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3.4 I × J tables with ordinal outcomes

Tests that take advantage of ordinal data’s structure can increase power
and interpretability. We now assume both X and Y are ordinal.

3.4.1 Linear trend alternative to independence
If we are willing to replace the ordinal outcomes by numerical scores, we
can compute something akin to a correlation between X and Y . Let
u1 ≤ u2 ≤ · · · ≤ uI for X and v1 ≤ v2 ≤ · · · ≤ vJ for Y . Define

r =

∑I
i=1

∑J
j=1 nij(ui − ūi )(vi − v̄i )√∑I

i=1

∑J
j=1 nij(ui − ūi )2

∑I
i=1

∑J
j=1 nij(vi − v̄i )2

,

where ūi =
∑I

i=1 ni+ui/n++ and v̄j =
∑J

j=1 n+jvj/n++.
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r is the Pearson correlation

r is akin to a correlation between X and Y , and in fact is the sample
correlation when each (X ,Y ) pair is replaced by by its score (u, v).

r is going to estimate something lurking underneath, a population
parameter ρ. Testing H0 : ρ = 0 is a test for linear association between X
and Y .
Define the test statistic

M2 = (n++ − 1)r2.

M2 •∼ χ2
1 when H0 : ρ = 0.
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Happiness and political ideology

Data (p. 83) from 2008 General Social Survey for subjects over 65 years
old:

Happiness
Ideology Not too happy Pretty happy Very happy
Liberal 13 29 15

Moderate 23 59 47
Conservative 14 67 54
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SAS code

data table;

input Ideology$ Happiness$ count @@;

datalines;

Liberal NotTooHappy 13 Liberal PrettyHappy 29 Liberal VeryHappy 15

Moderate NotTooHappy 23 Moderate PrettyHappy 59 Moderate VeryHappy 47

Conservative NotTooHappy 14 Conservative PrettyHappy 67 Conservative VeryHappy 54

;

proc freq data=table order=data; weight count;

tables Ideology*Happiness / chisq expected measures plcorr norow nocol;

run;

Recall that chisq gives tests of H0 : X ⊥ Y . measures gives various
measures of association, including r and γ̂, as well as their (asymptotic)
standard errors. plcorr gives the estimated polychoric correlation ρ̂pc .
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SAS output
Table of Ideology by Happiness

Ideology Happiness

Frequency|

Expected |

Percent |NotTooHa|PrettyHa|VeryHapp| Total

---------+--------+--------+--------+

Liberal | 13 | 29 | 15 | 57

| 8.8785 | 27.523 | 20.598 |

| 4.05 | 9.03 | 4.67 | 17.76

---------+--------+--------+--------+

Moderate | 23 | 59 | 47 | 129

| 20.093 | 62.29 | 46.617 |

| 7.17 | 18.38 | 14.64 | 40.19

---------+--------+--------+--------+

Conserva | 14 | 67 | 54 | 135

| 21.028 | 65.187 | 48.785 |

| 4.36 | 20.87 | 16.82 | 42.06

---------+--------+--------+--------+

Total 50 155 116 321

15.58 48.29 36.14 100.00

Statistics for Table of Ideology by Happiness

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 4 7.0681 0.1323

Likelihood Ratio Chi-Square 4 7.2666 0.1225

We do not reject H0 : happiness is independent of ideology using X 2 or G 2.
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SAS output
Statistics for Table of Ideology by Happiness

Statistic Value ASE

------------------------------------------------------

Gamma 0.1849 0.0779

Pearson Correlation 0.1352 0.0544

Polychoric Correlation 0.1671 0.0690

Sample Size = 321

Recall that γ̂ estimates γ, the probability of concordance minus the
probability of discordance. When H0 : γ = 0 is true, the probability of
concordance is equal to the probability of discordance, i.e. no evidence of a
monotone association.

γ̂ = 0.185. 95% CI given by
γ̂ ± 1.96se(γ̂) = 0.185± 1.96(0.078) = (0.032, 0.338). We reject H0 : γ = 0
at the 5% level! How to get p-value?

r = 0.135 using default scores ui ∈ {1, 2, 3} and vi ∈ {1, 2, 3}. Note that we
reject H0 : ρP = 0 at the 5% level. Focusing on the linear aspect of the
scores helped refine our assessment of the relationship between ideology and
happiness. Note that you cannot get M2 directly in SAS, but rather r .
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SAS output

Statistics for Table of Ideology by Happiness

Statistic Value ASE

------------------------------------------------------

Gamma 0.1849 0.0779

Pearson Correlation 0.1352 0.0544

Polychoric Correlation 0.1671 0.0690

Sample Size = 321

ρ̂pc = 0.167 and we reject H0 : ρpc = 0 as well at the 5% level. The
underlying continuous ‘happiness’ and ‘ideology’ variables are
significantly, positively associated.

The general test of H0 : X ⊥ Y does not reject, but the correlation
tests do find an association at the 5% level. More power by treating
the data as ordinal rather than nominal!
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3.4.4 Using focused alternatives gives added power

G 2 and X 2 test H0 : X ⊥ Y . Does not take into account nature of
ordinal data. df = (I − 1)(J − 1) reflecting all possible ways data can
be dependent.

