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Chapter 12

Example of repeated measures:

Data are comprised of several repeated measurements on the same
individual over time, e.g. Yij might indicate an acne outbreak for
patient i in month j .

Data are recorded in clusters, e.g. Yij might indicate the presence of
tooth decay for tooth j in patient i .

Data are from naturally associated groups, e.g. Yij might denote a
successful treatment of patient j at clinic i .

In all of these examples, the repeated measurements are (typically
positively) correlated within an individual or group.
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Let Ti binary responses Yi = (Yi1, . . . ,YiTi
) come from the i th cluster

(individual, litter, clinic, etc.) Let µi = (µi1, . . . , µiTi
) where µij = E (Yij).

Let xij be a p × 1 vector of explanatory variables.
We assume the vectors Y1, . . . ,Yn are independent, but that elements of
Yi are correlated. Common choices are

R(α) = corr(Yi) =















1 α α · · · α
α 1 α · · · α
α α 1 · · · α
...

...
...

. . .
...

α α α · · · 1















Ti×Ti

exchangeable, and

R(α) = corr(Yi) =















1 α α2 · · · αTi−1

α 1 α · · · αTi−2

α2 α 1 · · · αTi−3

...
...

...
. . .

...
αTi−1 αTi−2 αTi−3 · · · 1















Ti×Ti

AR(1).
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Others are

R(α) = corr(Yi) =















1 α12 α13 · · · α1T

α12 1 α23 · · · α2T

α13 α23 1 · · · α3T
...

...
...

. . .
...

α1T α2T α3T · · · 1















T×T

unstructured,

and R = corr(Yi ) =















1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1















Ti×Ti

independence.
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You can also specify a fixed, known R as well as m-dependent MDEP(m)
which yields R(α) as

corr(Yij ,Yi ,j+t) =







1 t = 0
αt t = 1, . . . ,m
0 t > m







.

Unstructured most general; often a default choice. Need balance? i.e.
Ti = T for all i? Not sure.

Exchangeable useful when time is not important and correlations
thought to be approximately equal, e.g. repeated measurements on
individual in crossover study, measurements across several individuals
from clinic i .

AR(1) useful when serial correlation plausible, e.g. repeated
measurements across equally spaced time points on individual.
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Comments:

These correlation matrices are used in a GEE algorithm (sketched
below) in PROC GENMOD.

Repeated measures are accounted for via REPEATED statement.

The order of (Yi1, . . . ,YiT ) makes a difference with some R(α). If
ordering is different to that defined in the DATA step, one can use the
WITHIN subcommand in the REPEATED statement to tell SAS what
the ordering is. Also used when missing some measurements in
(Yi1, . . . ,YiT ).

CORRW in the REPEATED statement gives the final working
correlation matrix estimate.

Elements of β are interpreted as usual, but averaged over clusters.
This is a marginal interpretation.
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12.3.4 GEE Methodology: Technical Details
Let µij = g−1(x′ijβ) be the marginal mean. We assume Yij is from an
exponential family

Yij ∼ f (yij ; θij , φ) = exp{[yijθij − b(θij)]/φ+ c(yij , φ)},

where the dispersion φ is known. The GEE approach requires some
notation:

µij = E (Yij) = b′(θij) and v(µij) = var(Yij) = b′′(θij)φ.

R(α) is “working correlation matrix,” reflecting our best guess at the
true correlation structure among the elements of Yi . See the previous
slide. Choice of R(α) can be made based on QIC (Pan, 2001).

Bi = diag(b′′(θi1), . . . , b
′′(θiTi

)) is a diagonal matrix with var(Yij)/φ
along the diagonal.

Vi = B
1/2
i R(α)B

1/2
i φ is the working covariance matrix.

Note: Vi = cov(Yi ) if R(α) is the true correlation matrix.
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Let Di =
∂µi

∂β = Bi∆iXi be the Ti × p matrix of first partial derivatives

where µi = µi(β) = (g−1(x′i1β), . . . , g
−1(x′iTi

β)),

∆i = diag(∂θi1∂ηi1
, . . . ,

∂θiTi
∂ηiTi

), ηij = g(µij) = x′ijβ, and Xi =







x′i1
...

x′iTi






.

