i s : BETA=0
Test Chi−Square DF Pr > ChiSq
L i k e l i h o o d R a t i o 63 .0956 1 <.0001
Sc or e 72 .6881 1 <.0001
Wald 63 .1238 1 <.0001
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The LOGISTIC P r o c e d u r e

A n a l y s i s o f Maximum L i k e l i h o o d E s t i m a t e s

Standard Wald
Parameter DF E s t i m a t e E r r o r Chi−Square Pr > ChiSq

I n t e r c e p t 1 −3.8662 0 .1662 541.0562 <.0001
s n o r i n g 1 0 .3973 0 .0500 63.1238 <.0001

Odds R a t i o E s t i m a t e s
P o i n t 95% Wald

E f f e c t E s t i m a t e C o n f i d e n c e L i m i t s

s n o r i n g 1 . 4 8 8 1 . 3 4 9 1 . 6 4 1

A s s o c i a t i o n o f P r e d i c t e d P r o b a b i l i t i e s and Observed Responses
P e r c e n t Concordant 5 8 . 6 Somers ’ D 0 . 4 1 9
P e r c e n t D i s c o r d a n t 1 6 . 7 Gamma 0 . 5 5 6
P e r c e n t Tied 2 4 . 7 Tau−a 0 . 0 3 5
P a i r s 261140 c 0 . 7 0 9
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Chapter 4 4.2 GLMS for Binary Response Data

The fitted model is then

π̂(x) =
exp(−3.87 + 0.40x)

1 + exp(−3.87 + 0.40x)
.

As before, we reject H0 : β = 0; there is a strong, positive association
between snoring score and developing heart disease.

Which model provides better fit? (Fits at the 4 s values are in the
original data table with raw proportions.)
Note: P(χ2

2 > 2.8089) ≈ 0.246.
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4.2.4 What is β when x = 0 or 1?

Consider a general link g{π(x)} = α + βx .
Say x = 0, 1. Then we have a 2× 2 contingency table.

Y = 1 Y = 0
X = 1 π(1) 1− π(1)
X = 0 π(0) 1− π(0)

Identity link, π(x) = α + βx : β = π(1)− π(0), the difference in
proportions.

Log link, π(x) = eα+βx : eβ = π(1)/π(0) is the relative risk.

Logit link, π(x) = eα+βx/(1 + eα+βx):
eβ = [π(1)/(1− π(1))]/[π(0)/(1− π(0))] is the odds ratio.
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4.2.5 Inverse CDF links*

The logistic regression model can be rewritten as

π(x) = F (α + βx),

where F (x) = ex/(1 + ex) is the CDF of a standard logistic random
variable L with PDF

L ∼ f (x) = ex/(1 + ex)2.

In practice, any CDF F (·) can be used as g−1(·). Common choices
are g−1(x) = Φ(x) =

∫ x
−∞(2π)−0.5e−0.5z2

dz , yielding a probit

regression model (LINK=PROBIT) and g−1(x) = 1− exp(− exp(x))
(LINK=CLL), the complimentary log-log link.

Alternatively, F (·) may be left unspecified and estimated from data
using nonparametric methods. Bayesian approaches include using the
Dirichlet process and Polya trees. Q: How is β interpreted?
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Figure : Predicted probabilities from 5 regression models
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Comments:

There’s several links we can consider; we can also toss in quadratic
terms in xi , etc. How to choose? Diagnostics? Model fit statistics?

We haven’t discussed much of the output from PROC LOGISTIC;
what do you think those statistics are? Gamma? AIC?

For snoring data, D = 0.07 for identity versus D = 2.81 for logit
links. Which model fits better? The df = 4− 2 = 2 here. What is
the 4? What is the 2? The corresponding p-values are 0.97 and 0.25.

The log link yields D = 3.21 and p = 0.2, the probit link yields
D = 1.87 and p = 0.4, and CLL link yields D = 3.01 and p = 0.22.
Which link would you pick?

