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Chapter 3 3.1 Inference for association parameters

3.1.1 Odds Ratios

The sample odds ratio θ̂ = n11n22/n12n21 can be zero, undefined, or
∞ if one or more of {n11, n22, n12, n21} are zero.

An alternative is to add 1/2 observation to each cell
θ̃ = (n11 + 0.5)(n22 + 0.5)/(n12 + 0.5)(n21 + 0.5). This also
corresponds to a particular Bayesian estimate.

Both θ̂ and θ̃ have skewed sampling distributions with small n = n++.
The sampling distribution of log θ̂ is relatively symmetric and
therefore more amenable to a Gaussian approximation.

An approximate (1− α)× 100% CI for log θ is given by

log θ̂ ± zα
2

√
1
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+

1
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+

1
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+

1

n22
.

A CI for θ is obtained by exponentiating the interval endpoints.
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Chapter 3 3.1 Inference for association parameters

When θ̂ = 0 this doesn’t work (log 0“=”−∞).

Can use nij + 0.5 in place of nij in MLE estimate and standard error
yielding

log θ̃ ± zα
2

√
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+
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+

1
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.

Perhaps better approach would involve inverting score or LRT tests
for H0 : θ = θ0.

Exact approach involves testing H0 : θ = t for various values of t
subject to rows and columns fixed, and simulating a p-value. Those
values of t that gives p-values greater than 0.05 defined the 95% CI.
This is related to Fisher’s exact test, sketched in Sections 3.5 and
16.6.4
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Chapter 3 3.1 Inference for association parameters

3.1.2 Aspirin and Heart attacks

n = 1360 stroke patients randomly assigned to aspirin or placebo
(product multinomial sampling) & followed about 3 years.

Heart attack No heart attack Total
Placebo 28 656 684 (fixed)
Aspirin 18 658 676 (fixed)

95% CI for log θ using θ̂ is (−0.157, 1.047) and so the CI for θ is
(e−0.157, e1.047) = (0.85, 2.85).

We cannot reject that H0 : θ = 1 (at significance level α = 0.05). We
conclude that there is not enough evidence to support that heart
attacks are related to aspirin intake (Note: Absence of evidence is not
evidence of absence).

Now, read the example in the book [Page 71].
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Chapter 3 3.1 Inference for association parameters

3.1.3 Difference in proportions

Assume (1) multinomial sampling or (2) product binomial sampling
where ni+ are fixed (fixed row totals as in heart attack data). Let
π1 = P(Y = 1|X = 1) and π2 = P(Y = 1|X = 2).

The sample proportion for each level of X is the MLE π̂1 = n11/n1+,
π̂2 = n21/n2+. Using either large sample results or the CLT we have

π̂1
•∼ N

(
π1,

π1(1− π1)

n1+

)
⊥ π̂2

•∼ N

(
π2,

π2(1− π2)

n2+

)
.

Since the difference of two independent normals is also normal, we
have

π̂1 − π̂2
•∼ N

(
π1 − π2,

π1(1− π1)

n1+
+
π2(1− π2)

n2+

)
.
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Chapter 3 3.1 Inference for association parameters

Plugging in MLEs for unknowns, we estimate the standard deviation
of the difference in sample proportions by the standard error

σ̂(π̂1 − π̂2) =

√
π̂1(1− π̂1)

n1+
+
π̂2(1− π̂2)

n2+
.

A Wald CI for the unknown difference has endpoints

π̂1 − π̂2 ± zα
2
σ̂(π̂1 − π̂2).

For the aspirin data, this yields 0.0143± 1.96(0.00978) for the 95%
CI (−0.005, 0.033). How?

π̂1 − π̂2 = 28/684− 18/676 = 0.0143, and so on ...
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Chapter 3 3.1 Inference for association parameters

3.1.4 Estimating relative risk

Like the odds ratio, the relative risk π1/π2 ∈ (0,∞) and tends to
have a skewed sampling distribution in small samples. Let r = π̂1/π̂2

be the sample relative risk. Large sample normality implies

log r = log π̂1/π̂2
•∼ N(log π1/π2, σ(log r)).

where

σ(log r) =

√
1− π1

π1n1+
+

1− π2

π2n2+
.