The generalized estimating equations (GEE) are

u(β) =

n
∑

i=1

D′

iV
−1
i [yi − µi (β)] = 0.

These correspond to quasi-likelihood (score) equations, but are not derived
from a proper likelihood. However, the β̂ that solves them is consistent,
even when the correlation assumption is wrong. Roughly speaking, this is
because consistency is a first moment (mean) property.
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Liang and Zeger (1986) show β̂
•

∼ Np(0,VG ) where

VG =

[

n
∑

i=1

D′
iV

−1
i

Di

]−1 [ n
∑

i=1

D′
iV

−1
i

cov(Yi )V
−1
i

Di

][

n
∑

i=1

D′
iV

−1
i

Di

]−1

.

Here β is replaced by β̂, φ replaced with φ̂ (φ = 1 for binomial and
Poisson models), and α replaced by α̂. cov(Yi ) is replaced by
[yi − µi (β̂)][yi − µi(β̂)]

′.

This sandwich estimator sandwiches an empirical estimate between

the theoretical (working guess)
[
∑n

i=1D
′

iV
−1
i Di

]−1
. If we know for

certain (we don’t) that corr(Yi ) = R(α), then we can use this instead
(MODELSE in the REPEATED statement).

The purpose of the sandwich estimator is to use the data’s empirical
evidence about covariation to adjust the standard errors in case the
true covariance differs substantially from the working guess.
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To reiterate, the ingredients for the marginal GEE approach are

A marginal model where Yij is binomial, Poisson, normal, gamma,
etc. with mean µij = g−1(x′ijβ).
Note that often for repeated measures, xij = xi for j = 1, . . . ,Ti ; e.g.
gender and weight are not apt to change over a 6 month study.

An assumption on how the elements of Yi = (Yi1, . . . ,YiTi
) are

correlated, corr(Yi ) = R(α).

With binary data, the correlation may not be the best way to express
with-cluster association because E (YijYis) = P(Yij = 1,Yis = 1)
depends on P(Yij = 1) and P(Yis = 1). One can consider alternating
logistic regression (Fitzmaurice et al 1993, Lipsitz et al 1991 and
Carey et al 1993). See book page 470.
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Table 12.1 (p. 456) houses data from a longitudinal study comparing a
new drug with a standard drug for treatment of subjects suffering mental
depression. n = 340 Patients were either mildly or severely depressed upon
admission into the study. At weeks 1, 2, and 4, corresponding to
j = 1, 2, 3, patient i ’s suffering from mental depression Yij was classified as
normal Yij = 1 or abnormal Yij = 0. Let si = 0, 1 be the severity of the
diagnosis (mild, severe) and di = 0, 1 denote the drug (standard, new).
We treat time as a categorical predictor and fit a marginal logit model
with an exchangeable correlation structure; note T = 3:

corr(Yi ) = corr









Yi1

Yi2

Yi3







 =





1 α α
α 1 α
α α 1



 .
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data depress ;
infile ”[ Insert directory information here]/depress . txt ”;
input case diagnose treat time outcome; time=time+1;
proc genmod descending; class case time;
model outcome = diagnose treat time treat∗time
/ dist=bin link=logit type3;

repeated subject=case / type=ind corrw;

Fit of independence model to get initial estimate of β:
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An a l y s i s Of I n i t i a l Paramete r E s t imate s

