Chapter 3: Inference for Contingency Tables-II

Dipankar Bandyopadhyay

Department of Biostatistics, Virginia Commonwealth University

BIOS 625: Categorical Data & GLM

[Acknowledgements to Tim Hanson and Haitao Chu]

3.4 $I \times J$ tables with ordinal outcomes

Tests that take advantage of ordinal data's structure can increase power and interpretability. We now assume both X and Y are ordinal.

3.4.1 Linear trend alternative to independence

If we are willing to replace the ordinal outcomes by numerical scores, we can compute something akin to a correlation between X and Y. Let $u_1 \leq u_2 \leq \cdots \leq u_I$ for X and $v_1 \leq v_2 \leq \cdots \leq v_J$ for Y. Define

$$r = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} (u_i - \bar{u}_i) (v_i - \bar{v}_i)}{\sqrt{\sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} (u_i - \bar{u}_i)^2 \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} (v_i - \bar{v}_i)^2}},$$

where $\bar{u}_i = \sum_{i=1}^{J} n_{i+} u_i / n_{++}$ and $\bar{v}_j = \sum_{j=1}^{J} n_{+j} v_j / n_{++}$.

r is the Pearson correlation

r is akin to a correlation between X and Y, and in fact is the sample correlation when each (X, Y) pair is replaced by by its score (u, v).

r is going to estimate something lurking underneath, a population parameter ρ . Testing $H_0 : \rho = 0$ is a test for linear association between *X* and *Y*.

Define the test statistic

$$M^2 = (n_{++} - 1)r^2.$$

 $M^2 \stackrel{\bullet}{\sim} \chi_1^2$ when $H_0: \rho = 0$.

Happiness and political ideology

Data (p. 83) from 2008 General Social Survey for subjects over 65 years old:

	Happiness						
Ideology	Not too happy	Pretty happy	Very happy				
Liberal	13	29	15				
Moderate	23	59	47				
Conservative	14	67	54				

SAS code

```
data table;
input Ideology$ Happiness$ count @0;
datalines;
Liberal NotTooHappy 13 Liberal PrettyHappy 29 Liberal VeryHappy 15
Moderate NotTooHappy 23 Moderate PrettyHappy 59 Moderate VeryHappy 47
Conservative NotTooHappy 14 Conservative PrettyHappy 67 Conservative VeryHappy 54;
proc freq data=table order=data; weight count;
tables Ideology*Happiness / chisq expected measures plcorr norow nocol;
run;
```

Recall that chisq gives tests of $H_0: X \perp Y$. measures gives various measures of association, including r and $\hat{\gamma}$, as well as their (asymptotic) standard errors. plcorr gives the estimated polychoric correlation $\hat{\rho}_{pc}$.

Table of Ideology by Happiness

Happiness

Ideology

Frequency Expected Percent |NotTooHa|PrettyHa|VeryHapp| Total 13 I 57 Liberal 29 I 15 I 8.8785 | 27.523 | 20.598 4.05 I 9.03 4.67 L 17.76 ----+ Moderate | 23 I 59 I 47 I 129 20.093 62.29 | 46.617 | 7.17 | 18.38 | 14.64 I 40.19 Conserva | 135 14 | 67 I 54 I | 21.028 | 65.187 | 48.785 | 4.36 20.87 I 16.82 | 42.06 ----+ Total 321 50 155 116 15.58 48.29 36.14 100.00

Statistics for Table of Ideology by Happiness

Statistic	DF	Value	Prob	
Chi-Square	4	7.0681	0.1323	
Likelihood Ratio Chi-Square	4	7.2666	0.1225	

We do not reject H_0 : happiness is independent of ideology using X^2 or $G^2_{6/22}$.

Statistics for Table of Ideology by Happiness

Statistic	Value	ASE
Gamma	0.1849	0.0779
Pearson Correlation	0.1352	0.0544
Polychoric Correlation	0.1671	0.0690

- Recall that $\hat{\gamma}$ estimates γ , the probability of concordance minus the probability of discordance. When $H_0: \gamma = 0$ is true, the probability of concordance is equal to the probability of discordance, i.e. no evidence of a *monotone association*.
- $\hat{\gamma} = 0.185.\ 95\%$ CI given by $\hat{\gamma} \pm 1.96 \text{se}(\hat{\gamma}) = 0.185 \pm 1.96(0.078) = (0.032, 0.338)$. We reject $H_0: \gamma = 0$ at the 5% level! How to get p-value?
- r = 0.135 using default scores $u_i \in \{1, 2, 3\}$ and $v_i \in \{1, 2, 3\}$. Note that we reject $H_0 : \rho_P = 0$ at the 5% level. Focusing on the linear aspect of the scores helped refine our assessment of the relationship between ideology and happiness. Note that you cannot get M^2 directly in SAS, but rather r.

