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Chapter 11 Chapter 11: Models for Matched Pairs

Example (Table 11.1 p. 414): Presidential Votes in 2004 and in 2008, for
males sampled by the General Social Survey. The 433 males are cross
classified according to their two (binary) responses (X ,Y ):

2008 Election
2004 Election Democrat Republican Total

Democrat 175 16 191
Republican 54 188 242

Total 229 204 433

Here, each person is matched with himself. This is also called
repeated measures data.

Here we see people tend to select Democrat/Republican both times
more often than change their opinion.

Question: of those that change their opinion, which direction do they
tend to go? Hint: 16

16+175 ≈ 0.08 & 54
54+188 ≈ 0.22
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Chapter 11 11.1: Comparing dependent proportions

Let πab = P(X = a,Y = b) and nab be the number of such pairs.

2008 Election
2004 Election Democrat Y = 1 Republican Y = 2

Democrat X = 1 π11 & n11 π12 & n12
Republican X = 2 π21 & n21 π22 & n22

We assume (n11, n12, n21, n22) ∼ mult{n++, (π11, π12, π21, π22)}.
When π1+ = π+1 then P(X = 1) = P(Y = 1) and we have marginal

homogeneity. This is of course equivalent to P(X = 2) = P(Y = 2)
by looking at complimentary events.

In the Presidential Votes data, this would indicate that the proportion
of people that select Democrat at 2004 is equal to the proportion
that select Democrat at 2008. Does it imply that no one has changed
their mind?
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Chapter 11 11.1: Comparing dependent proportions

Let pab = nab/n++ be the sample proportion in each cell. Define the
difference δ = π+1 − π1+ = P(Y = 1)− P(X = 1).
What does this measure for the Presidential Votes data? δ is estimated by

d = p+1 − p1+ =
n11 + n21 − (n11 + n12)

n++
.

Considering the covariance for multinomial vector elements, we have a
(1− α)100% CI for δ is

d ± zα/2σ̂(d),

where

σ̂(d) =
√

[(p12 + p21)− (p12 − p21)2]/n++.
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Chapter 11 11.1: Comparing dependent proportions

To test H0 : δ = 0, i.e. H0 : P(X = 1) = P(Y = 1), the Wald test
statistic is z0 = d/σ̂(d). The score test statistic is

z0 =
n21 − n12√
n21 + n12

.

A p-value for testing H0 : δ = 0 is P(|Z | > |z0|); this latter test is
McNemar’s test.

For the Presidential Votes data, δ̂ = (54 − 16)/433 = 0.088 with a
95% CI for δ is (0.051, 0.125). The number of people selecting
Democrat has increased by by 8.8% with a 95% CI of (5.1%, 12.5%).
The McNemar (score) test statistic for testing
H0 : P(X = 1) = P(Y = 1) is z0 = 4.542(=

√
20.63) yielding a

p-value of ≤ 0.001.

Does this mean that between 5.1% and 12.5% of the people have
changed their minds? (Answer: no).
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Chapter 11 11.1: Comparing dependent proportions

By having a person serve as his own control we increase the precision
with which this difference is estimated (relative to two iid samples at
2004 and 2008).

In some sense it is easier to measure how peoples attitudes are
changing by looking directly at changes within an individual instead of
considering separate populations at 2004 and 2008.

Note that

n var(d) = π1+(1− π1+) + π+1(1− π+1)− 2(π11π22 − π12π21).

When the response is positively correlated, π11π22 > π12π21 and the
variance is smaller relative to two independent samples.
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Chapter 11 11.1: Comparing dependent proportions

McNemar’s test statistic is not a function of diagonal elements, but
the sample difference d and σ̂(d) are.

The diagonal elements contribute to how correlated Yi1 and Yi2 are,
i.e. the tendency for people to not change their mind:
P(Yi1 = Yi2 = 1) = n11/n++ and P(Yi1 = Yi2 = 2) = n22/n++.