Standard Wald 95% Conf i denc e Chi−
Paramete r DF Es t imate E r r o r L im i t s Square Pr > ChiSq
I n t e r c e p t 1 0.9812 0.1809 0.6267 1.3356 29.43 <.0001
d i agnose 1 −1.3116 0.1462 −1.5981 −1.0251 80.50 <.0001
t r e a t 1 2.0429 0.3056 1.4439 2.6420 44.68 <.0001
t ime 1 1 −0.9600 0.2290 −1.4088 −0.5112 17.58 <.0001
t ime 2 1 −0.6206 0.2245 −1.0607 −0.1806 7 . 64 0.0057
t ime 3 0 0.0000 0.0000 0.0000 0.0000 . .
t r e a t∗t ime 1 1 −2.0980 0.3893 −2.8610 −1.3351 29.05 <.0001
t r e a t∗t ime 2 1 −1.0961 0.3838 −1.8482 −0.3439 8 . 16 0.0043
t r e a t∗t ime 3 0 0.0000 0.0000 0.0000 0.0000 . .
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Results under exchangeable model with: repeated subject=case /
type=exch corrw;

Working Co r r e l a t i o n Matr i x

Col1 Col2 Col3
Row1 1.0000 −0.0034 −0.0034
Row2 −0.0034 1.0000 −0.0034
Row3 −0.0034 −0.0034 1.0000

Exchangeable Working
Co r r e l a t i o n

C o r r e l a t i o n −0.003436171

A na l y s i s Of GEE Paramete r E s t imate s
Emp i r i c a l Standard E r r o r E s t imate s

Standard 95% Conf i denc e
Paramete r E s t imate E r r o r L im i t s Z Pr > |Z |
I n t e r c e p t 0.9812 0.1841 0.6203 1.3421 5 . 33 <.0001
d i agnose −1.3117 0.1453 −1.5964 −1.0269 −9.03 <.0001
t r e a t 2.0427 0.3061 1.4428 2.6426 6 . 67 <.0001
t ime 1 −0.9601 0.2379 −1.4265 −0.4938 −4.04 <.0001
t ime 2 −0.6207 0.2372 −1.0855 −0.1559 −2.62 0.0089
t ime 3 0.0000 0.0000 0.0000 0.0000 . .
t r e a t∗ t ime 1 −2.0975 0.3923 −2.8663 −1.3287 −5.35 <.0001
t r e a t∗ t ime 2 −1.0958 0.3900 −1.8602 −0.3314 −2.81 0.0050
t r e a t∗ t ime 3 0.0000 0.0000 0.0000 0.0000 . .
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Score S t a t i s t i c s For Type 3 GEE Ana l y s i s

Chi−
Source DF Square Pr > ChiSq
d i agnose 1 70.83 <.0001
t r e a t 1 40.38 <.0001
t ime 2 15.73 0.0004
t r e a t∗t ime 2 29.52 <.0001

Clearly, there is an important interaction between time and the
treatment. The initial diagnosis is also important. Fitting two more
models shows that there is no evidence of interaction between
diagnosis and treatment or diagnosis and time.

We see a severe diagnosis (s = 1) significantly decreases the odds of
a normal classification by a factor of e−1.31 = 0.27. The odds (for
normal classification) ratio comparing the new drug to the standard
drug changes with time because of the interaction. At 1 week it’s
e2.04−2.09 = 0.95, and week 2 it’s e2.04−1.10 = 2.6, and at 4 weeks it’s
e2.04−0 = 7.7. The new drug is better, but takes time to work.
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Here, the focus is on whole populations of patients at 1, 2, and 4
weeks, and on the new drug versus the standard drug. These
interpretations are not within the individual, as one would make for a
conditional analysis, coming up in Chapter 13.

Look at the estimate of the working correlation matrix. What does
this tell you? In fact, if “comment out” the REPEATED statement
and assume independent observations across individuals, i.e.
Yi1,Yi2,Yi3 independent, regression coefficients and standard errors
change negligibly.
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Which correlation structure to use R(α)?

Because GENMOD automatically uses the “sandwich” estimate of
the variance, adjusting the working correlation with an empirical (but
yet model-based from mean estimates!) estimate of cov(β̂), this GEE
is robust to misspecification of R(α). However, it’s nice to have a
formal tool for choosing.

Pan (2001) proposes a measure analogous to AIC for quasi-likelihood
termed the QIC. When φ = 1 it reduces to

QIC = −2L(µ(β̂); y1, . . . , yn) + 2trace(Ω̂VG ),

where Ω̂ =
∑n

i=1D
′

iViDi ; see Pan (2001).