Statistics for Table of Ideology by Happiness

Statistic	Value	ASE
Gamma	0.1849	0.0779
Pearson Correlation	0.1352	0.0544
Polychoric Correlation	0.1671	0.0690

Sample Size = 321

- $\hat{\rho}_{pc} = 0.167$ and we reject $H_0: \rho_{pc} = 0$ as well at the 5% level. The underlying continuous 'happiness' and 'ideology' variables are significantly, positively associated.
- The general test of $H_0: X \perp Y$ does not reject, but the correlation tests *do find an association* at the 5% level. More power by treating the data as ordinal rather than nominal!

3.4.4 Using focused alternatives gives added power

- G² and X² test H₀ : X ⊥ Y. Does not take into account nature of ordinal data. df = (I − 1)(J − 1) reflecting all possible ways data can be dependent.
- For ordinal data, $H_0: \rho = 0$ and $H_0: \gamma = 0$ (or one-sided versions) test no association versus *focused* alternatives that are a special case of dependence. These tests focus on one parameter that describes a specific, defined type of association (linear or monotone).
- Since the alternative is focused, there can be more power to detect an association. df = 1 instead of df = (I 1)(J 1).

3.4.5 Choice of scores in computing r and M^2

The scores $u_1 \leq u_2 \leq \cdots \leq u_l$ for X and $v_1 \leq v_2 \leq \cdots \leq v_J$ for Y affect r and M^2 and therefore the *p*-value for $H_0: \rho = 0$.

- A linear transformation of scores does not affect r or M^2 . For example, using $\{1, 2, 3, 4\}$ or $\{52, 53, 54, 55\}$ or $\{3, 6, 9, 12\}$ for X all yield the same r.
- For most data, different choices of scores tend to give roughly the same *r* and *p*-value.
- Highly unbalanced data will be more sensitive to the choice of scores.

3.4.6 relationship between drinking during pregnancy & congenital malformations

	Drinks per day								
Malformation	0	< 1	1 - 2	3 – 5	≥ 6				
Absent	17,066	14,464	788	126	37				
Present	48	38	5	1	1				

Let the scores for X be $\{1, 2\}$.

- For Y, $\{0, 0.5, 1.5, 4.0, 7.0\}$ yields $M^2 = 6.57$ with p = 0.01.
- For Y, $\{1, 2, 3, 4, 5\}$ yields $M^2 = 1.83$ with p = 0.18.

One solution to this discrepancy is to use scores suggested by the data: *midranks*.

Midranks

For the alcohol variable, 17066 + 48 = 17144 didn't drink during pregnancy. The midrank is (1 + 17144)/2 = 8557.5. The next category, those that averaged less than one drink per day, we start at 17145 and go up to 17144 + (14464 + 38) = 31646. The midrank for the 2^{nd} category is then (17145 + 31647)/2 = 24395.5 (book typo?). The midrank for the 1 - 2 category is (31617 + 32409)/2 = 32013, etc. Scores are $\{8557.5, 24395.5, 32013, 32473, 32555.5\}$.

Using these midranks yields $M^2 = 0.35$ and p = 0.55.

Here, inappropriate: treats 1-2 as being much closer to ≥ 6 than to 0 drinks. Probably best to use midranks when no obvious set(s) of scores exist. Midranks are used is SAS by specifying scores=rank.

3.5 & 16.5.2 Exact tests of independence

There's a lot of info in here (pp. 91-101, 10 pages). We'll focus on what's involved in obtaining exact *p*-values for X^2 and G^2 instead of asymptotic $\chi^2_{(I-1)(J-1)}$.

Instead of an asymptotic distribution, we need the *exact* distribution of cell counts under $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$.

