Chapter 3: Inference for Contingency Tables-I

Dipankar Bandyopadhyay

Department of Biostatistics, Virginia Commonwealth University

BIOS 625: Categorical Data & GLM

[Acknowledgements to Tim Hanson and Haitao Chu]

3.1.1 Odds Ratios

- The sample odds ratio $\hat{\theta} = n_{11}n_{22}/n_{12}n_{21}$ can be zero, undefined, or ∞ if one or more of $\{n_{11}, n_{22}, n_{12}, n_{21}\}$ are zero.
- An alternative is to add 1/2 observation to each cell $\tilde{\theta} = (n_{11} + 0.5)(n_{22} + 0.5)/(n_{12} + 0.5)(n_{21} + 0.5)$. This also corresponds to a particular Bayesian estimate.
- Both $\hat{\theta}$ and $\tilde{\theta}$ have skewed sampling distributions with small $n = n_{++}$. The sampling distribution of log $\hat{\theta}$ is relatively symmetric and therefore more amenable to a Gaussian approximation.
- An approximate (1-lpha) imes 100% Cl for log heta is given by

$$\log \hat{\theta} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}.$$

A CI for θ is obtained by exponentiating the interval endpoints.

- When $\hat{\theta} = 0$ this doesn't work $(\log 0 \ =" -\infty)$.
- Can use n_{ij} + 0.5 in place of n_{ij} in MLE estimate and standard error yielding

$$\log \tilde{\theta} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{1}{n_{11} + 0.5} + \frac{1}{n_{12} + 0.5} + \frac{1}{n_{21} + 0.5} + \frac{1}{n_{22} + 0.5}}$$

- Perhaps better approach would involve inverting score or LRT tests for H₀ : θ = θ₀.
- Exact approach involves testing H₀: θ = t for various values of t subject to rows and columns fixed, and simulating a p-value. Those values of t that gives p-values greater than 0.05 defined the 95% CI. This is related to Fisher's exact test, sketched in Sections 3.5 and 16.6.4

3.1.2 Aspirin and Heart attacks

 n = 1360 stroke patients randomly assigned to aspirin or placebo (product multinomial sampling) & followed about 3 years.

	Heart attack	No heart attack	Total
Placebo	28	656	684 (fixed)
Aspirin	18	658	676 (fixed)

- 95% Cl for log θ using $\hat{\theta}$ is (-0.157, 1.047) and so the Cl for θ is $(e^{-0.157}, e^{1.047}) = (0.85, 2.85).$
- We cannot reject that H₀: θ = 1 (at significance level α = 0.05). We conclude that there is not enough evidence to support that heart attacks are related to aspirin intake (Note: Absence of evidence is not evidence of absence).
- Now, read the example in the book [Page 71].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3.1.3 Difference in proportions

- Assume (1) multinomial sampling or (2) product binomial sampling where n_{i+} are fixed (fixed row totals as in heart attack data). Let $\pi_1 = P(Y = 1 | X = 1)$ and $\pi_2 = P(Y = 1 | X = 2)$.
- The sample proportion for each level of X is the MLE $\hat{\pi}_1 = n_{11}/n_{1+}$, $\hat{\pi}_2 = n_{21}/n_{2+}$. Using either large sample results or the CLT we have

$$\hat{\pi}_1 \stackrel{\bullet}{\sim} N\left(\pi_1, \frac{\pi_1(1-\pi_1)}{n_{1+}}\right) \perp \hat{\pi}_2 \stackrel{\bullet}{\sim} N\left(\pi_2, \frac{\pi_2(1-\pi_2)}{n_{2+}}\right)$$

Since the difference of two independent normals is also normal, we have

$$\hat{\pi}_1 - \hat{\pi}_2 \stackrel{\bullet}{\sim} N\left(\pi_1 - \pi_2, \frac{\pi_1(1-\pi_1)}{n_{1+}} + \frac{\pi_2(1-\pi_2)}{n_{2+}}\right).$$