A SAS macro for obtaining the QIC is at
http://support.sas.com/ctx/samples/index.jsp?sid=1686,
but QIC is automatically included in version 9.2 and above.
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Example (data from SAS documentation): The data analyzed are from
Lipsitz et al. (1994). Binary Yij is the wheezing status of n = 16 children
at ages 9, 10, 11, and 12 years (j = 1, 2, 3, 4); Yij = 1 for “yes” and
Yij = 0 for “no”. The mean µij = P(Yij = 1) = E (Yij) is modeled

logit P(Yij = 1) = β0 + β1cityi + β2agej + β3smokeij1 + β4smokeij2,

where the covariates are city of residence, age, and maternal smoking
status Sij = 0, 1, 2 at the particular age.

Sij sij1 sij2 status

0 1 0 0-9 cigarettes per day
1 0 1 10-19 cigarettes per day
2 0 0 ≥ 20 cigarettes per day
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If we assume Yi1,Yi2,Yi3,Yi4 are equally correlated, we get an
exchangeable correlation structure:

corr(Yi) =









1 α α α
α 1 α α
α α 1 α
α α α 1









.
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data six ;
input case city$ @@;
do i=1 to 4;

input age smoke wheeze @@;
output;

end;
datalines ;
1 portage 9 0 1 10 0 1 11 0 1 12 0 0
2 kingston 9 1 1 10 2 1 11 2 0 12 2 0
3 kingston 9 0 1 10 0 0 11 1 0 12 1 0
4 portage 9 0 0 10 0 1 11 0 1 12 1 0
5 kingston 9 0 0 10 1 0 11 1 0 12 1 0
6 portage 9 0 0 10 1 0 11 1 0 12 1 0
7 kingston 9 1 0 10 1 0 11 0 0 12 0 0
8 portage 9 1 0 10 1 0 11 1 0 12 2 0
9 portage 9 2 1 10 2 0 11 1 0 12 1 0
10 kingston 9 0 0 10 0 0 11 0 0 12 1 0
11 kingston 9 1 1 10 0 0 11 0 1 12 0 1
12 portage 9 1 0 10 0 0 11 0 0 12 0 0
13 kingston 9 1 0 10 0 1 11 1 1 12 1 1
14 portage 9 1 0 10 2 0 11 1 0 12 2 1
15 kingston 9 1 0 10 1 0 11 1 0 12 2 1
16 portage 9 1 1 10 1 1 11 2 0 12 1 0
;

proc genmod data=six;
class case city smoke;
model wheeze = city age smoke / dist=bin link=logit ;
repeated subject=case / type=exch corrw;
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Working C o r r e l a t i o n Matr i x

Col1 Col2 Col3 Col4
Row1 1.0000 0.1837 0.1837 0.1837
Row2 0.1837 1.0000 0.1837 0.1837
Row3 0.1837 0.1837 1.0000 0.1837
Row4 0.1837 0.1837 0.1837 1.0000

Exchangeable Working
Co r r e l a t i o n

C o r r e l a t i o n 0.1836880264

A na l y s i s Of GEE Paramete r E s t imate s
Emp i r i c a l Standard E r r o r E s t imate s

Standard 95% Conf i denc e
Paramete r E s t imate E r r o r L im i t s Z Pr > |Z |
I n t e r c e p t 2.1597 2.8229 −3.3731 7.6926 0 . 77 0.4442
c i t y k i n g s t on 0.1605 0.6741 −1.1607 1.4817 0 . 24 0.8118
c i t y po r t age 0.0000 0.0000 0.0000 0.0000 . .
age −0.2444 0.2736 −0.7806 0.2918 −0.89 0.3716
smoke 0 −0.2163 0.6386 −1.4680 1.0353 −0.34 0.7348
smoke 1 −1.0680 0.8014 −2.6387 0.5027 −1.33 0.1826
smoke 2 0.0000 0.0000 0.0000 0.0000 . .
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Unstructured, type=un, crashes the program. Rerun with type=ar:

