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Chapter 13

Generalized Linear Mixed Models

Observations often occur in related clusters. Phrases like repeated
measures and longitudinal data get at the same thing: there’s
correlation among observations in a cluster.

Chapter 12 dealt with a generalized estimation equation procedure
(GEE) that accounted for correlation in estimating
population-averaged (marginal) effects.

This chapter models cluster correlation explicitly through random
effects, yielding a generalized linear mixed effects models (GLMM).

Let Yi = (Yi1, . . . ,YiTi
) be Ti correlated responses in cluster i . Associated

with each repeated measure Yij are fixed (population) effects β and
cluster-specific random effects ui . As usual, µij = E (Yij).
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Chapter 13

In a GLMM the linear predictor is augmented to include random effects:

g(µij) = x′ijβ + z′ijui .

for logistic regression, this is

logit P(Yij = 1) = x′ijβ + z′ijui .

Note that conditional on ui ,

E (Yij |ui ) =
ex′ijβ+z′ijui

1 + ex′ijβ+z′ijui
.
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Chapter 13

Example: A random sample of the same n = 30 graduate students were
asked “do you like statistics?” once a month for 4 months.

Yij = 1 if “yes” and Yij = 0 if no. Here, i = 1, . . . , 30 and
j = 1, . . . , 4.

Covariates might include mij , the average mood of the student over
the previous month (mij = 0 is bad, mij = 1 is good), the degree
being sought (di = 0 doctoral, di = 1 masters), the month tj = j , and
pj the number of homework problems assigned in PubH 7407 in the
previous month.

A GLMM might be

logit P(Yij = 1) = β0 + β1mij + β2di + β3pj + β4j + ui .

This model assumes that log-odds of liking statistics changes linearly
in time, holding all else constant. Alternatively, we might fit a
quadratic instead or treat time as categorical. Here, ui represents a
student’s a priori disposition towards statistics.
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Chapter 13

Let’s compare month j + 1 to month j for individual i , holding all else
(m, d , and p) constant. The difference in log odds is

(β0 + β1mij + β2di + β3pj + β4(j + 1) + ui )− (β0 + β1mij + β2di + β3pj + β4j + ui ) = β4.

Not holding everything constant we get

(β0 + β1mi,j+1 + β2di + β3pj+1 + β4(j + 1) + ui )− (β0 + β1mij + β2di + β3pj + β4j + ui )

= β1(mi,j+1 − mij ) + β3(pj+1 − pj ) + β4.

Either way, we are conditioning on individual i , or the subpopulation
of all individuals with predisposition ui ; i.e. everyone “like” individual
i to begin with.

How are eβ1 , eβ2 , eβ3 and eβ4 interpreted here?
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Chapter 13

The random effects are assumed to come from (in general) a multivariate
normal distribution

u1, . . . ,un
iid∼ Nq(0,Σ).

The covariance cov(ui ) = Σ can have special structure, e.g. exchangeable,
AR(1), or be unstructured. The free elements of Σ are estimated along
with β.

The ui can account for heterogeneity caused by omitting explanatory
variables.

They can also explicitly model overdispersion, e.g.

Yi ∼ Pois(λi ), log λi = x′iβ + ui , ui
iid∼ N(0, σ2).
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Logit model for binary matched pairs

Example: PV data.

2008 Election
2004 Election Democrat Y = 1 Republican Y = 2 Total

Democrat X = 1 n11 = 175 n12 = 16 n+1 = 191
Republican X = 2 n21 = 54 n22 = 188 n+2 = 242

Total n1+ = 229 n2+ = 204 n++ = 433

Recall j = 1, 2 denotes a binary covariate; for the PV data it’s time.

logit P(Yij = 1) = α + ui + βI{j = 2008}.

Here, eβ is a cluster-specific odds ratio. We further assume ui
iid∼ N(0, σ2).
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Recall that when fitting this type of data using marginal model in
GENMOD, β̂ = log [(n+1/n+2)/(n1+/n2+)]

= log [(229/204)/(191/242)] = 0.352 and so e β̂ = 1.42.

Recall that when fitting a conditional logistic regression, a close form

estimate of β exists β̂ = log(n21/n12) = 1.22 and and so e β̂ = 3.38,
σ̂(β̂) =

√
1/n21 + 1/n12 = 0.28.

When the sample log odds ratio log(n11n22n21n12
) ≥ 0, σ̂ > 0,

β̂ = log(n21/n12).

When the sample log odds ratio log(n11n22n21n12
) < 0, σ̂ = 0,

β̂ = log [(n+1/n+2)/(n1+/n2+)].

