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Elenleleiems
13.3.2 Opinion on legalized abortion

Response sequence
Gender (1,1,1) (1,1,0) (0,1,1) (0,1,0) (1,0,1) (1,0,0) (0,0,1) (0,0,0)
Male 342 26 6 21 11 32 19 356
Female 440 25 14 18 14 a7 22 547

Let (Yj1, Yi2, Yi3) be the response to three questions asked of the same
individual, “"Do you support legalized abortion under three scenarios: (1) if
the family has very low income, (2) the woman is unmarried & doesn't
want to get married, (3) woman wants it for any reason?” Yj =1
indicates “yes.” A covariate of interest is gender: x; = 0 for male x; =1
for female. A logistic-normal model is

logit P(Yj =1) = a+p1l{j = 1} + Bol{j = 2} +yxi+ uj, ui < N(0,02).
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Chapter 13 Binary mixed model examples

Within the same individual:
o Pt compares the odds of “support legalized abortion” comparing
“poor” to “any reason.”
o e compares the odds of “support legalized abortion” comparing
“single” to “any reason.”
o %2751 compares the odds of “support legalized abortion” of “single”
to “poor.”

@ €7 compares the odds of “support legalized abortion” comparing
females to males.
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Chapter 13

Agresti's SAS code:

data new;
input sex poor single any count;
datalines ;
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Chapter 13 Binary mixed model examples

data newl; set new;
sex = sex—1; case = _n_;
ql=1; q2=0; resp = poor; output;
ql=0; q2=1; resp = single; output;
ql=0; q2=0; resp = any; output;
drop poor single any;
proc nlmixed data=newl gpoints = 50;
parms alpha=0 betal=.8 beta2=.3 gamma=0 sigma=8.6;
eta = alpha + betalxql + beta2xq2 + gammasxsex + u;
p = exp(eta)/(1 + exp(eta));
model resp ~ binary(p);
random u ~ normal(0,sigmaxsigma) subject = case;
replicate count;

| added the following to get estimates of interest:

estimate 'odds:  poor vs. any ' exp(betal);
estimate 'odds: single vs. any ' exp(beta2);
estimate 'odds: single vs. poor’ exp(beta2—betal);
estimate 'odds: female vs. male’ exp(gamma);
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Chapter 13 Binary mixed model examples

The output looks like:

Standard
Parameter Estimate Error
alpha —0.6222 0.3812
betal 0.8358 0.1602
beta2 0.2929 0.1568
gamma 0.01272 0.4936
sigma 8.7878 0.5565
Label Estimate
odds: poor vs. any 2.3068

odds: single vs.
odds: single vs.
odds: female vs.

According to

Least?

any 1.3403
poor 0.5810
male 1.0128

Parameter Estimates

DF t Value
1849 —1.63

1849
1849
1849

5.22
1.87
0.03

1849 15.79

Standard
Error
0.3695
0.2102
0.09137
0.5000

Additi

DF
1849
1849
1849
1849

Pr> |t]
0.1028
<.0001
0.0619
0.9794
<.0001

Alpha Lower
0.05 —1.3698
0.05 0.5217
0.05 —0.01465
0.05 —0.9554
0.05 7.6964

onal Estimates

t Value
6.24
6.38
6.36
2.03

Pr > |t]| Alpha
<.0001 0.05
<.0001 0.05
<.0001 0.05
0.0429 0.05

Upper
0.1255
1.1500
0.6004
0.9809
9.8791

Lower
1.5821
0.9281
0.4018

0.03226

Gradient
0.000588

—0.0004
0.000506
0.000306
—0.00032

Upper
3.0314
1.7525
0.7602
1.9933

this (additive) model, there are significant differences within
individuals on how they feel about legalized abortion depending on the
circumstance. There is no significant difference due to gender. Under
which circumstance is one's position on legalized abortion most favorable?
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Chapter 13 Binary mixed model examples

The estimate of & = 8.8 is quite large relative to the magnitude of the
fixed effects (which are all less than unity). This reflects extreme
heterogeneity in subject-to-subject response clusters (Yi1, Yi2, Yi3). 1595
of 1850 subjects answered either (0,0,0) or (1,1,1). Does this also agree
with what we know about abortion as a “polarizing issue?”