For ordinal data, H0 : ρ = 0 and H0 : γ = 0 (or one-sided versions)
test no association versus focused alternatives that are a special case
of dependence. These tests focus on one parameter that describes a
specific, defined type of association (linear or monotone).

Since the alternative is focused, there can be more power to detect an
association. df = 1 instead of df = (I − 1)(J − 1).
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3.4.5 Choice of scores in computing r and M2

The scores u1 ≤ u2 ≤ · · · ≤ uI for X and v1 ≤ v2 ≤ · · · ≤ vJ for Y affect r
and M2 and therefore the p-value for H0 : ρ = 0.

A linear transformation of scores does not affect r or M2. For
example, using {1, 2, 3, 4} or {52, 53, 54, 55} or {3, 6, 9, 12} for X all
yield the same r .

For most data, different choices of scores tend to give roughly the
same r and p-value.

Highly unbalanced data will be more sensitive to the choice of scores.
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3.4.6 relationship between drinking during pregnancy &
congenital malformations

Drinks per day
Malformation 0 < 1 1− 2 3− 5 ≥ 6
Absent 17,066 14,464 788 126 37
Present 48 38 5 1 1

Let the scores for X be {1, 2}.
For Y , {0, 0.5, 1.5, 4.0, 7.0} yields M2 = 6.57 with p = 0.01.

For Y , {1, 2, 3, 4, 5} yields M2 = 1.83 with p = 0.18.

One solution to this discrepancy is to use scores suggested by the data:
midranks.
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Midranks

For the alcohol variable, 17066 + 48 = 17144 didn’t drink during
pregnancy. The midrank is (1 + 17144)/2 = 8557.5. The next category,
those that averaged less than one drink per day, we start at 17145 and go
up to 17144 + (14464 + 38) = 31646. The midrank for the 2nd category is
then (17145 + 31647)/2 = 24395.5 (book typo?). The midrank for the
1− 2 category is (31617 + 32409)/2 = 32013, etc. Scores are
{8557.5, 24395.5, 32013, 32473, 32555.5}.
Using these midranks yields M2 = 0.35 and p = 0.55.

Here, inappropriate: treats 1− 2 as being much closer to ≥ 6 than to 0
drinks. Probably best to use midranks when no obvious set(s) of scores
exist. Midranks are used is SAS by specifying scores=rank.
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3.5 & 16.5.2 Exact tests of independence

There’s a lot of info in here (pp. 91-101, 10 pages). We’ll focus on what’s
involved in obtaining exact p-values for X 2 and G 2 instead of asymptotic
χ2
(I−1)(J−1).

Instead of an asymptotic distribution, we need the exact distribution of cell
counts under H0 : πij = πi+π+j .

Under product multinomial sampling, the row totals are fixed at ni+ ahead
of time. Under H0, the row counts are independent mult(ni+,π) where
π = (π+1, π+2, . . . , π+J). There are J − 1 free, unknown parameters in
the model under H0. These are nuisance parameters, since what we need
to be able to do is find the distribution of cell counts assuming
independence, not just for one particular value of π.
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Conditioning on sufficient statistics

The marginal totals (n+1, . . . , n+J) carry all information for π – they are
sufficient for π. By conditioning on these sufficient statistics (which can
lead to a UMP test), we end up with the pmf of the cell counts nij ,

p(nij) =

∏I
i=1 ni+!

∏J
j=1 n+j !

n++!
∏I

i=1

∏J
j=1 nij !

.

This is the distribution of {nij} from data having the same fixed marginals
n+1, . . . , n+J and n1+, . . . , nI+ as the observed data, assuming
H0 : X ⊥ Y is true.

A simple way to approximate an exact p-value for an observed X 2
o statistic

is to simply randomly generate IJ cell counts {nij} according to the above
pmf, say 1000 times, and compute X 2

1 ,X
2
2 , . . . ,X

2
1000. The proportion of

{X 2
m} larger than the observed X 2

o is the (Monte Carlo) exact p-value.
The test is the same for multinomial sampling.
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Smoking and heart attacks

Example: a sparse table where the approximate χ2
(I−1)(J−1) assumption is

unreasonable.

Smoking level
Outcome 0 /day 1− 24 / day > 25 / day
Control (no heart attack) 25 25 12
Heart attack 0 1 3

data table;

input Smoking$ Outcome$ count @@;

datalines;

1 1 25 2 1 25 3 1 12 1 2 0 2 2 1 3 2 3

;

proc format;

value $sc ’1’= ’0 / day’ ’2’ = ’1-24 / day’ ’3’ = ’>25 / day’;

value $oc ’1’ = ’No heart attack’ ’2’ = ’Heart attack’;

proc freq order=data; weight count;

format Smoking $sc. Outcome $oc.;

tables Smoking*Outcome / plcorr;

exact chisq;

run;
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SAS output

Statistics for Table of Smoking by Outcome

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 6.9562 0.0309

Likelihood Ratio Chi-Square 2 6.6901 0.0353

WARNING: 50% of the cells have expected counts less than 5.

(Asymptotic) Chi-Square may not be a valid test.