How would you interpret β? Are any links significantly inadequate?
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Comments (continued):

Identity, Logit and Log links give nice interpretations, i.e. regression
coefficients correspond to RD, log(OR) and log(RR);

Predicted probabilities and 95% CI from Logit, Probit and C-log-log
links are within the natural boundary of [0, 1].

When using Identity and Log Links, one may consider Bayesian
approaches to incorporate the natural boundary constraints,
particularly if maximum likelihood methods fails to converge or if the
predicted probabilities or confidence limits are outside the natural
boundary (See Chu and Cole 2010, Epidemiology, 21(6), 855-862)
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4.3.1 Poisson loglinear model

We have
Yi ∼ Pois(µi ).

The log link log(µi ) = x′iβ is most common, with one predictor x we
have

Yi ∼ Pois(µi ), µi = eα+βxi ,

or simply Yi ∼ Pois(eα+βxi ).

The mean satisfies
µ(x) = eα+βx .

Then
µ(x + 1) = eα+β(x+1) = eα+βxeβ = µ(x)eβ.

Increasing x by one increases the mean by a factor of eβ.

Note that the log maps the positive rate µ into the real numbers R,
where α + βx lives. This is also the case for the logit link for binary
regression, which maps π into the real numbers R.
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Example: Crab mating

Table 4.3 (p. 123) has data on 173 female horseshoe crabs.

C = color (1,2,3,4=light medium, medium, dark medium, dark).

S = spine condition (1,2,3=both good, one worn or broken, both
worn or broken).

W = carapace width (cm).

Wt = weight (kg).

Sa = number of satellites (additional male crabs besides her
nest-mate husband) nearby.

D. Bandyopadhyay (VCU) 31 / 37
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We initially examine width as a predictor for the number of satellites.
Figure 4.3 doesn’t tell us much. Aggregating over width categories in
Figure 4.4 helps & shows an approximately linear trend.
We’ll fit three models using proc genmod.

Sai ∼ Pois(eα+βWi ),

Sai ∼ Pois(α + βWi ),

and
Sai ∼ Pois(eα+β1Wi+β2W 2

i ).
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SAS code:

data crab; input color spine width satell weight;
weight=weight/1000; color=color−1;
width sq=width∗width;

datalines ;
3 3 28.3 8 3050
4 3 22.5 0 1550
... et cetera ...

5 3 27.0 0 2625
3 2 24.5 0 2000
;
proc genmod;

model satell = width / dist=poi link=log ;
proc genmod;

model satell = width / dist=poi link=identity ;
proc genmod;

model satell = width width sq / dist =poi link=log ;
run;
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Output from 3 models
The GENMOD P r o c e d u r e

Model I n f o r m a t i o n
Data Set WORK.CRAB
D i s t r i b u t i o n P o i s s o n
L i n k F u n c t i o n Log
Dependent V a r i a b l e s a t e l l

Number o f O b s e r v a t i o n s Read 173
Number o f O b s e r v a t i o n s Used 173

C r i t e r i a For A s s e s s i n g Goodness Of F i t
C r i t e r i o n DF Value Value /DF
Dev iance 171 567.8786 3 .3209
S c a l e d Dev iance 171 567.8786 3 .3209
Pearson Chi−Square 171 544.1570 3 .1822
S c a l e d Pearson X2 171 544.1570 3 .1822
Log L i k e l i h o o d 68.4463
F u l l Log L i k e l i h o o d −461.5881
AIC ( s m a l l e r i s b e t t e r ) 927.1762
AICC ( s m a l l e r i s b e t t e r ) 927.2468
BIC ( s m a l l e r i s b e t t e r ) 933.4828

A l g o r i t h m c o n v e r g e d .