Plugging in π̂i for πi gives the standard error and CIs are obtained as
usual for log π1/π2, then exponentiated to get the CI for π1/π2.

Applying this to the heart attack data we obtain a 95% CI for π1/π2

as (0.86, 2.75). The probability of a heart attack on placebo is
between 0.86 and 2.75 times greater than on aspirin.
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Chapter 3 3.1 Inference for association parameters

Seat Belts and Traffic Deaths Example: Page 70-71

Read the book.

SAS code follows

norow and nocol remove row and column percentages from the table
(not shown); these are conditional probabilities

measures give estimates and CIs for odds ratio and relative risk

riskdiff gives estimate and CI for π1 − π2

exact plus or or riskdiff gives exact p-values for hypothesis tests
of no difference and/or CIs
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SAS code

data table;

input use$ outcome$ count @@;

datalines;

no fatal 54 no nonfatal 10325

yes fatal 25 yes nonfatal 51790

;

proc freq data=table order=data; weight count;

tables use*outcome / measures riskdiff norow nocol;

* exact or riskdiff; * exact test for H0: pi1=pi2 takes forever...;

run;
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Chapter 3 3.1 Inference for association parameters

Inference for π1 − π2, π1/π2 and θ

Statistics for Table of use by outcome

Column 1 Risk Estimates

(Asymptotic)95\% (Exact) 95\%

Risk ASE Confidence Limits Confidence Limits

-----------------------------------------------------------------------------

Row 1 0.0052 0.0007 0.0038 0.0066 0.0039 0.0068

Row 2 0.0005 0.0001 0.0003 0.0007 0.0003 0.0007

Total 0.0013 0.0001 0.0010 0.0016 0.0010 0.0016

Difference 0.0047 0.0007 0.0033 0.0061

Difference is (Row 1 - Row 2)

Column 2 Risk Estimates

(Asymptotic)95\% (Exact) 95\%

Risk ASE Confidence Limits Confidence Limits

-----------------------------------------------------------------------------

Row 1 0.9948 0.0007 0.9934 0.9962 0.9932 0.9961

Row 2 0.9995 0.0001 0.9993 0.9997 0.9993 0.9997

Total 0.9987 0.0001 0.9984 0.9990 0.9984 0.9990

Difference -0.0047 0.0007 -0.0061 -0.0033

Difference is (Row 1 - Row 2)

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits

-----------------------------------------------------------------------------

Case-Control (Odds Ratio) 10.8345 6.7405 17.4150

Cohort (Col1 Risk) 10.7834 6.7150 17.3165

Cohort (Col2 Risk) 0.9953 0.9939 0.9967
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Chapter 3 3.1 Inference for association parameters

Three CIs give three equivalent tests...

Note that (54/10379)/(25/51815) = 10.78 and
(10325/10379)/(51790/51815) = 0.995

Col1 risk is relative risk of dying and Col2 risk is relative risk of
living

We can test for (a) H0 : θ = 1,H0 : π1/π2 = 1, and H0 : π1 − π2 = 0.
All are equivalent, i.e., living is independent of wearing a seat belt.
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Chapter 3 3.1 Inference for association parameters

Delta Method

It’s probably worth reading or at least skimming 3.1.5, 3.1.6, 3.1.7, 3.1.8
(pp. 72-75). Idea of the Delta method is straightforward (see page 72 Fig.
3.1) and wildly useful.

Let Tn be a statistic that is asymptotically normally distributed, i.e.,
√
n(Tn − θ)

d→ N(0, σ2).

Let g be a function that is at least twice differentiable at θ. Then
using the Taylor series expansion for g(t), we have√
n[g(Tn)− g(θ)] ≈

√
n(Tn − θ)g ′(θ).