Of those that make a switch, the off-diagonal elements determine the
direction and strength of the switch.

We may be interested in how the odds of selecting Democrat change
for a randomly selected individual from the population (conditional
inference)

or, we may be interested in how the odds of selecting Democrat
change across the the two populations: everyone at 2004, and
everyone at 2008 (marginal inference).
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Chapter 11 11.1: Comparing dependent proportions

We can recast this as a marginal logit model

logit P(Yij = 1) = µ+ β′xij ,

where xi1 = 0 and xi2 = 1 are “before” and “after” covariates. For
the PV example, the covariates represent time (2004 vs. 2008).

In general, xij are any covariates of interest, but the correlation
between Yi1 and Yi2, α = corr(Yi1,Yi2) must be accounted for in
some way in estimating β. For the PV example, this correlation is
quite high, the polychoric (tetrachoric) correlation is estimated to be
ρ̂ = 0.904 with σ̂(ρ̂) = 0.023.

We will discuss marginal categorical models that account for such
correlation, or clustering, fit via GEE in Chapter 12.

When fitting this type of model in GENMOD,

β̂ = log [(229/204/(191/242)] = 0.352 and so eβ̂ = 1.42.
ĉorr(Yi1,Yi2) = α̂ = 0.69.
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Chapter 11 11.2 Conditional logistic regression

Let (Yi1,Yi2) be a pair of ordered responses from the i th subject,
i = 1, . . . , n. Consider

logit P(Yij = 1) = αi + βxj ,

where x1 = 0 and x2 = 1. Here, j = 1, 2 can be thought of as time, with
Yi1 denoting the first observation taken on subject i and Yi2 being the
second. Then

P(Yi1 = 1)

P(Yi1 = 0)
= eαi and

P(Yi2 = 1)

P(Yi2 = 0)
= eαi eβ.

And so

θ21 =
P(Yi2 = 1)/P(Yi2 = 0)

P(Yi1 = 1)/P(Yi1 = 0)
= eβ ,

which does not depend on the subject i .

D. Bandyopadhyay (VCU) 9 / 43



Chapter 11 11.2 Conditional logistic regression

The α1, . . . , αn are subject-specific effects that correlate Yi1 and Yi2.
Large αi indicates that both Yi1 = 1 and Yi2 = 1 are likely. Small αi

indicates that both Yi1 = 0 and Yi2 = 0 are likely.

The model assumes that given the α1, . . . , αn, the responses are
independent. That is, Yi1 ⊥ Yi2, independent across all i = 1, . . . , n.

An estimate of eβ provides a conditional odds ratio. For a given
person, the odds of success are eβ more likely at time j = 2 over time
j = 1. It is conditional on the value of αi , i.e. the person.

When α1 = α2 = · · · = αn then there is no person-to-person
variability in the response pair (Yi1,Yi2). The pairs (Yi1,Yi2) are
then iid from the population.
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Chapter 11 11.2 Conditional logistic regression

The joint mass function for the n pairs {(Y11,Y12), . . . , (Yn1,Yn2)} is
given by

n∏

i=1

(
eαi

1 + eαi

)yi1
(

1

1 + eαi

)1−yi1
(

eαi+β

1 + eαi+β

)yi2 ( 1

1 + eαi+β

)1−yi2

.

The pairwise success totals Si = yi1 + yi2 ∈ {0, 1, 2} are sufficient for αi .
We can compute (see book Section 11.2.3)

P(Yi1 = 0,Yi2 = 0|Si = 0) = 1

P(Yi1 = 1,Yi2 = 1|Si = 2) = 1

P(Yi1 = 0,Yi2 = 1|Si = 1) =
eβ

1 + eβ

P(Yi1 = 1,Yi2 = 0|Si = 1) =
1

1 + eβ
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Chapter 11 11.2 Conditional logistic regression

Conditional inference is based on conditioning on {S1, . . . ,Sn}. Let
n12 =

∑n
i=1 I{Yi1 = 1,Yi2 = 0}, n21 =

∑n
i=1 I{Yi1 = 0,Yi2 = 1}, and

n∗ = n12 + n21 are the total number with Si = 1. The conditional
likelihood is

∏

i :Si=1

(
eβ

1 + eβ

)yi1 ( 1

1 + eβ

)yi2

=
[eβ ]n21

[1 + eβ ]n∗
.