Code to fit the marginal exchangeable model via GEE looks like:
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Chapter 13 Binary mixed model examples

data new2; set new;
case=0; seq=_n_; * nesting case within sequence type (yl,y2,y3);
do i=1 to count;
case=case+1;
ql=1; q2=0; resp = poor; output;
ql=0; q2=1; resp = single; output;
ql=0; q2=0; resp = any;  output;
end;
drop poor single any i count;
proc genmod data=new?2; class case sex seq;
model resp=ql g2 sex / dist=bin link=logit;
repeated subject=case(seq) / type=exch;

This code makes use of nesting. Instead of having one case index
i=1,...,1850 for each individual, | have case nested within the type of
sequence (Y1, Y2, Y3), i =1,...,j(i) where j(1) = 342, j(2) = 26, etc.,
J(16) = 457. This allows me to quickly get the data into a form SAS can
use in PROC GENMOD. Output:
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Chapter 13 Binary mixed model examples

GEE Model Information

Correlation Structure Exchangeable
Subject Effect case(seq) (1850 levels)
Number of Clusters 1850
Correlation Matrix Dimension 3
Maximum Cluster Size 3
Minimum Cluster Size 3

Exchangeable Working
Correlation

Correlation 0.8173308153
Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr> |Z|
Intercept —0.1219 0.0607 —0.2408 —0.0030 —2.01 0.0446
ql 0.1493 0.0297 0.0911 0.2076 5.02 <.0001
q2 0.0520 0.0270 —0.0010 0.1050 1.92 0.0544
sex 1 —0.0034 0.0878 —0.1756 0.1687 —0.04 0.9688
sex 2 0.0000 0.0000 0.0000 0.0000 . .
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Chapter 13 Binary mixed model examples

As before, we see attenuation of the effects towards zero in the marginal
model. From the conditional model we compute
&¢=1/y/1+0.346(8.79)2 = 0.190. Note that 0.149 is very close to
0.159 = 0.190(0.836).

We can estimate the population ratio of odds for “poor” versus “single”
by adding the command:

estimate "odds poor vs. single" ql 1 q2 -1 / exp;

to the PROC GENMOD statement yielding:

Contrast Estimate Results

Standard Chi—
Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq
odds poor vs. single 0.0973 0.0275 0.05 0.0434 0.1513 12.50 0.0004
Exp(odds poor vs. single) 1.1022 0.0303 0.05 1.0443 1.1633
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Elenleleiems
13.3.3. Longitudinal study of mental health

Table 11.2 (p. 459) houses data from a longitudinal study comparing a
new drug with a standard drug for treatment of subjects suffering mental
depression. n = 340 Patients were either mildly or severely depressed upon
admission into the study. At weeks 1, 2, and 4, corresponding to

J = 1,2,3, patient i's suffering Yj; was classified as normal Yj; =1 or
abnormal Yj; = 0. Let s5; = 0,1 be the severity of the diagnosis (mild,
severe) and d; = 0,1 denote the drug (standard, new).

We treat time as a categorical predictor and fit a marginal logit model
with an exchangeable correlation structure:
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Chapter 13 Binary mixed model examples

data depress;
infile "E:/ CategoricalDataAnalysis /Spring2013/Chapterl13/depress.txt"”;
input case diag treat time outcome; time=time+1;
ql=0; q2=0; if time=1 then ql=1; if time=2 then q2=1;

proc genmod descending; class case time;
model outcome = diag treat time treatxtime
/ dist=bin link=logit type3;
repeated subject=case / type=exch corrw;
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Chapter 13 Binary mixed model examples

GEE Model Information

Correlation Structure Exchangeable
Subject Effect case (340 levels)
Number of Clusters 340
Correlation Matrix Dimension 3

Working Correlation Matrix

Coll Col2 Col3
Row1l 1.0000 —0.0034 —0.0034
Row2 —0.0034 1.0000 —0.0034
Row3 —0.0034 —0.0034 1.0000

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr> |Z]
Intercept 0.9812 0.1841 0.6203 1.3421 5.33 <.0001
diag —1.3117 0.1453 —1.5964 —1.0269 —9.03 <.0001
treat 2.0427 0.3061 1.4428 2.6426 6.67 <.0001
time 1 —0.9601 0.2379 —1.4265 —0.4938 —4.04 <.0001
time 2  —0.6207 0.2372 —1.0855 —0.1559 —2.62 0.0089
time 3 0.0000 0.0000 0.0000 0.0000 . .
treatxtime 1 —2.0975 0.3923 —2.8663 —1.3287 —5.35 <.0001
treatxtime 2 —1.0958 0.3900 —1.8602 —0.3314 —2.81 0.0050
treatxtime 3 0.0000 0.0000 0.0000 0.0000