 Plugging in MLEs for unknowns, we estimate the standard deviation of the difference in sample proportions by the standard error

$$\hat{\sigma}(\hat{\pi}_1 - \hat{\pi}_2) = \sqrt{\frac{\hat{\pi}_1(1 - \hat{\pi}_1)}{n_{1+}} + \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_{2+}}}$$

• A Wald CI for the unknown difference has endpoints

$$\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\frac{\alpha}{2}} \hat{\sigma} (\hat{\pi}_1 - \hat{\pi}_2).$$

- For the aspirin data, this yields $0.0143 \pm 1.96(0.00978)$ for the 95% CI (-0.005, 0.033). How?
- $\hat{\pi}_1 \hat{\pi}_2 = 28/684 18/676 = 0.0143$, and so on ...

《曰》《聞》《臣》《臣》

3.1.4 Estimating relative risk

 Like the odds ratio, the relative risk π₁/π₂ ∈ (0,∞) and tends to have a skewed sampling distribution in small samples. Let r = π̂₁/π̂₂ be the sample relative risk. Large sample normality implies

$$\log r = \log \hat{\pi}_1 / \hat{\pi}_2 \stackrel{\bullet}{\sim} N(\log \pi_1 / \pi_2, \sigma(\log r)).$$

where

$$\sigma(\log r) = \sqrt{\frac{1-\pi_1}{\pi_1 n_{1+}} + \frac{1-\pi_2}{\pi_2 n_{2+}}}.$$

- Plugging in π̂_i for π_i gives the standard error and CIs are obtained as usual for log π₁/π₂, then exponentiated to get the CI for π₁/π₂.
- Applying this to the heart attack data we obtain a 95% CI for π_1/π_2 as (0.86, 2.75). The probability of a heart attack on placebo is between 0.86 and 2.75 times greater than on aspirin.

Seat Belts and Traffic Deaths Example: Page 70-71

- Read the book.
- SAS code follows
- norow and nocol remove row and column percentages from the table (not shown); these are conditional probabilities
- measures give estimates and Cls for odds ratio and relative risk
- riskdiff gives estimate and CI for $\pi_1 \pi_2$
- exact plus or or riskdiff gives exact p-values for hypothesis tests of no difference and/or Cls

SAS code

```
data table;
input use% outcome% count @@;
datalines;
no fatal 54 no nonfatal 10325
yes fatal 25 yes nonfatal 51790
;
proc freq data=table order=data; weight count;
tables use*outcome / measures riskdiff norow nocol;
* exact or riskdiff; * exact test for H0: pi1=pi2 takes forever...;
run;
```

3

イロト 不同 トイヨト イヨト

Inference for $\pi_1 - \pi_2$, π_1/π_2 and θ

	Statis	tics for	Table of use	by outcome		
		Column	1 Risk Estima	tes		
			(Asympt	otic)95\%	(Exact) 95\%	
	Risk	ASE	Confidenc	e Limits	Confidence Limi	ts
Row 1	0.0052	0.0007	0.0038	0.0066	0.0039 0.0068	3
Row 2	0.0005	0.0001	0.0003	0.0007	0.0003 0.000	7
Total	0.0013	0.0001	0.0010	0.0016	0.0010 0.0010	6
Difference	0.0047	0.0007	0.0033	0.0061		
			Difference is	(Row 1 - Row	2)	
			Column 2 Ri	sk Estimates		
			(Asympt	otic)95\%	(Exact) 95\%	
	Risk	ASE	Confidenc	e Limits	Confidence Limit	ts
Row 1	0.9948	0.0007	0.9934	0.9962	0.9932 0.9961	
Row 2	0.9995	0.0001	0.9993	0.9997	0.9993 0.9997	
Total	0.9987	0.0001	0.9984	0.9990	0.9984 0.9990	
Difference	-0.0047	0.0007	-0.0061	-0.0033		
			Difference	is (Row 1 - R	ow 2)	
		Estin	nates of the R	elative Risk	(Row1/Row2)	
Type of Study			Value	95% Co	nfidence Limits	
Case-Control	(Odds Rat:	io)	10.8345	6.740	5 17.4150	
Cohort (Coll H	Risk)		10.7834	6.715	0 17.3165	
Cohort (Col2 H	Risk)		0.9953	0.99	39 0.9967	