It pleasantly turns out that β̂ = log(n21/n12) and σ̂(β̂) =
√

1/n21 + 1/n12.
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Chapter 11 11.2 Conditional logistic regression

PV data: We have β̂ = log(54/16) = 1.22 and σ̂(β̂) = 0.285. So the
odds of a randomly selected person selecting Democrat at 2008 is
estimated to be e1.22 = 3.38 times their initial odds at 2004.

An alternative approach to conditioning on sufficient statistics is to
specify a full model and treat the αi as subject-specific random
effects. If we can think of subjects as being exchangeable, then a
common assumption is

α1, . . . , αn
iid∼ N(µ, σ2).

There are only three parameters (µ, σ, β) in the likelihood (after
averaging out the α1, . . . , αn). Studies have shown that estimating β
is robust to the distributional assumption placed on α1, . . . , αn. More
to come in Chapter 13.
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Chapter 11 11.2 Conditional logistic regression

Generalize to repeated measures within a cluster
We can think of taking two or more observations within a cluster (an
individual, matched covariates, etc.)
Let (Yi1,Yi2) be a pair of correlated binary observations from within the
same cluster. The data look like

Yi1 Yi2 xi1 xi2
Y11 Y12 x11 x12
Y21 Y22 x21 x22
...

...
...

...
Yn1 Yn2 xn1 xn2

The logit model specifies

logit P(Yij = 1) = αi + x′ijβ,

where i = 1, . . . , n is a pair number and j = 1, 2 denotes the observation
within a cluster.
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Chapter 11 11.2 Conditional logistic regression

As before, we condition on the sufficient statistics for β, namely
Si = Yi1 + Yi2. We have

P(Yi1 = Yi2 = 0|Si = 0) = 1

P(Yi1 = Yi2 = 1|Si = 2) = 1

P(Yi1 = 0,Yi2 = 1|Si = 1) = exp(x′i2β)/[exp(x
′

i1β) + exp(x′i2β)]

P(Yi1 = 1,Yi2 = 0|Si = 1) = exp(x′i1β)/[exp(x
′

i1β) + exp(x′i2β)].

The conditional likelihood is formed as before in the simpler case and
inference obtained in PROC LOGISTIC using the STRATA statement.
Let’s examine the PV data using thinking of (Yi1,Yi2) as repeated
measurements within an individual with corresponding covariates xi1 = 0
and xi2 = 1 denoting time.
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Chapter 11 11.2 Conditional logistic regression

data Data1;
do ID=1 to 175;

dem=1; time=0; output;
dem=1; time=1; output; end;

do ID=176 to 191;
dem=1; time=0; output;
dem=0; time=1; output; end;

do ID=192 to 245;
dem=0; time=0; output;
dem=1; time=1; output; end;

do ID=246 to 433;
dem=0; time=0; output;
dem=0; time=1; output; end;

proc logistic data=Data1;
strata ID;
model dem(event=’1’)=time;
run;
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Chapter 11 11.2 Conditional logistic regression

The LOGISTIC Procedure

Cond i t i o n a l A n a l y s i s

Te s t i ng G l oba l Nu l l Hypothe s i s : BETA=0

Test Chi−Square DF Pr > ChiSq

L i k e l i h o o d Rat i o 21.7844 1 <.0001
Score 20.6286 1 <.0001
Wald 18.2627 1 <.0001