Working C o r r e l a t i o n Matr i x

Col1 Col2 Col3 Col4
Row1 1.0000 0.4269 0.1823 0.0778
Row2 0.4269 1.0000 0.4269 0.1823
Row3 0.1823 0.4269 1.0000 0.4269
Row4 0.0778 0.1823 0.4269 1.0000

A na l y s i s Of GEE Paramete r E s t imate s
Emp i r i c a l Standard E r r o r E s t imate s

Standard 95% Conf i denc e
Paramete r E s t imate E r r o r L im i t s Z Pr > |Z |
I n t e r c e p t 2.1264 2.6797 −3.1257 7.3784 0 . 79 0.4275
c i t y k i n g s t on 0.3400 0.6466 −0.9273 1.6073 0 . 53 0.5990
c i t y po r t age 0.0000 0.0000 0.0000 0.0000 . .
age −0.2420 0.2622 −0.7559 0.2719 −0.92 0.3561
smoke 0 −0.4130 0.6731 −1.7322 0.9062 −0.61 0.5395
smoke 1 −1.0222 0.7611 −2.5139 0.4696 −1.34 0.1793
smoke 2 0.0000 0.0000 0.0000 0.0000 . .
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Output from Version 9.2:

GEE F i t C r i t e r i a
I ndependent QIC 85.5221

QICu 83.6976

Exchangeable QIC 85.0896
QICu 83.7432

AR(1) QIC 84.8718
QICu 84.0957

There are 2 versions, QIC and QICu.

QICu replaces 2trace(Ω̂VG ) with 2p and should only be used to
choose among regression models (with fixed working correlation)

QIC can be used to choose among both regression models and
working correlation structure.

Can use QIC to be safe.
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Example: Chapter 12 Problem 6 [pp. 480–481]
Here’s my SAS code:

data abc1;

input seq a b c count @@;

datalines;

1 0 0 0 0 1 0 0 1 2 1 0 1 0 2 1 0 1 1 9 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1

2 0 0 0 2 2 0 0 1 0 2 0 1 0 0 2 0 1 1 9 2 1 0 0 1 2 1 0 1 0 2 1 1 0 0 2 1 1 1 4

3 0 0 0 0 3 0 0 1 1 3 0 1 0 1 3 0 1 1 8 3 1 0 0 1 3 1 0 1 3 3 1 1 0 0 3 1 1 1 1

4 0 0 0 0 4 0 0 1 1 4 0 1 0 1 4 0 1 1 8 4 1 0 0 1 4 1 0 1 0 4 1 1 0 0 4 1 1 1 1

5 0 0 0 3 5 0 0 1 0 5 0 1 0 0 5 0 1 1 7 5 1 0 0 0 5 1 0 1 1 5 1 1 0 2 5 1 1 1 1

6 0 0 0 1 6 0 0 1 5 6 0 1 0 0 6 0 1 1 4 6 1 0 0 0 6 1 0 1 3 6 1 1 0 1 6 1 1 1 0

;

data abc2; set abc1;

case=0;

do i=1 to count;

case=case+1;

pattern=4*a+2*b+c;

y=a; treat=1; output;

y=b; treat=2; output;

y=c; treat=3; output;

end;

proc print;

proc genmod descending; class pattern case treat seq;

model y=treat seq / dist=bin link=logit;

repeated subject=case(seq*pattern) / type=exch;

estimate ’3 vs 1’ treat -1 0 1 / exp;

estimate ’2 vs 1’ treat -1 1 0 / exp;

estimate ’3 vs 2’ treat 0 -1 1 / exp;
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SAS output

GEE Model Information

Correlation Structure Exchangeable

Subject Effect case(pattern*seq) (86 levels)

