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Chapter 2 2.1 Probability Structure for Contingency Tables

2.1.1 Contingency Tables

Let X and Y be categorical variables measured on an a subject with I

and J levels respectively.

Each subject sampled will have an associated (X ,Y ); e.g.
(X ,Y ) = (female, Republican). For the gender variable X , I = 2, and
for the political affiliation Y , we might have J = 3.

Say n individuals are sampled and cross-classified according to their
outcome (X ,Y ). A contingency table places the raw number of
subjects falling into each cross-classification category into the table
cells. We call such a table an I × J table.
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If we relabel the category outcomes to be integers 1 ≤ X ≤ I and
1 ≤ Y ≤ J (i.e. turn our experimental outcomes into random variables),
we can simplify notation. In the abstract, a contingency table looks like:

nij Y = 1 Y = 2 · · · Y = J Totals
X = 1 n11 n12 · · · n1J n1+
X = 2 n21 n22 · · · n2J n2+

...
...

...
. . .

...
...

X = I nI1 nI2 · · · nIJ nI+
Totals n+1 n+2 · · · n+J n = n++

If subjects are randomly sampled from the population and cross-classified,
both X and Y are random and (X ,Y ) has a bivariate discrete joint
distribution. Let πij = P(X = i ,Y = j), the probability of falling into the
(i , j)th (row,column) in the table.
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2.1.2 Joint/Marginal/Conditional Distributions
From Chapter 2 in Christensen (1997) we have a sample of n = 52 males
aged 11 to 30 years with knee operations via arthroscopic surgery. They
are cross-classified according to X = 1, 2, 3 for injury type (twisted knee,
direct blow, or both) and Y = 1, 2, 3 for surgical result (excellent, good, or
fair-to-poor).

nij Excellent Good Fair to poor Totals
Twisted knee 21 11 4 36
Direct blow 3 2 2 7
Both types 7 1 1 9

Totals 31 14 7 n = 52

with theoretical joint probabilities:

πij Excellent Good Fair to poor Totals
Twisted knee π11 π12 π13 π1+

Direct blow π21 π22 π23 π2+

Both types π31 π32 π33 π3+

Totals π+1 π+2 π+3 π++ = 1
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The marginal probabilities that X = i or Y = j are

P(X = i) =

J
∑

j=1

P(X = i ,Y = j) =

J
∑

j=1

πij = πi+.

P(Y = j) =
I

∑

i=1

P(X = i ,Y = j) =
I

∑

i=1

πij = π+j .

A “+” in place of a subscript denotes a sum of all elements over that
subscript. We must have

π++ =
I

∑

i=1

J
∑

j=1

πij = 1.

The counts have a multinomial distribution n ∼ mult(n,π) where
n = [nij ]I×J and π = [πij ]I×J . What is (n1+, . . . , nI+) distributed?
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Often the marginal counts for X or Y are fixed by design. For
example, in a case-control study, a fixed number of cases (e.g. people
w/ lung cancer) and a fixed number of controls (no lung cancer) are
sampled. Then, a risk factor or exposure Y is compared among cases
and controls within the table. This results in a separate multinomial
distribution for each level of X. Another example is a clinical trial,
where the number receiving treatment A and the number receiving
treatment B are both fixed.

For the product of I multinomial distributions, the conditional

probabilities of falling into Y = j must sum to one for each level of
X = i :

J
∑

j=1

π
Y |X
j |i

= 1 for i = 1, . . . , I .

The notation gets out of hand. We will simplify π
Y |X
j |i to just πj |i or

perhaps πij depending on the situation, and make clear how the data
are sampled.
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The following 2× 3 contingency table is from a report by the Physicians’
Health Study Research Group on n = 22, 071 physicians that took either a
placebo or aspirin every other day.