Although explicit forms exist, we’ll fit this in SAS using two different
data structures for illustrative purposes.
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In the following code, first is conditional logistic approach from Chapter
11, second is marginal GEE logistic approach from Chapter 12.

data Data1;
do ID=1 to 175; dem=1; time=0; output; dem=1; time=1; output; end;
do ID=176 to 191; dem=1; time=0; output; dem=0; time=1; output; end;
do ID=192 to 245; dem=0; time=0; output; dem=1; time=1; output; end;
do ID=246 to 433; dem=0; time=0; output; dem=0; time=1; output; end;
∗ conditional logistic regression ;
proc logistic data=Data1; strata ID;
model dem(event=’1’)=time;
∗ marginal inference , appropriately accounting for within−subject correlation ;
proc genmod data=Data1 descending; class ID;
model dem=time / link=logit dist=bin;
repeated subject=ID / corr=exch corrw; run;
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Here is the GLMM approach of Chapter 13 with ui
iid∼ N(0, σ2):

proc nlmixed data=Data1 maxiter=100 method=GAUSS qpoints=100;
parms beta0=−1.0 beta1=1.0 sigma=5.0;
eta = beta0+beta1∗time+u;
pi = exp(eta)/(1+exp(eta));
model dem ˜ binary(pi );
random u ˜ normal(0,sigma∗sigma) subject=ID out=empBayesUA;
∗ OUT requests an output data set containing empirical Bayes estimates of
∗ the random effects and their approximate standard errors of prediction ;
estimate ’ subject− specific OR of 08/04’ exp(beta1);

data matched; input case occasion response count @@; datalines ;
1 0 1 175 1 1 1 175 2 0 1 16 2 1 0 16
3 0 0 54 3 1 1 54 4 0 0 188 4 1 0 188
;
proc nlmixed data=matched maxiter=100 method=GAUSS qpoints=100;

eta = beta0 + beta1∗occasion + u;
p = exp(eta)/(1 + exp(eta));
model response ˜ binary(p);
random u ˜ normal(0, sigma∗sigma) subject = case out=empBayesUB;
replicate count;run;
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Output from the first fit:

Parameter E s t ima t e s
Standard

Parameter Es t imate E r r o r DF t Value Pr > | t | Alpha Lower Upper G rad i en t
beta0 −0.8170 0 .3427 432 −2.38 0 .0176 0 .05 −1.4906 −0.1434 0.00018
beta1 1 .2164 0 .2846 432 4 .27 <.0001 0 .05 0 .6570 1 .7759 0.000308
sigma 5.2169 0 .6976 432 7 .48 <.0001 0 .05 3 .8458 6 .5881 0.000054

Add i t i o n a l E s t ima t e s
Standard

Labe l Es t imate E r r o r DF t Value Pr > | t | Alpha Lower
s ub j e c t−s p e c i f i c OR o f 08/04 3 .3751 0 .9607 432 3 .51 0 .0005 0 .05 1 .4869

Read through 13.1.5: random effects versus conditional approach.
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NLMIXED option METHOD=value specifies the method for
approximating the integral of the likelihood over the random effects. Valid
values are as follows:

FIRO specifies the first-order method of Beal and Sheiner (1982).
When using METHOD=FIRO, you must specify the NORMAL
distribution in the MODEL statement and you must also specify a
RANDOM statement.
GAUSS specifies adaptive Gauss-Hermite quadrature (Pinheiro and
Bates 1995). You can prevent the adaptation with the NOAD option
or prevent adaptive scaling with the NOADSCALE option. This is the
default integration method.
HARDY specifies Hardy quadrature based on an adaptive trapezoidal
rule. This method is available only for one-dimensional integrals; that
is, you must specify only one random effect.
ISAMP specifies adaptive importance sampling (Pinheiro and Bates
1995). You can prevent the adaptation with the NOAD option or
prevent adaptive scaling with the NOADSCALE option. You can use
the SEED= option to specify a starting seed.
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Alternative coding using GLIMMIX with an adaptive Gauss-Hermite
quadrature approximation to marginal integrated likelihood:

proc glimmix data=Data1 METHOD=QUAD (qpoints=100); class ID;
model dem(event=’1’) = time /s link=logit dist =bin;
random INTERCEPT/subject=ID;

run;
Output from GLIMMIX:

Covariance Parameter Estimates
Standard

Cov Parm Subject Estimate Error
Intercept ID 27.2157 7.2788

Standard
Effect Estimate Error DF t Value Pr > |t |
Intercept −0.8170 0.3427 432 −2.38 0.0176
time 1.2164 0.2846 432 4.27 <.0001
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NOTE:

Default METHOD = option for GLIMMIX is RSPL.

METHOD=QUAD (LAPLACE, RSPL, MSPL, RMPL, MMPL).
Estimation methods ending in ”PL” are pseudo-likelihood techniques.
The first letter of the METHOD= identifier determines whether
estimation is based on a residual likelihood (”R”) or a maximum
likelihood (”M”). The second letter identifies the expansion locus for
the underlying approximation. Pseudo-likelihood methods for
generalized linear mixed models can be cast in terms of Taylor series
expansions (linearizations) of the GLMM. The expansion locus of the
expansion is either the vector of random effects solutions (”S”) or the
mean of the random effects (”M”). The expansions are also referred
to as the ”S”ubject-specific and ”M”arginal expansions. The
abbreviation ”PL” identifies the method as a pseudo-likelihood
technique.
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Chapter 13 13.2 Logistic normal model

A special, often-used case of the GLMM.
The logistic normal model is given by:

logit P(Yij = 1|ui ) = x′ijβ + ui , ui
iid∼ N(0, σ2).