æ

・ロン ・聞 と ・ ヨン ・ ヨン …

Three CIs give three equivalent tests...

- Note that (54/10379)/(25/51815) = 10.78 and (10325/10379)/(51790/51815) = 0.995
- Coll risk is relative risk of dying and Col2 risk is relative risk of living
- We can test for (a) $H_0: \theta = 1, H_0: \pi_1/\pi_2 = 1$, and $H_0: \pi_1 \pi_2 = 0$. All are equivalent, i.e., living is independent of wearing a seat belt.

イロト イポト イヨト イヨト

Delta Method

It's probably worth reading or at least skimming 3.1.5, 3.1.6, 3.1.7, 3.1.8 (pp. 72-75). Idea of the Delta method is straightforward (see page 72 Fig. 3.1) and wildly useful.

- Let T_n be a statistic that is asymptotically normally distributed, i.e., $\sqrt{n}(T_n \theta) \stackrel{d}{\rightarrow} N(0, \sigma^2).$
- Let g be a function that is at least twice differentiable at θ . Then using the Taylor series expansion for g(t), we have $\sqrt{n}[g(T_n) g(\theta)] \approx \sqrt{n}(T_n \theta)g'(\theta)$.
- Thus, $\sqrt{n}[g(T_n) g(\theta)] \stackrel{d}{\rightarrow} N(0, [g'(\theta)]^2 \sigma^2).$

イロト 不得 とうせい かほとう ほ

Pearson and likelihood-ratio chi-squared tests

- Assume one mult (n, π) distribution for the whole table. Let $\pi_{ij} = P(X = i, Y = j)$; we must have $\pi_{++} = 1$.
- If the table is 2×2 , we can just look at $H_0: \theta = 1$.
- In general, independence holds if $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$, or equivalently, $\mu_{ij} = n\pi_{i+}\pi_{+j}$.
- That is, independence implies a constraint; the parameters $\pi_{1+}, \ldots, \pi_{I+}$ and $\pi_{+1}, \ldots, \pi_{+J}$ define all probabilities in the $I \times J$ table under the constraint.

イロト 不得 とうせい かほとう ほ

• Pearson's statistic is

$$X^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}},$$

where $\hat{\mu}_{ij} = n(n_{i+}/n)(n_{+j}/n)$, the MLE under H_0 .

• There are I - 1 free $\{\pi_{i+}\}$ and J - 1 free $\{\pi_{+j}\}$. Then IJ - 1 - [(I - 1) + (J - 1)] = (I - 1)(J - 1). When H_0 is true, $X^2 \stackrel{\bullet}{\sim} \chi^2_{(I-1)(J-1)}$.

The LRT statistic boils down to

$$G^{2} = 2 \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} \log(n_{ij}/\hat{\mu}_{ij}),$$

and is also $G^2 \stackrel{\bullet}{\sim} \chi^2_{(I-1)(J-1)}$ when H_0 is true.

•
$$X^2 - G^2 \xrightarrow{p} 0.$$

- The approximation is better for X^2 than G^2 in smaller samples.
- The approximation can be okay when some

 \u03c6 i_{j} = n_{i+}n_{+j}/n
 are as
 small as 1, but most are at least 5.
- When in doubt, use small sample methods.
- Everything holds for product multinomial sampling too (fixed marginals for one variable)!