Fatal attack Nonfatal attack No attack
Placebo 18 171 10,845
Aspirin 5 99 10,933

Here we have placed the probabilities of each classification into each cell:

Fatal attack Nonfatal attack No attack

Placebo π
Y |X
1|1

π
Y |X
2|1

π
Y |X
3|1

Aspirin π
Y |X
1|2

π
Y |X
2|2

π
Y |X
3|2

The row totals n1+ = 11, 034 and n2+ = 11, 037 are fixed and thus

π
Y |X
1|1 + π

Y |X
2|1 + π

Y |X
3|1 = 1 and π

Y |X
1|2 + π

Y |X
2|2 + π

Y |X
3|2 = 1.

Want to compare probabilities in each column.
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2.1.3 Sensitivity and Specificity for Medical Diagnoses

Diagnostic tests indicate the presence or absence of a disease or
infection. Tests are typically imperfect, i.e. there is positive
probability of incorrectly diagnosing a subject as not infected when
they are in fact infected and vice-versa.

Let D+ or D− be the true infection/disease status and T+ or T−
be the result of a diagnostic test.

Sensitivity = P(T + |D+).

Specificity = P(T − |D−).
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Let π11 = P(T+,D+), π12 = P(T+,D−), π21 = P(T−,D+), π22 =
P(T−,D−). . Let subjects be randomly sampled from the population so
that π11 + π12 + π21 + π22 = 1.
Then sensitivity is given by
Se = P(T + |D+) = P(T+,D+)/P(D+) = π11/π1+ and specificity by
Sp = P(T − |D−) = P(T−,D−)/P(D−) = π22/π+2

To get MLEs for sensitivity and specificity, simply replace each πij by its
MLE π̂ij = nij/n where nij is the number falling into category (i , j) and
n = n++.
If n1 = n1+ and n0 = n+2 are fixed ahead of time, we have product
multinomial sampling. The MLEs are exactly the same.
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Example: Strep test

Sheeler et al. (2002) describe a modest prospective trial of n = 232
individuals complaining of sore throat who were given the rapid strep
(streptococcal pharyngitis) test T . The true status of each individual D
was determined by throat culture. A 2× 2 contingency table looks like:

Table : Strep Test Results

D+ D- Total

T+ 44 4 48
T- 19 165 184

Total 63 169 232
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Table : Strep Test Results

D+ D- Total

T+ 44 4 48
T- 19 165 184

Total 63 169 232

An estimate of Se is Ŝe = P̂(T + |D+) = 44
63 = 0.70

An estimate of Sp is Ŝp = P̂(T − |D−) = 165
169 = 0.98

The estimated prevalence of strep among those complaining of sore
throat P(D+) is P̂(D+) = 63

232 = 0.27
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2.1.4 Independence of Categorical Variables

When (X ,Y ) are jointly distributed, X and Y are independent if

P(X = i ,Y = j) = P(X = i)P(Y = j) or πij = πi+π+j .

Let
π
X |Y
i |j = P(X = i |Y = j) = πij/π+j

and
π
Y |X
j |i = P(Y = j |X = i) = πij/πi+.

Then independence of X and Y implies

P(X = i |Y = j) = P(X = i) and P(Y = j |X = i) = P(Y = j).

The probability of any given column response is the same for each row.
The probability for any given row response is the same for each column.
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2.1.5 Poisson, Binomial, Multinomial Sampling

Let nij be the cell count in the (i , j)th classification.
When the sample size n = n++ is random, Poisson sampling assumes

nij
ind.
∼ Poisson(µij). Then

p(n|µ) = L(µ) =

I
∏

i=1

J
∏

j=1

e−µijµ
nij
ij /nij !.

When n = n++ is fixed but the row ni+ and column n+j totals are not we
have multinomial sampling and

p(n|π) = L(π) = n!
I
∏

i=1

J
∏

j=1

π
nij
ij /nij !.
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Finally, sometimes row (or column) columns are fixed ahead of time (e.g.
sampling n1+ = women and n2+ men and asking them if they smoke).
Then we have product multinomial sampling. Agresti prefers using
ni = ni+ for simplicity.
For a fixed X = i , there are J counts (ni1, ni2, . . . , niJ) adding to ni+ and
this vector is multinomial. Since there are I values of covariate X , we have
I independent multinomial distributions, or the product of I mult(ni ,π|i )
distributions where π|i = (π1|i , . . . , πJ|i ).

p(n|π) = L(π) =
I
∏

i=1

ni !
J
∏

j=1

π
nij
j |i /nij !.