Under product multinomial sampling, the row totals are fixed at n_{i+} ahead of time. Under H_0 , the row counts are independent mult (n_{i+}, π) where $\pi = (\pi_{+1}, \pi_{+2}, \ldots, \pi_{+J})$. There are J - 1 free, unknown parameters in the model under H_0 . These are *nuisance* parameters, since what we need to be able to do is find the distribution of cell counts assuming independence, not just for one particular value of π .

Conditioning on sufficient statistics

The marginal totals (n_{+1}, \ldots, n_{+J}) carry all information for π – they are *sufficient* for π . By conditioning on these sufficient statistics (which can lead to a UMP test), we end up with the pmf of the cell counts n_{ij} ,

$$p(n_{ij}) = \frac{\prod_{i=1}^{I} n_{i+1}! \prod_{j=1}^{J} n_{+j}!}{n_{++}! \prod_{i=1}^{I} \prod_{j=1}^{J} n_{ij}!}$$

This is the distribution of $\{n_{ij}\}$ from data having the same fixed marginals n_{+1}, \ldots, n_{+J} and n_{1+}, \ldots, n_{I+} as the observed data, assuming $H_0: X \perp Y$ is true.

A simple way to approximate an exact *p*-value for an observed X_o^2 statistic is to simply randomly generate *IJ* cell counts $\{n_{ij}\}$ according to the above pmf, say 1000 times, and compute $X_1^2, X_2^2, \ldots, X_{1000}^2$. The proportion of $\{X_m^2\}$ larger than the observed X_o^2 is the (Monte Carlo) exact *p*-value. The test is the same for multinomial sampling.

Smoking and heart attacks

Example: a sparse table where the approximate $\chi^2_{(I-1)(J-1)}$ assumption is unreasonable.

	Smoking level				
Outcome	0 /day	1-24 / day	> 25 / day		
Control (no heart attack)	25	25	12		
Heart attack	0	1	3		
data table;					
<pre>input Smoking\$ Outcome\$ count @@; datalines:</pre>					
1 1 25 2 1 25 3 1 12 1 2 0 2 2 1 3 2 3					
; proc format;					
value \$sc '1'= '0 / day' '2' = '1-24 / day' '3	' = '>25 /	day';			
value \$oc '1' = 'No heart attack' '2' = 'Heart	attack';				
<pre>proc freq order=data; weight count;</pre>					
format Smoking \$sc. Outcome \$oc.;					
tables Smoking*Outcome / plcorr;					
exact chisq; run;					
iun,					

Statistics for Table of Smoking by Outcome

Statistic	DF	Value	Prob
Chi-Square	2	6.9562	0.0309
Likelihood Ratio Chi-Square	2	6.6901	0.0353

WARNING: 50% of the cells have expected counts less than 5. (Asymptotic) Chi-Square may not be a valid test.

Pearson Chi-Square Test

			6.9562					
			2					
\Pr	>	ChiSq	0.0309					
\Pr	>=	ChiSq	0.0516					
			Pr > ChiSq Pr >= ChiSq					

Likelihood Ratio Chi-Square Test

Chi-Square				6.6901
DF				2
Asymptotic	\Pr	>	ChiSq	0.0353
Exact	\Pr	>=	ChiSq	0.0724

Statistic	Value	ASE
Gamma	0.8717	0.1250
Pearson Correlation	0.2999	0.0973
Polychoric Correlation	0.6754	0.1924

Comments:

- SAS provides a warning on the small expected cell counts.
- Exact versus asymptotic tests provide different conclusions at the 5% level!
- Treating (X, Y) as ordinal shows a positive association between the number of cigarettes smoked and getting a heart attack using γ, Pearson ρ_P (using scores 1,2 and 1,2,3), and polychoric ρ_{pc}. We would reject than any of these are zero.
- To get Monte Carlo estimate, specify mc with exact. Also possible to get exact CI for θ in 2 × 2 table with OR.
- The Pearson correlation is actually bounded away from -1 and 1. Outside the scope of the class, but r = 0.30 may be "larger" than it appears.

Fisher's exact test of $H_0: \pi_1 = \pi_2$ for 2 × 2 tables

Example: A 7-year old child thinks that cats like gouda cheese more than dogs; she decides to try feeding cats and dogs gouda cheese and records whether they eat it. Her null hypothesis is that cats and dogs prefer gouda in the same proportions, $H_0: \pi_c = \pi_d$. She wants to show the alternative $H_a: \pi_c > \pi_d$.