3.3.1 Pearson and standardized residuals

• Rejecting $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$ does not tell us about the nature of the association.

1

• The Pearson residual is

$$\mathbf{e}_{ij} = rac{\mathbf{n}_{ij} - \hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}}},$$

where, as before, $\hat{\mu}_{ij} = n_{i+}n_{+j}/n$ is the estimate under $H_0: X \perp Y$.

• When $H_0: X \perp Y$ is true, under multinomial sampling $e_{ij} \stackrel{\bullet}{\sim} N(0, v)$, where v < 1, in large samples.

• Note that
$$\sum_{i=1}^{I} \sum_{j=1}^{J} e_{ij}^2 = X^2$$
.

 Standardized Pearson residuals are Pearson residuals divided by their standard error under multinomial sampling.

$$r_{ij} = rac{n_{ij} - \hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}(1 - p_{i+})(1 - p_{+j})}},$$

where $p_{i+} = n_{i+}/n$ and $p_{+j} = n_{+j}/n$ are MLEs under the null model.

- Values of $|r_{ij}| > 3$ happen very rarely when $H_0: X \perp Y$ is true and $|r_{ij}| > 2$ happen only roughly 5% of the time.
- Pearson residuals and their standardized version tell us which cell counts are much larger or smaller than what we would expect under $H_0: X \perp Y$.
- **Example**: we analyze Table 3.2 in Agresti 2002 with the following SAS code, modified from Alan Agresti's website...

Table 3.2 Frequency of Education and Religious Beliefs

	Religi	ous beliefs	
Highest degree	Fundamentalist	Moderate	Liberal
Less than high school	178	138	108
High school or junior college	570	648	442
Bachelor or graduate	138	252	252

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

```
data table :
 input Degree$ Religion$ count @@:
 datalines :
 1 fund 178 1 mod 138 1 lib 108
 2 fund 570 2 mod 648 2 lib 442
 3 fund 138 3 mod 252 3 lib 252
proc format;
value $dc
 '1' = ' < HS'
 '2' = 'HS \text{ or } JC'
 '3' = '>= BA/BS':
value $rc
 'fund' = 'Fundamentalist'
 'mod' = 'Moderate'
 ' lib' = ' Liberal':
proc freq order=data; weight count;
 format Religion $rc. Degree $dc.;
  tables Degree*Religion / chisq expected measures cmh1;
proc genmod order=data; class Degree Religion;
 format Religion $rc. Degree $dc.;
  model count = Degree Religion / dist = poi link = log residuals ;
run;
```

3

< 日 > < 同 > < 三 > < 三 > .

Annotated output from proc freq:

Degree	Religior	ı		
Frequency Expected Percent Row Pct Col Pct	 Fundamen talist	Moderate	Liberal	Total
< HS	178	138	108	+ 424
	137.81	161.45	124.74	i
	6.53	5.06	3.96	15.55
	41.98	32.55	25.47	1
	20.09	13.29	13.47	
HS or JC	570	648	442	+ 1660
	539.53	632.09	488.38	1
	20.91	23.77	16.21	60.90
	34.34	39.04	26.63	
	64.33	62.43	55.11	
>= BA/BS	138	252	252	+ 642
	208.66	244.46	188.88	ĺ
	5.06	9.24	9.24	23.55
	21.50	39.25	39.25	
	15.58	24.28	31.42	1
Total	886	1038	802	- 2726
	32.50	38.08	29.42	100.00

æ

・ロン ・聞 と ・ ヨン ・ ヨン …

More...