Thus,
√
n[g(Tn)− g(θ)]

d→ N(0, [g ′(θ)]2σ2).
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Chapter 3 3.2 Testing independence in I × J tables

Pearson and likelihood-ratio chi-squared tests

Assume one mult(n,π) distribution for the whole table. Let
πij = P(X = i ,Y = j); we must have π++ = 1.

If the table is 2× 2, we can just look at H0 : θ = 1.

In general, independence holds if H0 : πij = πi+π+j , or equivalently,
µij = nπi+π+j .

That is, independence implies a constraint; the parameters
π1+, . . . , πI+ and π+1, . . . , π+J define all probabilities in the I × J
table under the constraint.
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Pearson’s statistic is

X 2 =
I∑

i=1

J∑
j=1

(nij − µ̂ij)2

µ̂ij
,

where µ̂ij = n(ni+/n)(n+j/n), the MLE under H0.

There are I − 1 free {πi+} and J − 1 free {π+j}. Then
IJ − 1− [(I − 1) + (J − 1)] = (I − 1)(J − 1).

When H0 is true, X 2 •∼ χ2
(I−1)(J−1).
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The LRT statistic boils down to

G 2 = 2
I∑

i=1

J∑
j=1

nij log(nij/µ̂ij),

and is also G 2 •∼ χ2
(I−1)(J−1) when H0 is true.

X 2 − G 2 p→ 0.

The approximation is better for X 2 than G 2 in smaller samples.

The approximation can be okay when some µ̂ij = ni+n+j/n are as
small as 1, but most are at least 5.

When in doubt, use small sample methods.

Everything holds for product multinomial sampling too (fixed
marginals for one variable)!
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Chapter 3 3.3 Following up chi-squared tests for independence

3.3.1 Pearson and standardized residuals

Rejecting H0 : πij = πi+π+j does not tell us about the nature of the
association.

The Pearson residual is

eij =
nij − µ̂ij√

µ̂ij
,

where, as before, µ̂ij = ni+n+j/n is the estimate under H0 : X ⊥ Y .

When H0 : X ⊥ Y is true, under multinomial sampling eij
•∼ N(0, v),

where v < 1, in large samples.

Note that
∑I

i=1

∑J
j=1 e

2
ij = X 2.
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Chapter 3 3.3 Following up chi-squared tests for independence

Standardized Pearson residuals are Pearson residuals divided by their
standard error under multinomial sampling.

rij =
nij − µ̂ij√

µ̂ij(1− pi+)(1− p+j)
,

where pi+ = ni+/n and p+j = n+j/n are MLEs under the null model.

Values of |rij | > 3 happen very rarely when H0 : X ⊥ Y is true and
|rij | > 2 happen only roughly 5% of the time.

Pearson residuals and their standardized version tell us which cell
counts are much larger or smaller than what we would expect under
H0 : X ⊥ Y .

Example: we analyze Table 3.2 in Agresti 2002 with the following
SAS code, modified from Alan Agresti’s website...
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Chapter 3 3.3 Following up chi-squared tests for independence

Table 3.2 Frequency of Education and Religious Beliefs

Religious beliefs
Highest degree Fundamentalist Moderate Liberal
Less than high school 178 138 108
High school or junior college 570 648 442
Bachelor or graduate 138 252 252
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Chapter 3 3.3 Following up chi-squared tests for independence

data table ;
input Degree$ Religion$ count @@;
datalines ;
1 fund 178 1 mod 138 1 lib 108
2 fund 570 2 mod 648 2 lib 442
3 fund 138 3 mod 252 3 lib 252

;
proc format;
value $dc

’1’ = ’< HS’
’2’ = ’HS or JC’
’3’ = ’>= BA/BS’;

value $rc
’fund’ = ’Fundamentalist’
’mod’ = ’Moderate’
’ lib ’ = ’ Liberal ’;

proc freq order=data; weight count;
format Religion $rc . Degree $dc.;
tables Degree∗Religion / chisq expected measures cmh1;

proc genmod order=data; class Degree Religion ;
format Religion $rc . Degree $dc.;
model count = Degree Religion / dist =poi link=log residuals ;

run;
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Chapter 3 3.3 Following up chi-squared tests for independence