An a l y s i s o f Maximum L i k e l i h o o d Es t imate s

Standard Wald
Paramete r DF Es t imate E r r o r Chi−Square Pr > ChiSq

t ime 1 1.2164 0.2846 18.2627 <.0001

Odds Rat i o E s t imate s

Po i n t 95% Wald
E f f e c t E s t imate Con f i denc e L im i t s

t ime 3.375 1.932 5.896
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Chapter 11 11.2 Conditional logistic regression

Matched case-control studies

Let (Yi1 = 0,Yi2 = 1) be a pair of binary observations from two different
subjects matched on criteria that could affect the outcome. The data look
like

Control Yi1 Case Yi2 Case xi1 Control xi2
0 1 x11 x12
0 1 x21 x22
...

...
...

...
0 1 xn1 xn2

The logit model specifies

logit P(Yij = 1) = αi + x′ijβ,

where i = 1, . . . , n is a pair number and j = 1, 2 denotes case or control.
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Chapter 11 11.2 Conditional logistic regression

By construction we have all Si = yi1 + yi2 = 1 and analogous to our
conditional approach for a pair of binary responses within an individual, we
have

P(Yi1 = 0,Yi2 = 1|Si = 1) =
ex

′

i2β

ex
′

i1β + ex
′

i2β
,

which does not depend on αi , and the conditional likelihood for β is
formed by taking the product over i = 1, . . . , n.
Even though the number of cases and the number of controls are fixed at
n, the logit link allows us to determine the effect of covariates on the odds

of being a case versus a control. That is the odds of being a case instead
of a control is increased by eβj when xj is increased by unity.
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Chapter 11 11.2 Conditional logistic regression

Example (p. 422): n++ = 144 pairs of Navajo Indians, one having
myocardial infarction (MI) and the other free of heart disease, were
matched on age and gender yielding 288 Navajo total. It is of interest to
determine how the presence of diabetes affects the odds of MI. Here’s the
cross-classification of the pairs:

MI cases
MI controls Diabetes No diabetes

Diabetes 9 16
No diabetes 37 82

The data are conditionally analyzed using the STRATA subcommand in
PROC LOGISTIC.
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Chapter 11 11.2 Conditional logistic regression

data Data1;
do ID=1 to 9; case=1; diab=1; output; case=0; diab=1; output; end;
do ID=10 to 25; case=1; diab=0; output; case=0; diab=1; output; end;
do ID=26 to 62; case=1; diab=1; output; case=0; diab=0; output; end;
do ID=63 to 144; case=1; diab=0; output; case=0; diab=0; output; end;
proc logistic data=Data1;

strata ID;
model case(event=’1’)=diab;
run;
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Chapter 11 11.2 Conditional logistic regression

The LOGISTIC Procedure

Cond i t i o n a l A n a l y s i s

Model I n f o rma t i o n
Response Va r i a b l e c ase
Number o f Response L e v e l s 2
Number o f S t r a t a 144
Model b i n a r y l o g i t

P r o b a b i l i t y modeled i s c a se =1.

An a l y s i s o f Maximum L i k e l i h o o d Es t imate s

Standard Wald
Paramete r DF Es t imate E r r o r Chi−Square Pr > ChiSq
d i ab 1 0.8383 0.2992 7.8501 0.0051

Odds Rat i o E s t imate s

Po i n t 95% Wald
E f f e c t E s t imate Con f i denc e L im i t s
d i ab 2.312 1.286 4.157

We estimate that the odds of MI increase by 2.3 when diabetes is present,
with a 95% CI of (1.3, 4.2). Diabetes significantly affects the outcome MI.
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Chapter 11 11.2 Conditional logistic regression

The following data is from Breslow and Day (1980) and is analyzed in the
SAS documentation. There’s 63 matched pairs, consisting of one case of
endometrial cancer (Outcome=1) and a control without cancer
(Outcome=0). The case and corresponding control have the same ID,
specified in the strata subcommand. Two prognostic factors are
included: Gall (= 1 for gall bladder disease) and Hyper (= 1 for
hypertension). The goal of the case-control analysis is to determine the
relative risk of endometrial cancer for gall bladder disease, controlling for
the effect of hypertension.
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Chapter 11 11.2 Conditional logistic regression

data d1;
do ID=1 to 63; do Outcome = 1 to 0 by −1; input Gall Hyper @@; output; end; end;
datalines ;