D. Bandyopadhyay (VCU)

13/ 32



Chapter 13 Binary mixed model examples

Score Statistics For Type 3 GEE Analysis

Chi—
Source DF Square Pr > ChiSq
diag 1 70.83 <.0001
treat 1 40.38 <.0001
time 2 15.73 0.0004
treatxtime 2 29.52 <.0001

We see a severe diagnosis (s = 1) significantly decreases the odds of a
normal classification by a factor of e71-31 = 0.27. The odds (or normal
classification) ratio comparing the new drug to the standard drug changes
with time because of the interaction. At 1 week it's €204299 = (.95, and
week 2 it's e204-110 — 2 6 and at 4 weeks it's €290 = 7.7. The new
drug is better, but takes time to work.
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Chapter 13 Binary mixed model examples

Here, the focus is on whole populations of patients at 1, 2, and 4 weeks,
and on the new drug versus the standard drug. These interpretations are

not within the individual.
We now consider a conditional analysis

logit P(Yjj=1) = o+ Bisi+ fod; + B31{j = 1} + Bal{j = 2}
+851{j = 1}d; + Bel{j = 2}d; + u;

where u; ~ N(0,02).
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Chapter 13 Binary mixed model examples

| round parameter estimates from the GEE approach to use as starting
values and fix gpoints=200 (more on this later):

proc nlmixed gpoints=200;
parms a=1 bl=—1 b2=2 b3=—1 b4=—-0.5 b5=—2 b6=—1 sig=.1;
eta = a+blxdiag+b2«treat+b3xql+bdxq2+bbxqlxtreat+b6xq2+treat+u;
p = exp(eta)/(1+exp(eta));
model outcome ~ binary(p);
random u ~ normal(0, sigxsig) subject=case;
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Chapter 13 Binary mixed model examples

Parameter
a

bl

b2

b3

b4

b5

b6

sig

Estimate
0.9822
—1.3131
2.0450
—0.9610
—0.6213
—2.1002
—1.0971
0.07027

Standard

HOOoOoOOoooo

Error
1844
1543
3129
2313
2256
3958
3852
1428

DF
339
339
339
339
339
339
339
339

t

The NLMIXED Procedure
AIC (smaller

Value
5.33
—8.51
6.54
—4.15
—2.75
—5.31
—2.85
0.06

is

better)

Pr> |t
<.0001
<.0001
<.0001
<.0001
0.0062
<.0001
0.0047
0.9510

Alpha

coocoooooo

05
05
05
05
05
05
05
05

1176.8

Lower
0.6194
—1.6165
1.4296
—1.4160
—1.0650
—2.8788
—1.8548
—2.1777

Upper
1.3450
—1.0097
2.6605
—0.5060
—0.1775
—1.3217
—0.3394
2.3182

Gradient
0.000363
0.000909
0.000101
—0.00049
0.000303

0.00004
—0.00046
0.002123

The estimate 6 = 0.07 is small relative to the magnitude of the fixed
effects. Let's refit the model without the random effects part:
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Chapter 13 Binary mixed model examples

proc nlmixed;

parms a=1 bl=—1 b2=1 b3=-1.5 b4=—-1 b5=-0.5 b6=-0.5;
eta = a+blxdiag+b2xtreat+b3+ql+bdxq2+bbxqlxtreat+bbxq2+treat;

p = exp(eta)/(1+exp(eta));
model outcome ~ binary(p);

with output:

Parameter Estimate

a

bl
b2
b3
b4
b5
b6
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0.9812
—1.3116

2.0430
—0.9600
—0.6206
—2.0980
—1.0961

Standard

cooocoocoooo

Error
1809
1462
3056
2290
2245
3893
3838

AIC (smaller

DF
1020
1020
1020
1020
1020
1020
1020

t Value
5.43
—8.97
6.68
—4.19
—2.76
—5.39
—2.86

is

better)

Pr> |t
<.0001
<.0001
<.0001
<.0001
0.0058
<.0001
0.0044

Alpha

cooocoocoooo

05
05
05
05
05
05
05

1174.8

Lower
0.6263
—1.5985
1.4432
—1.4093
—1.0612
—2.8619
—1.8491

Upper
1.3360
—1.0247
2.6427
—0.5107
—0.1800
—1.3342
—0.3431

Gradient
0.000029
0.000048
6.903E—6
6.676 E—6
0.000017
—4.79E—6
0.000018
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Chapter 13 Binary mixed model examples

@ The AIC drops without the random effects! We have rather strong
evidence that observations within a cluster (an individual here, taken
at 1, 2, and 4 weeks) are essentially independent when adjusted for
baseline covariates.