Annotated output from proc freq:

Degree R e l i g i o n

Frequency |
Expected |
P e r c e n t |
Row Pct |
Col Pct |Fundamen |Moderate | L i b e r a l | T o t a l

| t a l i s t | | |
−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+
< HS | 178 | 138 | 108 | 424

| 137 .81 | 161 .45 | 124 .74 |
| 6 . 5 3 | 5 . 0 6 | 3 . 9 6 | 1 5 . 5 5
| 4 1 . 9 8 | 3 2 . 5 5 | 2 5 . 4 7 |
| 2 0 . 0 9 | 1 3 . 2 9 | 1 3 . 4 7 |

−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+
HS o r JC | 570 | 648 | 442 | 1660

| 539 .53 | 632 .09 | 488 .38 |
| 2 0 . 9 1 | 2 3 . 7 7 | 1 6 . 2 1 | 6 0 . 9 0
| 3 4 . 3 4 | 3 9 . 0 4 | 2 6 . 6 3 |
| 6 4 . 3 3 | 6 2 . 4 3 | 5 5 . 1 1 |

−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+
>= BA/BS | 138 | 252 | 252 | 642

| 208 .66 | 244 .46 | 188 .88 |
| 5 . 0 6 | 9 . 2 4 | 9 . 2 4 | 2 3 . 5 5
| 2 1 . 5 0 | 3 9 . 2 5 | 3 9 . 2 5 |
| 1 5 . 5 8 | 2 4 . 2 8 | 3 1 . 4 2 |

−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+
T o t a l 886 1038 802 2726

3 2 . 5 0 3 8 . 0 8 2 9 . 4 2 100 .00
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Chapter 3 3.3 Following up chi-squared tests for independence

More...

S t a t i s t i c s f o r Table o f Degree by R e l i g i o n

S t a t i s t i c DF Value Prob
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Chi−Square 4 69 .1568 <.0001
L i k e l i h o o d R a t i o Chi−Square 4 69.8116 <.0001

Annotated output from proc genmod:

The GENMOD P r o c e d u r e

O b s e r v a t i o n S t a t i s t i c s
Std Std

Raw Pearson Dev iance Dev iance Pearson L i k e l i h o o d
O b s e r v a t i o n R e s i d u a l R e s i d u a l R e s i d u a l R e s i d u a l R e s i d u a l R e s i d u a l

1 40.192213 3.4237736 3.2748138 4.3376139 4.5349167 4.4235336
2 −23.44974 −1.845523 −1.893142 −2.618003 −2.552151 −2.586795
3 −16.74248 −1.499038 −1.534598 −1.987766 −1.941705 −1.969288
4 30.469522 1.3117699 1.2997048 2.5297817 2.5532655 2.5470879
5 15.909037 0.632782 0.630155 1.280585 1.2859234 1.2846328
6 −46.37857 −2.098646 −2.133249 −4.060564 −3.994696 −4.012984
7 −70.66184 −4.891741 −5.216165 −7.261384 −6.809756 −7.046419
8 7.5406572 0.4822874 0.4798392 0.6974074 0.7009655 0.6992834
9 63.121006 4.5928481 4.3672118 5.9453678 6.2525411 6.0887236
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Chapter 3 3.3 Following up chi-squared tests for independence

The Std Pearson Residual column has the rij . Values larger than
3 in magnitude indicate severe departures from independence.

Observations 1 and 9, corresponding to “less than high school,
fundamentalist” and “at least BS/BA, liberal” are over-represented
relative to independence.

Observations 6 and 7, corresponding to “HS or JC, liberal” and “at
least BS/BA, fundamentalist” are under-represented.

That is, we tend to see concentrations along the diagonal, so
increased education is associated with increasingly liberal religious
views.