0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0
0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 1 0 0 1 0 0 1 0 0 0
;
proc logistic data=d1; strata ID;
model outcome(event=’1’)= Gall Hyper; run;
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Chapter 11 11.2 Conditional logistic regression

The LOGISTIC Procedure

Cond i t i o n a l A n a l y s i s

Te s t i ng G l oba l Nu l l Hypothe s i s : BETA=0

Test Chi−Square DF Pr > ChiSq
L i k e l i h o o d Rat i o 4.5487 2 0.1029
Score 4.3620 2 0.1129
Wald 4.0060 2 0.1349

An a l y s i s o f Maximum L i k e l i h o o d Es t imate s

Standard Wald
Paramete r DF Es t imate E r r o r Chi−Square Pr > ChiSq
Ga l l 1 0.9704 0.5307 3.3432 0.0675
Hyper 1 0.3481 0.3770 0.8526 0.3558

Odds Rat i o E s t imate s

Po i n t 95% Wald
E f f e c t E s t imate Con f i denc e L im i t s
Ga l l 2 .639 0.933 7.468
Hyper 1.416 0.677 2.965

Adjusting for hypertension, the odds of developing endometrial cancer are
about 2.6 times as great (and almost significant!) for those with gall
bladder disease. How about the relative risk?
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Chapter 11 11.2 Conditional logistic regression

Generalization: more than a pair of binary outcomes, j = 1, 2, . . . , Ji .
For example, repeated measures on subject i , or Ji rats from litter i .

Section 11.1 presented marginal inference. Answers how does
probability marginally change δ = P(Y = 1)− P(X = 1), averaged
over everyone in population.

Section 11.2 deals with a conditional interpretation. θ21 was how
odds of success change over time j = 2 versus j = 1 for any randomly
sampled individual in the population.

In matched case-control study, we use the αi to induce correlation in
responses (Yi1,Yi2) within two like individuals.

For sparse data, one can include an additional EXACT subcommand
in PROC LOGISTIC to get exact tests and odds ratio estimates, e.g.
exact diab / estimate=both;
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Chapter 11 11.2 Conditional logistic regression

Final comment on PV data:

The conditional odds ratio 3.38 is bigger (further away from the null)
than the population averaged odds ratio 1.42. Is this reasonable?
Yes. Many people either select Democrat or Republican. If one’s
αi << 0 then this person select Republican regardless of β. After 4
years, this person perhaps likes the Democrat a bit more, but the
probability in either case is likely to be small.

Which inference is preferred? It depends on the question!
◮ The conditional inference holds for an individual with repeated

measures, or individuals in a matched (blocked!) set. Because the
conditional approach essentially blocks on like variables (measurements
within an individual; outcomes matched on gender, age, cholesterol,
etc.) it accounts for, and can reduce variability associated with
estimating the effect of interest.

◮ The marginal inference holds for the population as a whole, averaged
over the blocking effects.
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Chapter 11 11.2 Conditional logistic regression

11.4 Testing for symmetry in a square I × I table

Consider an I × I table which cross-classifies (X ,Y ) on the same
outcomes.

Y = 1 Y = 2 · · · Y = I

X = 1 π11 π12 · · · π1I

X = 2 π21 π22 · · · π2I

...
...

...
. . .

...
X = I πI1 πI2 · · · πII

Marginal homogeneity happens when P(X = i) = P(Y = i) (π+i = π+i)
for i = 1, . . . , I . This is important, for example, when determining if
classifiers (like X-ray readers) tend to classify in roughly the same
proportions. If not, perhaps one reader tends to diagnose a disease more
often than another reader.