@ Note that the regression coefficients are essentially the same as those
obtained from PROC GENMOD using the GEE approach. The
absence of subject-to-subject heterogeneity implies that the marginal
and conditional models are essentially the same.
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Chapter 13 Binary mixed model examples

13.3.5. Clinical trial example

Clinical trial with 8 centers; two creams compared to cure infection.

Response Y
Center Z = k Treatment X Success Failure §XY(k) ‘

1 Drug 11 25 1.2
Control 10 27

2 Drug 16 4 1.8
Control 22 10

3 Drug 14 5 4.8
Control 7 12

4 Drug 2 14 23
Control 1 16

5 Drug 6 11 oo
Control 0 12

6 Drug 1 10 [=S)
Control 0 10

7 Drug 1 4 2.0
Control 1 8

8 Drug 4 2 0.3
Control 6 1
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Chapter 13 Binary mixed model examples

Center-to-center variability in how people respond to treatment can be
incorporated in the conditional model

: jid
logit P(Yjj =1) =+ Bxj+ uj, ui,...,us < N(0,5?),

where x;; = 0 for drug and x;; = 1 for control.
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Chapter 13 Binary mixed model examples

SAS code:

data ctrl;
input center$ treat s n @QQ; f=n—s; treat=treat—1;
datalines ;
alll3a21037 b11620b 22232
c11419¢c27 19 d12 16d21 17
el6 17e20 12 f11 11f20 10
gll 5g21 9 hl4 6h26 7
data ctr2; set ctrl;
do i=1to n; if i<=s then y=1; else y=0; output; end;
proc nimixed data=ctr2 qpoints=100;
eta=alpha+betaxtreat+u;
p=exp(eta)/(1+exp(eta));
model y ~ binary(p);
random u ~ normal(0,sigxsig) subject=center; run;
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Chapter 13 Binary mixed model examples

with output:

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper Gradient
alpha —0.4591 0.5508 7 —0.83 0.4320 0.05 —1.7616 0.8433 0.000013
beta —0.7385 0.3004 7 —2.46 0.0436 0.05 —1.4489 —0.02808 2.115E—6
sig 1.4008 0.4261 7 3.29 0.0133 0.05 0.3934 2.4083 0.000033

Within a given clinic, the odds of curing the infection is estimated to be
(significantly) 1/e7973% = 2.1 times greater on the drug versus the
control. SAS will output empirical Bayes estimates of vy, ..., ug by adding
out=re (or whatever you want to call the new data set) to the random
statement. Here they are:
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u

Obs
1
2
3
4
5
6
7
8

T0@ w0 Q0 T

u
u
u
u
u
u
u

center Effect

Estimate

—0.09886
1.85011
0.99147

—1.29471

—0.55775

—1.60169

—0.70444
1.73721

cooocooooo

StdErr

Pred
57554
60147
60198
69606
64815
81836
76815
74864

F

tValue
—0.17177
3.07598
1.64702
—1.86006
—0.86052
—1.95719
—0.91706
2.32047

NNNNNN~N~ND

cocooooooo

Probt
86848
01792
14355
10520
41800
09120
38961
05336

Alpha

cocooocoooo

05
05
05
05
05
05
05
05

Lower
—1.45980
0.42786
—0.43199
—2.94062
—2.09038
—3.53681
—2.52081
—0.03306

WHOOONWHR

Upper
26208
27235
41493
35121
97488
33343
11194
50747

Which clinic has the best overall success? Is it significant? Multiple
testing needs to be considered, e.g. by controlling false discovery rate,
particularly when the number of random effects is large.
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Marginal model Using GEE:

proc genmod data=ctr2 descending; class center;
model y = treat / dist=bin link=logit type3;
repeated subject=center / type=exch corrw; run;

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr> |Z|
Intercept —0.3201 0.4111 —1.1259 0.4858 —0.78 0.4363
treat —0.5540 0.2330 —1.0106 —0.0974 —2.38 0.0174

As expected, the marginal effect of —0.554 is similar to the corresponding
marginal effect of —0.7385/1/1 + 0.346 x 1.40082 = —0.5699 computed
from GLMM.
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(o[ ETTBKIN  13.6 Fitting binary GLMMs in PROC NLMIXED

The GLMM is a hierarchical model, e.g. with logit link:

/ .
ind. xU,B—i-zUu,
Y,-j\u,- ~" Bern — |
1 exij,B—i-z,.ju,-

UL, ... u, NG (0, X).