These data are ordinal; part of proc freq output is the γ statistic:

S t a t i s t i c s f o r Table o f Degree by R e l i g i o n

S t a t i s t i c Value ASE
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Gamma 0.2178 0 .0281

We see a moderate, positive association.
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3.3.3 Partitioning Chi-squared

Recall from ANOVA the partitioning of SS Treatments via orthogonal
contrasts. We can do something similar with contingency tables.

A χ2
ν random variable X 2 can be written

X 2 = Z 2
1 + Z 2

2 + · · ·+ Z 2
ν ,

where Z1, . . . ,Zν are iid N(0, 1) & so Z 2
1 , . . . ,Z

2
ν are iid χ2

1.

Partitioning works by testing independence in a series of (collapsed)
sub-tables in a particular way.

Say t tests are performed. The i th test results in G 2
i with associated

degrees of freedom dfi = νi . Then

G 2
1 + G 2

2 + · · ·+ G 2
t = G 2,

the LRT statistic from testing independence in the overall I × J table.

Also, ν1 + ν2 + · · ·+ νt = (I − 1)(J − 1), the degrees of freedom for
the overall test.
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Chapter 3 3.3 Following up chi-squared tests for independence

One approach is to look at a series of ν = (I − 1)(J − 1) 2× 2 tables
(pp. 82-83) of the form:∑

a<i

∑
b<j nab

∑
a<i naj∑

b<j nij nij

for i = 2, . . . , I and j = 2, . . . , J. Each sub-table will have df νij = 1

and
∑I

i=2

∑J
j=2 G

2
ij = G 2 from the overall LRT.

Example: Origin of schizophrenia (pp. 83-84)

Schizophrenia origin
Psych school Biogenic Environmental Combination
Eclectic 90 12 78
Medical 13 1 6
Psychoanalytic 19 13 50

For the full table, testing H0 : X ⊥ Y yields G 2 = 23.036 on 4 df , so
p < 0.001.
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When we consider (Lancaster) partitioning, we get 4 tables:

Bio Env θ̂11 = 0.58
Ecl 90 12 G2

11 = 0.294
Med 13 1 p = 0.59

Bio+Env Com θ̂12 = 0.56
Ecl 102 78 G2

12 = 1.359
Med 14 6 p = 0.24

Bio Env θ̂21 = 5.4
Ecl+Med 103 13 G2

21 = 12.953
Psy 19 13 p = 0.0003

Bio+Env Com θ̂22 = 2.2
Ecl+Med 116 84 G2

22 = 8.430
Psy 32 50 p = 0.004

Note that: 0.294 + 1.359 + 12.953 + 8.430 = 23.036 as required.
Also: 1 + 1 + 1 + 1 = 4.
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Chapter 3 3.3 Following up chi-squared tests for independence

The last two tables contribute more than 90% of the G 2 statistic.

The first two tables suggest that eclectic and medical schools of
thought tend to classify the origin of schizophrenia in roughly the
same proportions.

The last two tables suggest a difference in how the psychoanalytic
school classifies the origin relative to eclectic and medical schools.

The odds of a member of the psychoanalytical school ascribing the
origin to be a combination (versus biogenic or environmental) is
about 2.2 times greater than medical or eclectic. Within the last two
origins, the odds of a member of the psychoanalytical school ascribing
the origin to be a environmental is about 5.4 times greater than
medical or eclectic.
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Chapter 3 3.3 Following up chi-squared tests for independence

Comments:

Lancaster partitioning looks at a lot of tables. There might be
natural, simpler groupings of X and Y levels to look at. See your text
for advice and discussion on partitioning.

Partitioning G 2 and standardized Pearson residuals are two tools to
help find where association occurs in a table once H0 : X ⊥ Y is
rejected.

There are better methods for ordinal data, the subject of the next
lecture.

There are also exact tests of H0 : X ⊥ Y which we’ll briefly discuss
next time as well.
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