In her neighborhood there are 5 cats and 8 dogs nearby. Of the 5 cats, 2 eat the cheese; of the 8 dogs, 2 eat the cheese. We have $\hat{\pi}_c = 0.40$ and $\hat{\pi}_d = 0.25$ for the estimated proportions of cats and dogs that eat gouda cheese. There appears to be some evidence that cats like gouda more than dogs, but is it *significant*?

	eat c		
animal	yes	no	total
cat	2	3	5
dog	2	6	8
total	4	9	13

P-value under H_0 : $\pi_c = \pi_d$

Under the null H_0 we cannot tell the difference between dogs and cats; we only "see" n_{+1} cheese eating animals and n_{+2} non-cheese eaters. If we pick out any $n_{1+} = 5$ animals without replacement, then the probability that there are exactly $n_{11} = k$ cheese eaters is hypergeometric:

$$P(n_{11}=k)=\frac{\binom{n_{+1}}{k}\binom{n_{+2}}{n_{1+}-k}}{\binom{n_{++}}{n_{1+}}}.$$

Here, the sample size $n_{1+} = 5$ is fixed, as well as the number of cheese-eaters n_{+1} . Hence, all four marginal totals are fixed.

Restated: We draw n_{1+} balls without replacement from an urn that has n_{+1} white balls (cheese eaters) and n_{+2} black balls (non-cheese eaters). The number of white balls (cheese eaters) in this sample is $n_{11} = k$.

Fisher's exact test p-value

To compute the p-value, we find the probability of seeing sample $\hat{\pi}_c$ and $\hat{\pi}_d$ at least as far apart as what we observed. Fixing the row and column totals, there are three tables that give differences $\hat{\pi}_c - \hat{\pi}_d$ the same or greater than $\hat{\pi}_c - \hat{\pi}_d = 0.15$:

	eat cl	neese?			eat c	heese?				eat cl	neese?	
animal	yes	no	total	animal	yes	no	total		animal	yes	no	total
cat	2	3	5	cat	3	2	5		cat	4	1	5
dog	2	6	8	dog	1	7	8		dog	0	8	8
total	4	9	13	total	4	9	13		total	4	9	13
$\hat{\pi}_{c}$	= 0.40,	$\hat{\pi}_{d} = 0.$	= 0.25 $\hat{\pi}_c = 0.60, \ \hat{\pi}_d = 0.125$					$\hat{\pi}_c = 0.80, \ \hat{\pi}_d = 0.00$				
$\frac{\left(\begin{array}{c}4\\2\end{array}\right)}{\left(\begin{array}{c}\end{array}\right)}$	$\frac{\left(\begin{array}{c}9\\3\end{array}\right)}{13}\\5\end{array}\right)$) = 0.	3916	$\frac{\left(\begin{array}{c}4\\3\end{array}\right)}{\left(\begin{array}{c}\end{array}\right)}$					$\frac{\left(\begin{array}{c}4\\4\end{array}\right)}{\left(\begin{array}{c}\end{array}\right)}$	$ \begin{array}{c} 0 \\ 1 \\ 13 \\ 5 \end{array} $) = 0.	0070.

The p-value is 0.3916 + 0.1119 + 0.0070 = 0.5105. We do not have evidence that there is an association between type of pet and whether they eat gouda.

SAS code & output

```
data cheese;
input animal$ eat$ count @@;
datalines:
cat yes 2 cat no 3
dog yes 2 dog no 6
;
proc freq order=data; weight count;
 tables animal*eat;
 exact fisher;
run:
   Fisher's Exact Test
Cell (1,1) Frequency (F) 2
Left-sided Pr <= F 0.8811
Right-sided Pr >= F 0.5105
Table Probability (P) 0.3916
Two-sided Pr <= P 1.0000
```

An especially nice feature of Fisher's exact test is that it is natural to have one-sided alternatives.

3.7 Extensions...

- Ideas for testing independence, partitioning G^2 , std. Pearson residuals, etc. all generalize to threeway and higher dimensional tables.
- Often only interested in one outcome i.e. one categorical variable is a natural Y. Logistic, Poisson, ordinal regression models useful here. Can also consider continuous predictors.
- If interested in types of conditional dependence in larger dimensional tables, log-linear models (and associated graph methods) useful.
- Often data are not given in the form of a table or counts; see p. 101.
- Methods and ideas in this chapter can be recast in modeling framework explored in the rest of the book.