Statistics for Table of Degree by Religion

Statistic	DF	Value	Prob
Chi-Square	4	69.1568	<.0001
Likelihood Ratio Chi-Square	4	69.8116	<.0001

Annotated output from proc genmod:

The GENMOD Procedure

Observation Statistics

			Std	Std	
Raw	Pearson	Deviance	Deviance	Pearson	Likelihood
Residual	Residual	Residual	Residual	Residual	Residual
40.192213	3.4237736	3.2748138	4.3376139	4.5349167	4.4235336
-23.44974	-1.845523	-1.893142	-2.618003	-2.552151	-2.586795
-16.74248	-1.499038	-1.534598	-1.987766	-1.941705	-1.969288
30.469522	1.3117699	1.2997048	2.5297817	2.5532655	2.5470879
15.909037	0.632782	0.630155	1.280585	1.2859234	1.2846328
-46.37857	-2.098646	-2.133249	-4.060564	-3.994696	-4.012984
-70.66184	-4.891741	-5.216165	-7.261384	-6.809756	-7.046419
7.5406572	0.4822874	0.4798392	0.6974074	0.7009655	0.6992834
63.121006	4.5928481	4.3672118	5.9453678	6.2525411	6.0887236
	Raw Residual 40.192213 -23.44974 -16.74248 30.469522 15.909037 -46.37857 -70.66184 7.5406572 63.121006	Raw Pearson Residual Residual 40.192213 3.4237736 -23.44974 -1.845523 -16.74248 -1.499038 30.469522 1.3117699 15.909037 0.632782 -46.37857 -2.098646 -70.66184 -4.891741 7.5406572 0.4822874 63.121006 4.5928481	Raw Pearson Deviance Residual Residual Residual 40.192213 3.4237736 3.2748138 -23.44974 -1.845523 -1.893142 -16.74248 -1.499038 -1.534598 30.469522 1.3117699 1.2997048 15.909037 0.632782 0.630155 -46.37857 -2.098646 -2.133249 -70.66184 -4.891741 -5.216165 7.5406572 0.4822874 0.4798392 63.121006 4.5928481 4.3672118	Raw Pearson Deviance Deviance Residual Residual Residual Residual Residual 40.192213 3.4237736 3.2748138 4.3376139 -23.44974 -1.845523 -1.893142 -2.618003 -16.74248 -1.499038 -1.534598 -1.987766 30.469522 1.3117699 1.2997048 2.5297817 15.909037 0.632782 0.630155 1.280585 -46.37857 -2.098646 -2.133249 -4.060564 -70.66184 -4.891741 -5.216165 -7.261384 7.5406572 0.4822874 0.4798392 0.6974074 63.121006 4.5928481 4.3672118 5.9453678	Std Std

- The Std Pearson Residual column has the r_{ii}. Values larger than 3 in magnitude indicate severe departures from independence.
- Observations 1 and 9, corresponding to "less than high school, fundamentalist" and "at least BS/BA, liberal" are over-represented relative to independence.
- Observations 6 and 7, corresponding to "HS or JC, liberal" and "at least BS/BA, fundamentalist" are under-represented.
- That is, we tend to see concentrations along the diagonal, so increased education is associated with increasingly liberal religious views.
- These data are ordinal; part of proc freq output is the γ statistic:

tatistic	Value	ASE
mma	0 2178	0.0281

Statistics for Table of Degree by Religion

We see a moderate, positive association.

S

Gamma

< ロ > < 同 > < 回 > < 回 > < □ > <

Education and Religious Beliefs

Figure : Mosaic Plot: Education by Religion

3.3.3 Partitioning Chi-squared

- Recall from ANOVA the partitioning of SS Treatments via orthogonal contrasts. We can do something similar with contingency tables.
- A χ^2_{ν} random variable X^2 can be written

$$X^2 = Z_1^2 + Z_2^2 + \dots + Z_{\nu_1}^2$$

where Z_1, \ldots, Z_{ν} are *iid* N(0, 1) & so Z_1^2, \ldots, Z_{ν}^2 are *iid* χ_1^2 .

- Partitioning works by testing independence in a series of (collapsed) sub-tables in a particular way.
- Say t tests are performed. The i^{th} test results in G_i^2 with associated degrees of freedom $df_i = \nu_i$. Then

$$G_1^2 + G_2^2 + \dots + G_t^2 = G^2$$
,

the LRT statistic from testing independence in the overall $I \times J$ table.