Note: under product multinomial sampling, only conditional probabilities
πj |i can be estimated. To estimate πij requires information on the πi+
occurring naturally.
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2.1.6 Seat Belt Example

Mass. Hwy. Dept. to study seat belt use Y (yes, no) and fatality (fatal,
not fatal) X of crashes on the Mass. Turnpike.

Could just analyze data as they arise naturally. Then nij
ind.
∼ Pois(µij).

Poisson sampling.

If n = 200 police records sampled from crashes on turnpike. Then
(n11, n12, n21, n22) is mult(200,π). Multinomial sampling.

Could sample n1 = 100 fatal crash reports and n2 = 100 nonfatal
reports. Then (n11, n12) ∼ mult(100, (π1|1, π2|1)) independent of
(n21, n22) ∼ mult(100, (π1|2, π2|2)). Product multinomial sampling.
Here, there’s no information on the prevalence of fatal versus
non-fatal accidents.

Read experimental design approach.
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2.1.8 Types of Studies

Case Control
Smoker 688 650
Non-smoker 21 59
Total 709 709

In a case/control study, fixed numbers of cases n1 and controls n2 are
(randomly) selected and exposure variables of interest recorded. In
the above study we can compare the relative proportions of those who
smoke within those that developed lung cancer (cases) and those that
did not (controls). We can measure association between smoking and
lung cancer, but cannot infer causation. These data were collected
“after the fact.” Data usually cheap and easy to get. Above: lung
cancer (p. 42).
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Prospective studies start with a sample and observe them through
time.

◮ Clinical trial randomly allocates “smoking” and “non-smoking”
treatments to experimental units and then sees who ends up
with lung cancer or not. Problem with ethics here.

◮ A cohort study simply follows subjects after letting them assign their
own treatments (i.e. smoking or non-smoking) and records outcomes.

A cross-sectional design samples n subjects from a population and
cross-classifies them.

Carefully read this section. Classify each study as multinomial or
product multinomial.
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2.2.1 & 2.2.2 Difference of Proportions & Relative Risk

Let X and Y be dichotomous. Let π1 = P(Y = 1|X = 1) and let
π2 = P(Y = 1|X = 2).

The difference in probability of Y = 1 when X = 1 versus X = 2 is
π1 − π2.

The relative risk π1/π2 may be more informative for rare outcomes.
However it may also exaggerate the effect of X = 1 versus X = 2 as
well and cloud issues.
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Example: Let Y = 1 indicate presence of a disease and X = 1 indicate an
exposure.

When π2 = 0.001 and π1 = 0.01, π1 − π2 = 0.009. However,
π1/π2 = 10. You are 10 times more likely to get the disease when
X = 1 than X = 2. However, in either case the probability of getting
the disease ≤ 0.01.

When π2 = 0.401 and π1 = 0.41, π1 − π2 = 0.009. However,
π1/π2 = 1.02. You are 2% more likely to get the disease when X = 1
than X = 2. This doesn’t seem as drastic as 1000%.

These sorts of comparisons figure into reporting results concerning
public health and safety information. e.g. Hormone therapy for
post-menopausal women, relative safety of SUVs versus sedans, etc.
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2.2.3 & 2.2.4 Odds Ratios

The odds of success (say Y = 1) versus failure (Y = 2) are Ω = π/(1− π)
where π = P(Y = 1). When someone says “3 to 1 odds the Vikings will
win”, they mean Ω = 3 which implies the probability the Vikings will win
is 0.75, from π = Ω/(Ω + 1). Odds measure the relative rates of success
and failure.
An odds ratio compares relatives rates of success (or disease or whatever)
across two exposures X = 1 and X = 2:

θ =
Ω1

Ω2
=

π1/(1 − π1)

π2/(1 − π2)
.