A n a l y s i s Of Maximum L i k e l i h o o d Parameter E s t i m a t e s
Standard Wald 95% C o n f i d e n c e Wald

Parameter DF E s t i m a t e E r r o r L i m i t s Chi−Square Pr > ChiSq
I n t e r c e p t 1 −3.30476 .5422416 −4.36753 −2.24198 3 7 . 1 4 <.0001
width 1 .1640451 .0199653 .1249137 .2031764 6 7 . 5 1 <.0001
S c a l e 0 1 .000000 .0000000 1.000000 1.000000

NOTE: The s c a l e p a r a m e t e r was h e l d f i x e d .
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The GENMOD P r o c e d u r e
Model I n f o r m a t i o n

Data Set WORK.CRAB
D i s t r i b u t i o n P o i s s o n
L i n k F u n c t i o n I d e n t i t y
Dependent V a r i a b l e s a t e l l

Number o f O b s e r v a t i o n s Read 173
Number o f O b s e r v a t i o n s Used 173

C r i t e r i a For A s s e s s i n g Goodness Of F i t
C r i t e r i o n DF Value Value /DF
Dev iance 171 557.7083 3 .2615
S c a l e d Dev iance 171 557.7083 3 .2615
Pearson Chi−Square 171 542.4854 3 .1724
S c a l e d Pearson X2 171 542.4854 3 .1724
Log L i k e l i h o o d 73.5314
F u l l Log L i k e l i h o o d −456.5030
AIC ( s m a l l e r i s b e t t e r ) 917.0060
AICC ( s m a l l e r i s b e t t e r ) 917.0766
BIC ( s m a l l e r i s b e t t e r ) 923.3126

A l g o r i t h m c o n v e r g e d .
A n a l y s i s Of Maximum L i k e l i h o o d Parameter E s t i m a t e s

Standard Wald 95% C o n f i d e n c e Wald
Parameter DF E s t i m a t e E r r o r L i m i t s Chi−Square Pr > ChiSq
I n t e r c e p t 1 −11.5321 1.510400 −14.4924 −8.57173 5 8 . 2 9 <.0001
width 1 .5494968 .0592926 .4332855 .6657082 8 5 . 8 9 <.0001
S c a l e 0 1 .000000 .0000000 1.000000 1.000000

NOTE: The s c a l e p a r a m e t e r was h e l d f i x e d .
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The GENMOD P r o c e d u r e

Model I n f o r m a t i o n

Data Set WORK.CRAB
D i s t r i b u t i o n P o i s s o n
L i n k F u n c t i o n Log
Dependent V a r i a b l e s a t e l l

Number o f O b s e r v a t i o n s Read 173
Number o f O b s e r v a t i o n s Used 173

C r i t e r i a For A s s e s s i n g Goodness Of F i t
C r i t e r i o n DF Value Value /DF
Dev iance 170 558.2359 3 .2837
S c a l e d Dev iance 170 558.2359 3 .2837
Pearson Chi−Square 170 539.1413 3 .1714
S c a l e d Pearson X2 170 539.1413 3 .1714
Log L i k e l i h o o d 73.2676
F u l l Log L i k e l i h o o d −456.7668
AIC ( s m a l l e r i s b e t t e r ) 919.5336
AICC ( s m a l l e r i s b e t t e r ) 919.6756
BIC ( s m a l l e r i s b e t t e r ) 928.9935

A l g o r i t h m c o n v e r g e d .
A n a l y s i s Of Maximum L i k e l i h o o d Parameter E s t i m a t e s

Standard Wald 95% C o n f i d e n c e Wald
Parameter DF E s t i m a t e E r r o r L i m i t s Chi−Square Pr > ChiSq
I n t e r c e p t 1 −19.6525 5.637435 −30.7017 −8.60335 1 2 . 1 5 0 .0005
width 1 1.365990 .4134378 .5556670 2.176313 1 0 . 9 2 0 .0010
w i d t h s q 1 −.021958 .0075600 −.036776 −.007141 8 . 4 4 0 .0037
S c a l e 0 1 .000000 .0000000 1.000000 1.000000

NOTE: The s c a l e p a r a m e t e r was h e l d f i x e d .
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Write down the fitted equation for the Poisson mean from each
model.

How are the regression effects interpreted in each case?

How would you pick among models?

Are there any potential problems with any of the models? How about
prediction?
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