• Also, $\nu_1 + \nu_2 + \cdots + \nu_t = (I - 1)(J - 1)$, the degrees of freedom for the overall test.

 One approach is to look at a series of v = (I − 1)(J − 1) 2 × 2 tables (pp. 82-83) of the form:

$$\frac{\sum_{a < i} \sum_{b < j} n_{ab}}{\sum_{b < j} n_{ij}} \frac{\sum_{a < i} n_{aj}}{n_{ij}}$$

for i = 2, ..., I and j = 2, ..., J. Each sub-table will have $df \nu_{ij} = 1$ and $\sum_{i=2}^{I} \sum_{j=2}^{J} G_{ij}^2 = G^2$ from the overall LRT.

• Example: Origin of schizophrenia (pp. 83-84)

		Schizophrenia or	igin
Psych school	Biogenic	Environmental	Combination
Eclectic	90	12	78
Medical	13	1	6
Psychoanalytic	19	13	50

• For the full table, testing $H_0: X \perp Y$ yields $G^2 = 23.036$ on 4 df, so p < 0.001.

• When we consider (Lancaster) partitioning, we get 4 tables:

Bio	Env	$\hat{ heta}_{11} = 0.58$
90	12	$G_{11}^2 = 0.294$
13	1	p = 0.59
Bio+Env	Com	$\hat{ heta}_{12}=0.56$
102	78	$G_{12}^2 = 1.359$
14	6	p = 0.24
D'a	Г	E A
DI0	Env	$\theta_{21} = 5.4$
103	Env 13	$G_{21}^2 = 5.4$ $G_{21}^2 = 12.953$
103 19	Env 13 13	$\theta_{21} = 5.4$ $G_{21}^2 = 12.953$ p = 0.0003
103 19 Bio+Env	Env 13 13 Com	$ \begin{array}{c} \theta_{21} = 5.4 \\ G_{21}^2 = 12.953 \\ p = 0.0003 \\ \hline \hat{\theta}_{22} = 2.2 \end{array} $
Bio 103 19 Bio+Env 116	Env 13 13 Com 84	$\begin{array}{c} \theta_{21} = 5.4 \\ G_{21}^2 = 12.953 \\ p = 0.0003 \\ \hline \theta_{22} = 2.2 \\ G_{22}^2 = 8.430 \end{array}$
	Bio 90 13 Bio+Env 102 14	Bio Env 90 12 13 1 Bio+Env Com 102 78 14 6

Note that: 0.294 + 1.359 + 12.953 + 8.430 = 23.036 as required.
 Also: 1 + 1 + 1 + 1 = 4.

3

イロト 不同 トイヨト イヨト

The last two tables contribute more than 90% of the G^2 statistic.

- The first two tables suggest that eclectic and medical schools of thought tend to classify the origin of schizophrenia in roughly the same proportions.
- The last two tables suggest a difference in how the psychoanalytic school classifies the origin relative to eclectic and medical schools.
- The odds of a member of the psychoanalytical school ascribing the origin to be a combination (versus biogenic or environmental) is about 2.2 times greater than medical or eclectic. Within the last two origins, the odds of a member of the psychoanalytical school ascribing the origin to be a environmental is about 5.4 times greater than medical or eclectic.

(日)

Comments:

- Lancaster partitioning looks at a lot of tables. There might be natural, simpler groupings of X and Y levels to look at. See your text for advice and discussion on partitioning.
- Partitioning G^2 and standardized Pearson residuals are two tools to help find where association occurs in a table once $H_0: X \perp Y$ is rejected.
- There are better methods for ordinal data, the subject of the next lecture.
- There are also exact tests of $H_0: X \perp Y$ which we'll briefly discuss next time as well.

(日)