When σ = 0 we get the standard logistic regression model, when σ > 0 we
account for extra heterogeneity in clustered responses (each i is a cluster
with it’s own random ui ).
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Chapter 13 13.2 Logistic normal model

Connection between marginal and conditional models
In the GEE approach, the marginal means are explicitly modeled:

µij = E (Yij) = g−1(x′ijβ),

and correlation among (Yi1, . . . ,YiTi
) is accounted for in the estimation

procedure.
The conditional approach models the means conditional on the random
effects:

E (Yij |ui ) = g−1(x′ijβ + z′ijui ).

The corresponding marginal mean is given by

E (Yij) =

∫
Rq

g−1(x′ijβ + z′ijui )f (ui ; Σ)dui .
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In general, this is a complicated function of β.

However for the logistic-normal model when σ is “small,” we obtain
(not obvious)

E (Yij) ≈ exp(cx′ijβ)/[1 + exp(cx′ijβ)],

where c = 1/
√

1 + 0.346σ2 (See Zeger, Liang and Albert 1988). The
marginal odds change by approximately ecβs when xijs is increased by
unity.

Because c < 1, the marginal effect is smaller than the conditional
effect, reflecting that we are averaging with respect to the population.
Note that the larger σ is, the more subject-to-subject variability there
is, and the smaller the averaged effect ĉβ̂s becomes. See Page 496,
Figure 13.1.
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Chapter 13 13.2 Logistic normal model
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Figure : Logistic Random-intercept Model: Subject-specific vs Marginal curves

D. Bandyopadhyay (VCU) 18 / 23



Chapter 13 13.2 Logistic normal model

From problem 13.25: The GLMM for binary data using probit link
function is Φ−1[P(Yij = 1|ui )] = x′ijβ + z′ijui , one can easily prove

that Φ−1[P(Yij = 1)] = x′ijβ(1 + z′ijΣzij)
−1/2. In the univariate

random intercept case, it means that the marginal effect equals to
that from the GLMM divided by

√
1 + σ2.
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Chapter 13 13.2 Logistic normal model

PV data, a final look. Here, ĉ = 1/
√

1 + 0.346(5.22)2 = 0.31. Then
e1.22(0.31) = 1.46. Recall that the GEE approach yields e0.35 = 1.42; a very
good approximation! Also recall that the conditional approach yielded
e1.22 = 3.38. Annotated output:

The LOGISTIC Procedure
An a l y s i s o f Maximum L i k e l i h o o d Es t ima t e s

Standard Wald
Parameter DF Est imate E r r o r Chi−Square Pr > ChiSq
t ime 1 1.2164 0 .2846 18.2627 <.0001

The GENMOD Procedure

Exchangeab le Working
C o r r e l a t i o n

C o r r e l a t i o n 0.6910151517
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Chapter 13 13.2 Logistic normal model

Ana l y s i s Of GEE Parameter E s t ima t e s
Emp i r i c a l Standard E r r o r E s t ima t e s

Standard 95% Con f i dence
Parameter Es t imate E r r o r L im i t s Z Pr > |Z |

I n t e r c e p t −0.2367 0 .0968 −0.4264 −0.0470 −2.45 0 .0145
t ime 0 .3523 0 .0761 0 .2031 0 .5014 4 .63 <.0001

The NLMIXED Procedure
Parameter E s t ima t e s

Standard
Parameter Es t imate E r r o r DF t Value Pr > | t | Alpha Lower Upper G rad i en t
beta0 −0.8170 0 .3427 432 −2.38 0 .0176 0 .05 −1.4907 −0.1434 −0.00012
beta1 1 .2164 0 .2846 432 4 .27 <.0001 0 .05 0 .6569 1 .7758 −0.00001
sigma 5.2169 0 .6976 432 7 .48 <.0001 0 .05 3 .8457 6 .5880 −0.00005

D. Bandyopadhyay (VCU) 21 / 23
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Text comments:

In epi studies, often want to compare disease prevalence across
groups. Then it’s of interest to compute marginal odds ratios and
compare them.

We did not discuss MLE approach to marginal models; uses a huge
multinomial distribution; can be unstable. See text.

Direction and significance of effects usually the same across
marginal/conditional models (e.g. PV data).
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The more variability that’s accounted for in the conditional model,
the more we can “focus in” on the conditional effect of covariates.
This is true in any situation where we block. This has the effect
enlarging β̂s estimates under a conditional model.

When correlation is small, independence is approximately achieved,
and marginal and conditional modeling yield similar results.

GLMMs are being increasingly used, in part due to the availability of
standard software to fit them!

Bayesian approach is also natural here.
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