Number of Clusters 86

Correlation Matrix Dimension 3

Maximum Cluster Size 3

Minimum Cluster Size 3

Exchangeable Working

Correlation

Correlation -0.04403048

Contrast Estimate Results

Standard Chi-

Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq

3 vs 1 2.5076 0.4141 0.05 1.6959 3.3193 36.66 <.0001

Exp(3 vs 1) 12.2750 5.0836 0.05 5.4513 27.6400

2 vs 1 1.9914 0.3876 0.05 1.2317 2.7511 26.39 <.0001

Exp(2 vs 1) 7.3257 2.8396 0.05 3.4270 15.6599

3 vs 2 0.5162 0.3158 0.05 -0.1029 1.1352 2.67 0.1022

Exp(3 vs 2) 1.6756 0.5292 0.05 0.9023 3.1118
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SAS output

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.9554 0.3282 0.3121 1.5987 2.91 0.0036

treat 1 -2.5076 0.4141 -3.3193 -1.6959 -6.05 <.0001

treat 2 -0.5162 0.3158 -1.1352 0.1029 -1.63 0.1022

treat 3 0.0000 0.0000 0.0000 0.0000 . .

seq 1 0.5200 0.3907 -0.2459 1.2858 1.33 0.1833

seq 2 0.7775 0.5352 -0.2715 1.8265 1.45 0.1463

seq 3 0.6454 0.3865 -0.1122 1.4029 1.67 0.0950

seq 4 0.5830 0.4230 -0.2460 1.4121 1.38 0.1681

seq 5 0.2384 0.5116 -0.7642 1.2410 0.47 0.6412

seq 6 0.0000 0.0000 0.0000 0.0000 . .

I am nesting the subject (case) index within both the drug sequence
k = 1, . . . , 6 and pattern type p = 1, . . . , 8 for
(0, 0, 0), (0, 0, 1), . . . , (1, 1, 1). The model looks like

logit P(Yi(k∗p)j = 1) = γ + αk + βj ,

where β3 = α6 = 0 correspond to baseline.
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12.3.7 Dealing with Missing Data

Classifications of Missing Data
◮ Missing Completely at Random (MCAR): Data are said to be missing

completely at random if the failure to observe a value does not depend
on any data, either observed or missing.

◮ Missing at Random (MAR): Data are said to be missing at random if,
conditional on the observed data, the failure to observe a value does
not depend on the data which are unobserved.

◮ Missing Not at Random (MNAR): The missing data mechanism is said
to be nonignorable, or Missing Not at Random (MNAR), if the failure
to observe a value depends on the value that would have been observed
or other missing values in the dataset.
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In general, Bias can arise in direct GEE estimates when some data are
missing unless the data are MCAR.

Weighted Estimating Equations (WEE) are doubly robust in the sense
that, in order to obtain a consistent estimate of the regression
parameters, either the missing data mechanism or the score vector for
the missing data given the observed data has to be correctly specified,
but not both.
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12.4: Markov chains for transitional modeling

When j indexes time, Yi1,Yi2, . . . ,YiTi
is a stochastic process, often

termed a time series. Let’s consider Yij = 0, 1 for now.

The series Yi1,Yi2, . . . ,YiTi
follows a first-order Markov chain if the

distribution of Yij only cares about the previous value Yi ,j−1, formally
[Yij |Yi1, . . . ,Yi ,j−1] = [Yij |Yi ,j−1].

Time-varying covariates can be included:

logit P(Yij = 1|Yi ,j−1) = x′ijβ + γ1Yi ,j−1,

where γ1 models the effect of the i th subject’s previous observation on the
probability of a current (time j) success. eγ1 has a nice interpretation in
terms of how success odds changes based on what happened at last time
point.
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Markov chain

Second-order, and in general t-order, Markov chains can be considered by
including the most previous t observations (Yi ,j−1, . . . ,Yi ,j−t):

logit P(Yij = 1|Yi ,j−1, . . . ,Yi ,j−t) = x′ijβ +
t

∑

s=1

γsYi ,j−s .

Interactions between covariates xij and previous values can also improve
model fit.