Conditional on the random effect uj, the elements in Y; = (Yi1,..., Yir;)
are independent. So the conditional PDF of Y|u; is

T; xﬁ—i—z u; Yij 1 1-yj
i) =1 v (ramm)

Jj=

However, the uy, ..., u, are not model parameters. The model parameters
are (B,X). We need the to maximize the marginal likelihood

[,(B, Z) = p(y17 e 7Yn‘:3u Z)
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(o[ ETTBKIN  13.6 Fitting binary GLMMs in PROC NLMIXED

The unconditional (or marginal) PDF of Y; is

T; x’..ﬁ+z’..u,~ yii
e ij
o) = [ HL——i—mﬁmh

RY 1+exﬁ+zu’

where p(u;|X) is a Ng(0,X) PDF. The u; is integrated out and this is a
function of (3, X) only. The likelihood is the product of these

i x ,6+z u; )yu

zmm—H/

W p(u,'|Z)du,-.
j=1

This involves n g-dimensional integrals that do not have closed-form.
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(o[ ETTBKIN  13.6 Fitting binary GLMMs in PROC NLMIXED

PROC NLMIXED estimates the integrals (for a “current” quasi-Newton
value of (3, X)) using adaptive Gauss-Hermite quadrature. This approach
approximates the integrals above by sums

Q
/ h(u;)p(u;|X)du; ~ Z cich(sk),
R9 k=1

for arbitrary h(-) where Q is the number of quadrature points s1,...,sg
and ¢, ..., cqo are weights. The (adaptive) quadrature points and weights
are chosen from a theory on integral approximations; we don't need to
worry about that here.
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(o[ ETTBKIN  13.6 Fitting binary GLMMs in PROC NLMIXED

Marginal model estimates the population-averaged effects of treatment
while GLMM estimates subject-specific effects of treatment. Assuming a
logit link, and let Trt;; = 0,1 for placebo or active drug, and Race; = 0,1
for Race = black or white. Consider a marginal model with the form of

logit(P(Yjj = 1)) = ap + aq Trtjj + azx Race;,
and a random effects model with the form of

logit(P(Yjj = 1)) = Bo + S1 Trtjj + f2Racej + pi,
pi ~ N(0,0?).
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(LTI KRN 13.6 Fitting binary GLMMs in PROC NLMIXED

@ Interpretation of 1 and fSi:

» The estimated treatment effect from the marginal model (using GEE)
describes how the odds of an outcome would increase (or decrease) in
the study population if individuals were treated with the active drug
(versus placebo) (or comparing treated individuals versus untreated
individuals);

» The estimated treatment effect from the GLMM describes how the
odds of an outcome increases (or decreases) for a typical (or any)
individual if treated with the active drug (versus placebo) (or comparing
a typical treated individual versus a typical untreated individual);

> Here "treatment” variable is considered as manageable or controllable,
a counterfactual interpretation is thus easy to understand (i.e.,
comparing a typical subject if treated vs. if not treated).
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(LTI KRN 13.6 Fitting binary GLMMs in PROC NLMIXED

@ Interpretation of ap and (o:

» The estimated "Race” effect from the marginal model (using GEE)
describes how the odds of an outcome would increase (or decrease) in
the study population if individuals were white (versus if they were
black) (or comparing white individuals versus black individuals);

» The estimated " Race” effect from the GLMM describes how the odds
of an outcome increases (or decreases) for a typical white individual
versus a typical black individual (by using word "typical”, it emphasizes
the " conditional” effect that we are comparing a white individual with
a black individual who have similar random effect p;).

» Here "Race” variable is considered as not manageable/controllable, a
counterfactual interpretation is a bit difficult to understand (i.e.,
conditional effect of a subject being "white" vs the subject being
"black”).
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(o[ ETTBKIN  13.6 Fitting binary GLMMs in PROC NLMIXED

@ 13.6.5 discusses testing Hy : 0 = 0 versus Hy : ¢ > 0 in a simple
model with univariate uq, ..., up £ N(0,52). Fit the full model with
random effects compute L¢ (maximized log-likelihood), fit simpler
model without random effects 0 = 0 and get L,. Let t = —2[L, — L¢]

be the LRT statistic. The p-value for the test is p = 0.5P(x3 > t).

@ Note that can have model success~binomial(trials,prob); in
NLMIXED as well as other distributions; see the documentation.
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