Pearson Chi-Square Test

----------------------------------

Chi-Square 6.9562

DF 2

Asymptotic Pr > ChiSq 0.0309

Exact Pr >= ChiSq 0.0516

Likelihood Ratio Chi-Square Test

----------------------------------

Chi-Square 6.6901

DF 2

Asymptotic Pr > ChiSq 0.0353

Exact Pr >= ChiSq 0.0724

Statistic Value ASE

------------------------------------------------------

Gamma 0.8717 0.1250

Pearson Correlation 0.2999 0.0973

Polychoric Correlation 0.6754 0.1924

16 / 22



Comments:

SAS provides a warning on the small expected cell counts.

Exact versus asymptotic tests provide different conclusions at the 5%
level!

Treating (X ,Y ) as ordinal shows a positive association between the
number of cigarettes smoked and getting a heart attack using γ,
Pearson ρP (using scores 1,2 and 1,2,3), and polychoric ρpc . We
would reject than any of these are zero.

To get Monte Carlo estimate, specify mc with exact. Also possible to
get exact CI for θ in 2× 2 table with OR.

The Pearson correlation is actually bounded away from −1 and 1.
Outside the scope of the class, but r = 0.30 may be “larger” than it
appears.

17 / 22



Fisher’s exact test of H0 : π1 = π2 for 2× 2 tables
Example: A 7-year old child thinks that cats like gouda cheese more than
dogs; she decides to try feeding cats and dogs gouda cheese and records
whether they eat it. Her null hypothesis is that cats and dogs prefer gouda
in the same proportions, H0 : πc = πd . She wants to show the alternative
Ha : πc > πd .

In her neighborhood there are 5 cats and 8 dogs nearby. Of the 5 cats, 2
eat the cheese; of the 8 dogs, 2 eat the cheese. We have π̂c = 0.40 and
π̂d = 0.25 for the estimated proportions of cats and dogs that eat gouda
cheese. There appears to be some evidence that cats like gouda more than
dogs, but is it significant?

eat cheese?
animal yes no total

cat 2 3 5
dog 2 6 8

total 4 9 13
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P-value under H0 : πc = πd

Under the null H0 we cannot tell the difference between dogs and cats; we
only “see” n+1 cheese eating animals and n+2 non-cheese eaters. If we
pick out any n1+ = 5 animals without replacement, then the probability
that there are exactly n11 = k cheese eaters is hypergeometric:

P(n11 = k) =

(
n+1

k

)(
n+2

n1+ − k

)
(

n++

n1+

) .

Here, the sample size n1+ = 5 is fixed, as well as the number of
cheese-eaters n+1. Hence, all four marginal totals are fixed.

Restated: We draw n1+ balls without replacement from an urn that has
n+1 white balls (cheese eaters) and n+2 black balls (non-cheese eaters).
The number of white balls (cheese eaters) in this sample is n11 = k .
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Fisher’s exact test p-value

To compute the p-value, we find the probability of seeing sample π̂c and
π̂d at least as far apart as what we observed. Fixing the row and column
totals, there are three tables that give differences π̂c − π̂d the same or
greater than π̂c − π̂d = 0.15:

eat cheese?
animal yes no total
cat 2 3 5
dog 2 6 8
total 4 9 13

eat cheese?
animal yes no total
cat 3 2 5
dog 1 7 8
total 4 9 13

eat cheese?
animal yes no total
cat 4 1 5
dog 0 8 8
total 4 9 13

π̂c = 0.40, π̂d = 0.25 π̂c = 0.60, π̂d = 0.125 π̂c = 0.80, π̂d = 0.00(
4
2

)(
9
3

)
(

13
5

) = 0.3916

(
4
3

)(
9
2

)
(

13
5

) = 0.1119

(
4
4

)(
9
1

)
(

13
5

) = 0.0070.

The p-value is 0.3916 + 0.1119 + 0.0070 = 0.5105. We do not have
evidence that there is an association between type of pet and whether they
eat gouda.
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SAS code & output

data cheese;

input animal$ eat$ count @@;

datalines;

cat yes 2 cat no 3

dog yes 2 dog no 6

;

proc freq order=data; weight count;

tables animal*eat;

exact fisher;

run;

------------------------------

Fisher’s Exact Test

Cell (1,1) Frequency (F) 2

Left-sided Pr <= F 0.8811

Right-sided Pr >= F 0.5105

Table Probability (P) 0.3916

Two-sided Pr <= P 1.0000

An especially nice feature of Fisher’s exact test is that it is natural to have
one-sided alternatives.
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3.7 Extensions...

Ideas for testing independence, partitioning G 2, std. Pearson
residuals, etc. all generalize to threeway and higher dimensional
tables.

Often only interested in one outcome – i.e. one categorical variable is
a natural Y . Logistic, Poisson, ordinal regression models useful here.
Can also consider continuous predictors.

If interested in types of conditional dependence in larger dimensional
tables, log-linear models (and associated graph methods) useful.

Often data are not given in the form of a table or counts; see p. 101.

Methods and ideas in this chapter can be recast in modeling
framework explored in the rest of the book.

22 / 22