D. Bandyopadhyay (VCU) 30 / 36



Chapter 12 12.1 Marginal GLM Modeling of Multiple Categorical Responses

Likelihood

For a first order Markov-chain with no interaction the likelihood is written

L(β) =

n
∏

i=1

f1(yi1)f2(yi2|yi1)f3(yi3|yi2) · · · fTi
(yiTi

|yi ,Ti−1).

if we ignore the marginal contribution of the first observation f1(yi1) we get

L(β) =

n
∏

i=1

f2(yi2|yi1)f3(yi3|yi2) · · · fTi
(yiTi

|yi ,Ti−1).

For each subject i we have the product of Ti − 1 conditional logistic
regression kernels; the transitional model can be fit in PROC LOGISTIC as
usual, but for observation Yij , treating Yi ,j−1 as an observed predictor!
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12.4.4 Respiratory illness and Maternal smoking

Example [p. 476]: Children were evaluated every year on whether they
had a respiratory illness. A covariate of interest is whether the child’s mom
smoked at the beginning of the study; si = 0 indicates not and si = 1
indicates a smoker.
Each child has a sequence of 4 indicators (Yi1,Yi2,Yi3,Yi4) taken at 7, 8,
9, and 10 years. For each child we have covariates si and tj = j + 6. The
first order Markov model is fit

logit P(Yij = 1|Yi ,j−1 = yi ,j−1) = β0 + β1si + β2tj + β3yi ,j−1,

for i = 1, . . . , 537 and j = 2, 3, 4.
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SAS code to fit the Markov model

data mm1;

input s y1 y2 y3 y4 count;

y=y2; yp=y1; sm=s; t=8; ct=count; output;

y=y3; yp=y2; sm=s; t=9; ct=count; output;

y=y4; yp=y3; sm=s; t=10; ct=count; output;

datalines;

0 0 0 0 0 237

0 0 0 0 1 10

0 0 0 1 0 15

0 0 0 1 1 4

0 0 1 0 0 16

0 0 1 0 1 2

0 0 1 1 0 7

0 0 1 1 1 3

etc...

1 1 1 0 0 4

1 1 1 0 1 2

1 1 1 1 0 4

1 1 1 1 1 7

;

proc logistic descending;

freq ct; model y=sm t yp / lackfit;
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SAS output

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds

Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

INTERCPT 1 -0.2926 0.8460 0.1196 0.7295 . .

SM 1 0.2960 0.1563 3.5837 0.0583 0.077761 1.344

T 1 -0.2428 0.0947 6.5800 0.0103 -0.109336 0.784

YP 1 2.2111 0.1582 195.3589 0.0001 0.450688 9.126

Hosmer and Lemeshow Goodness-of-Fit Test

Goodness-of-fit Statistic = 1.1723 with 6 DF (p=0.9782)

We see both time and whether the child had a respiratory illness the
previous year are important predictors. Smoking is almost significant at
the 5% level (and is significant if we perform a one-sided test). Maternal
smoking increases the odds of a respiratory illness by about 34%. As time
goes on the child is less likely to have a respiratory illness. If a child had a
respiratory illness last year, the odds of having one this year are nine times
greater than if the child did not have one last year.
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Final comments on GEE (Fitzmaurice, Laird and Ware, Applied
Longitudinal Analysis):

An appealing property of the GEE estimator is that it yields a
consistent estimate β even if the assumed model for the covariances
among the repeated measures is not correct. It only requires that the
model for the mean response be correct.

The remarkable property of the ”sandwich” estimator is that it is
robust in the sense that it provides valid standard errors when the
assumed model for the covariances among the repeated measures is
not correct.

In general, the closer the ”working” covariance matrix approximates
the true underlying covariance matrix, the greater the efficiency or
precision with which β can be estimated.
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The robustness property of the ‘sandwich’ estimator is large sample
property. It is best suited to balanced longitudinal designs where the
number of subjects is relatively large and the number of repeated
measures is relatively small.

If the longitudinal design is severely unbalanced, with each subject
having a unique sequence of measurement occasions, the
‘sandwich’-based standard errors tends to be biased downward (i.e.,
too small and underestimate the covariance of β̂.
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