Symmetry, a stronger assumption, implies marginal homogeneity.
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Chapter 11 11.2 Conditional logistic regression

Definition of symmetric table

An I × I table is symmetric if P(X = i ,Y = j) = P(X = j ,Y = i)
(πij = πji).

This simply reduces the number of parameters from I 2 (subject to
summing to one) to I (I + 1)/2 (subject to summing to one). For example,
in a 3× 3 table this forces

Y = 1 Y = 2 Y = 3
X = 1 π1 π2 π3

X = 2 π2 π4 π5

X = 3 π3 π5 π6

subject to π1 + π4 + π6 + 2π2 + 2π3 + 2π5 = 1.

The symmetric model is easily fit by specifying the cell probabilities by
hand in GENMOD. A test of the symmetric model versus the saturated
model is a test of H0 : πij = πji and can be carried out by looking at the
Deviance statistic (yielding a LRT).
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Chapter 11 11.2 Conditional logistic regression

Recent example

The following table is from Yule (1900)

Wife
Husband Tall Medium Short
Tall 18 28 14
Medium 20 51 28
Short 12 25 9

Let (X ,Y ) be the heights of the (Husband, Wife). The table is symmetric
if P(X = i ,Y = j) = P(X = j ,Y = i). For example, symmetry forces the
same proportion of pairings of (Husband,Wife)=(Tall,Short) and
(Husband,Wife)=(Short,Tall). This assumes the following structure

Wife
Husband Tall Medium Short
Tall π1 π2 π3
Medium π2 π4 π5
Short π3 π5 π6

subject to π1 + 2π2 + 2π3 + π4 + 2π5 + π6 = 1.
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Chapter 11 11.2 Conditional logistic regression

SAS code

data hw;

input h w symm count @@;

datalines;

1 1 1 18 1 2 2 28 1 3 3 14

2 1 2 20 2 2 4 51 2 3 5 28

3 1 3 12 3 2 5 25 3 3 6 9

;

proc genmod; class symm;

model count=symm / link=log dist=poi;

The GENMOD output gives us

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 3 1.6635 0.5545

A test of symmetry versus the saturated model gives a p-value of
P(χ2

3 > 1.66) = 0.65. We accept that the symmetric model fits.

Symmetry implies marginal homogeneity, P(X = i) = P(Y = i).
Husbands and wives are tall, medium, or short in the same proportions.

Furthermore, for example, short wives and tall husbands occur with the
same probability as tall wives with short husbands.
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Chapter 11 11.2 Conditional logistic regression

11.3 & 11.5 I × I marginal homogeneity & kappa statistic

Consider an I × I table where X and Y are cross-classified on the same
scale. Below are n = 118 slides classified for carcinoma of the uterine
cervix by two pathologists as (1) negative, (2) atypical squamous
hyperplasia, (3) carcinoma in situ, or (4) squamous or invasive carcinoma.

Pathologist B
Pathologist A 1 2 3 4 Total

1 22 2 2 0 26
2 5 7 14 0 26
3 0 2 36 0 38
4 0 1 17 10 28

Total 27 12 69 10 118

If A and B were the same person then πij = 0 when i 6= j , i.e. there’d only
be nonzero diagonal elements. Nonzero off-diagonal elements reflect
disagreement and the further off the diagonal they are, the more severe
the disagreement.
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Chapter 11 11.2 Conditional logistic regression

Marginal homogeneity

For example there are two slides classified by B as carcinoma in situ (not
metastasized beyond the original site) that A classified as negative.

Perfect agreement occurs when π11 + π22 + π33 + π44 = 1. The strength
of agreement has to do with how close this is to one.