Odds ratios are always positive and a ratio > 1 indicates the relative rate
of success for X = 1 is greater than for X = 2. However, the odds ratio
gives no information on the probabilities π1 = P(Y = 1|X = 1) and
π2 = P(Y = 1|X = 2).

D. Bandyopadhyay (VCU) 20 / 26



Chapter 2 2.2 Comparing Two Proportions

Different values for these parameters can lead to the same odds ratio.
Example: π1 = 0.833 & π2 = 0.5 yield θ = 5.0. So does π1 = 0.0005 &
π2 = 0.0001.

One set of values might imply a different decision than the other, but
θ = 5.0 in both cases.

Here, the relative risk is about 1.7 and 5 respectively.

Note that when dealing with a rare outcome, where πi ≈ 0, the
relative risk is approximately equal to the odds ratio.
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When θ = 1 we must have Ω1 = Ω2 which further implies that π1 = π2
and hence Y does not depend on the value of X . If (X ,Y ) are both
random then X and Y are stochastically independent.
An important property of odds ratio is the following:

θ =
P(Y = 1|X = 1)/P(Y = 2|X = 1)

P(Y = 1|X = 2)/P(Y = 2|X = 2)

=
P(X = 1|Y = 1)/P(X = 2|Y = 1)

P(X = 1|Y = 2)/P(X = 2|Y = 2)

You should verify this formally.
This implies that for the purposes of estimating an odds ratio, it does not
matter if data are sampled prospectively, retrospectively, or
cross-sectionally. The common odds ratio is estimated
θ̂ = n11n22/[n12n21].
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2.2.6 Case-Control Studies and the Odds Ratio

Recall there are n1 = n2 = 709 lung cancer cases and (non-lung cancer)
controls in slide 16.

The margins are fixed and we have product multinomial sampling

We can estimate π1|1 = P(Y = 1|X = 1) = n11/n1+ and
π1|2 = P(Y = 1|X = 2) = n21/n2+

but not P(X = 1|Y = 1) or P(X = 1|Y = 2).

However, for the purposes of estimating θ it does not matter!

For the lung cancer case/control data, θ̂ = 688× 59/[21 × 650] = 3.0 to
one decimal place.
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Odds of lung cancer

The odds of being a smoker is 3 times greater for those that develop
lung cancer than for those that do not.

The odds of developing lung cancer is 3 times greater for smokers
than for non-smokers.

The second interpretation is more relevant when deciding whether or not
you should take up recreational smoking.
Note that we cannot estimate the relative risk of developing lung cancer
for smokers P(X = 1|Y = 1)/P(X = 1|Y = 2).
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Recall the MLE of θ is θ̂ = n11n22/[n12n21] (from either multinomial or
product multinomial sampling!)
The standard error of θ̂ can be computed as usual from large sample
considerations. However, the distribution of log θ̂ is better approximated
by a normal distribution in smaller samples. The standard error of the
log-odds ratio is

se{log(θ̂)} =

√

1

n11
+

1

n22
+

1

n12
+

1

n21
.

For example, if we wanted a 95% CI for the odds ratio from a 2× 2 table
we compute

(exp{log θ̂ − 1.96se[log(θ̂)]}, exp{log θ̂ + 1.96se[log(θ̂)]}).

For the smoking data, this yields (1.79, 4.95). We are 95% confident that
the true odds ratio is between 1.8 and 5.0.
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Formally comparing groups

You should convince yourself that the following statements are equivalent:

π1 − π2 = 0, the difference in proportions is zero.

π1/π2 = 1, the relative risk is one.

θ = [π1/(1− π1)]/[π2/(1− π2)] = 1, the odds ratio is one.

All of these imply that there is no difference between groups for the
outcome being measured, i.e. Y is independent of X , written as Y ⊥ X .
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