Marginal homogeneity occurs when the two classifiers agree on the
proportion of each classification in the population, but not necessarily the
classifications themselves. If marginal homogeneity is not satisfied, then
one classifier tends to classify a fixed category more often than the other.
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Chapter 11 11.2 Conditional logistic regression

Kappa statistic

Classifiers are independent if P(X = i ,Y = j) = P(X = i)P(Y = j), and
in this case agreement for category i happens with probability
P(X = i ,Y = i) = P(X = i)P(Y = i) = πi+π+i . The kappa statistic
looks at the difference between the probability of agreement

∑I
i=1 πii and

agreement due to “chance”
∑I

i=1 πi+π+i , normalized by the largest this

can be when
∑I

i=1 πii = 1:

κ =

∑I
i=1 πii − πi+π+i

1−∑I
i=1 πi+π+i

,

and is estimated by simply replacing πij by π̂ij = nij/n++.
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SAS code & output

data table;

input A B count @@;

datalines;

1 1 22 1 2 2 1 3 2 1 4 0

2 1 5 2 2 7 2 3 14 2 4 0

3 1 0 3 2 2 3 3 36 3 4 0

4 1 0 4 2 1 4 3 17 4 4 10

;

proc freq order=data; weight count; tables A*B / plcorr agree;

The FREQ Procedure

Statistic Value ASE

------------------------------------------------------

Gamma 0.9332 0.0340

Polychoric Correlation 0.9029 0.0307

Test of Symmetry

------------------------

Statistic (S) 30.2857

DF 6

Pr > S <.0001

Kappa Statistics

Statistic Value ASE 95% Confidence Limits

------------------------------------------------------------

Simple Kappa 0.4930 0.0567 0.3818 0.6042

Weighted Kappa 0.6488 0.0477 0.5554 0.7422

Sample Size = 118
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Interpretation

There’s a test for symmetry! The statistic is the same as the Pearson
GOF test for the symmetric log-linear model, i.e. a score test for
testing H0 : πij = πji . What do we conclude?

How about γ̂ = 0.93 and ρ̂ = 0.90, both highly significant? What
does that tell us?

Finally, κ̂ = 0.49 with 95% CI about (0.4, 0.6). The difference
between observed agreement and that expected purely by chance is
between 0.4 and 0.6, moderately strong agreement.

The weighted kappa statistic is valid for an ordinal response and
weights differences in classifications according to how “severe” the
discrepancy. See p. 435.

κ is one number summarizing agreement. It may be much more
interesting to quantify where or why disagreement occurs via models.
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Test of marginal homogeneity

Recall that McNemar’s test tests H0 : P(X = 1) = P(Y = 1) for a 2× 2
table. This is output from PROC FREQ in SAS using AGREE.

Often, when comparing raters, we have more than 2 categories. A general
test of marginal homogeneity tests H0 : P(X = i) = P(Y = i) for
i = 1, . . . , I . mh is a small program written by John Uebersax to perform
overall tests of marginal homogeneity, among other things.

MH Program: Marginal Homogeneity Tests for N x N Tables

Version 1.2 - John Uebersax

2008-04-24 2:19 PM

***INPUT***

Diagnoses of Carcinoma (Agresi Table 10.8)

4 categories

Path A is row variable

Path B is column variable

ordered categories

22 2 2 0

5 7 14 0

0 2 36 0

0 1 17 10

Total number of cases: 118
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Output

***BASIC TESTS***

Four-fold tables tested

22 4 5 87

7 19 5 87

36 2 33 47

10 18 0 90

McNemar Tests for Each Category

---------------------------------------------------------------------

Proportion

Frequency (Base Rate)

Level ---------------- ---------------- Chi-

(k) Path A Path B Path A Path B squared(a) p

---------------------------------------------------------------------

1 26 27 0.220 0.229 exact test 1.0000

2 26 12 0.220 0.102 8.167 0.0043*

3 38 69 0.322 0.585 27.457 0.0000*

4 28 10 0.237 0.085 18.000 0.0000*

---------------------------------------------------------------------

(a) or exact test

* p < Bonferroni-adjusted significance criterion of 0.017.

Tests of Overall Marginal Homogeneity

------------------------------------------------------------

Bhapkar chi-squared = 38.528 df = 3 p = 0.0000

Stuart-Maxwell chi-squared = 29.045 df = 3 p = 0.0000

Bowker Symmetry Test

----------------------------------------------

Chi-squared = 30.286 df = 6 p = 0.0000
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Output

***TESTS FOR ORDERED-CATEGORY DATA***

McNemar Test of Overall Bias

or Direction of Change

--------------------------------------------

Cases where Path A level is higher: 25

Cases where Path B level is higher: 18

Chi-squared = 1.140 df = 1 p = 0.2858

Four-fold tables tested (for thresholds tests)

22 4 5 87

36 16 3 63

90 0 18 10

Tests of Equal Category Thresholds

---------------------------------------------------------------------

Proportion

of cases

below

level k Threshold(a)

Level ---------------- ---------------- Chi-

(k) Path A Path B Path A Path B squared(b) p

---------------------------------------------------------------------

2 0.220 0.229 -0.771 -0.743 exact test 1.0000

3 0.441 0.331 -0.149 -0.439 8.895 0.0029*

4 0.763 0.915 0.715 1.374 18.000 0.0000*

---------------------------------------------------------------------

(a) for probit model

(b) or exact test

* p < Bonferroni-adjusted significance criterion of 0.017.
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Output

***GRAPHIC OUTPUT***

Marginal Distributions of Categories

for Path A (**) and Path B (==)

0.585 + ==

| ==

| ==

| ==

| ** ==

| ** ==

| ** == ** ** == **

| ** == ** ** == **

| ** == ** == ** == **

| ** == ** == ** == ** ==

0 +----+-------+-------+-------+----

1 2 3 4

Notes: x-axis is category number or level.

y-axis is proportion of cases.

Proportion of cases below each level

1 2 3 4

|------------|------------|-------------------|-------------- Path A

|-------------|-----|----------------------------------|----- Path B

1 2 3 4

+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ Scale

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.
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Comments

The Bhapkar test (p. 424, 11.3.1; more powerful than
Stuart-Maxwell) for marginal homogeneity is highly significant with
p = 0.0000. We reject marginal homogeneity. The graphical output
indicates that both pathologists tend to classify ‘negative’ in roughly
the same proportion, but that B classifies ‘carcinoma in situ’ more
often than A, whereas A classifies classifies ‘atypical squamous
hyperplasia’ and ‘squamous or invasive carcinoma’ more often than B .

There is also an individual test for each category.
H0 : P(X = i) = P(Y = i) is rejected for i = 2, 3, 4 but not i = 1.
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Comments

We are interested in whether one rater tends to classify slides ‘higher’
or ‘lower’ than the other. Off-diagonal elements above the diagonal
are when B classifies higher than A; elements below the diagonal are
when B classifies lower than A. The McNemar test of overall bias is
not significant, indicating that one rater does not tend to rate higher
or lower than the other.

The test for symmetry has the same test statistic and p-value as from
SAS.

The program is easy to run on a Windows-based PC and free. There
is a users guide and sample input and output files. Web location:
http://www.john-uebersax.com/stat/mh.htm.
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Stuart-Maxwell test in R

> library(coin)

Loading required package: survival

Loading required package: splines

> rate=c("N","ASH","CIS","SIC")

> ratings=as.table(matrix(c(22,5,0,0,2,7,2,1,2,14,36,17,0,0,0,10),nrow=4,

+ dimnames=list(PathA=rate,PathB=rate)))

> ratings

PathB

PathA N ASH CIS SIC

N 22 2 2 0

ASH 5 7 14 0

CIS 0 2 36 0

SIC 0 1 17 10

> mh_test(ratings)

Asymptotic Marginal-Homogeneity Test

data: response by

groups (PathA, PathB)

stratified by block

chi-squared = 29.0447, df = 3, p-value = 2.192e-06
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