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Analysis of Count Data Using the SAS® System 
                                                  Alex Pedan, Vasca Inc., Tewksbury, MA 

 
 

ABSTRACT  
 
Count data is increasingly common in clinical research (Gardner, 
Mulvey and Shaw (1995); Glynn and Buring  (1996)). Examples 
include the number of adverse events occurring during a follow 
up period, the number of hospitalizations, the number of seizures 
in epileptics, etc. It is straightforward to analyze the count data by 
using PROCEDURE GENMOD of SAS/STAT, but as it is going to 
be shown below, correctly specifying the statistical model is of 
the utmost importance in getting proper inferences. 
In this paper, we review the statistical methodology and present a 
SAS macro that creates convenient output for the presentation of 
count data. 
 

INTRODUCTION 

 
Recurrent events are frequent outcomes in longitudinal clinical 
and epidemiological studies.  One natural and clinically 
interpretable measure of occurrence is the event rate, defined as 
the number of events divided by the total person-years of 
experience.  The challenge in analyzing the event rates arises 
because some individuals are more prone to recurrences than 
others. To illustrate the problem, we will consider a data set from 
a randomized clinical trial which was conducted to evaluate a 
novel transcutaneous approach to hemodialysis vascular access 
offered by the totally implantable Lifesite® Hemodialysis Access 
System (Vasca, Inc.,Tewksbury, MA). 36 patients were treated 
with the LifeSite device (test) and 34 with the Tesio-Cath catheter 
(control). Hypotension and cramping are common adverse events 
during hemodialysis treatment, frequently occurring together. Our 
goal is to compare the rates of hypotensions and crampings in 
two treatment groups during the 3-month follow up interval. The 
following statements input the data, which are arranged as one 
observation per subject. 
 
data Hypo_Cramp; 
input  id  device $  count  fu_time; 
logt=log(fu_time); 
 
datalines; 
1 Control  2 2.5 
2 Control  0 3 
3 Control  1 1.8 
………….. 
68 Test  1 3 
69 Test  3 3 
70 Test  0 2.7 
; 
run; 
 
The variable DEVICE represents treatment assignment, the 
variable COUNT contains the number of hypotensions and 
crampings for each subject during the follow up period and the 
variable FU_TIME represents follow up time for each subject 
measured in months.   
 
 

 

 

POISSON REGRESSION 

 
The most widely used regression model for multivariate count 
data is the log-linear model (see McCullagh and Nelder, 1989): 
 
log(E(Yi)) = log ti + β ′ xi 
 
where β  is a vector of regression coefficients, xi is a vector of 
covariates for subject i,  so called offset variable log ti  is needed 
to account for possible different observation periods (ti) for 
different subjects.  
 
The popular measures of the adequacy of the model fit are 
deviance and Pearson Chi-Square (X2). If statistical model is 

correct then both quantities are asymptotically distributed as 2χ  
statistics with n-p degrees of freedom (df); where n is number of 
subjects and p is the number of fitted parameters (two in our 
case: intercept and regression coefficient for device variable). 
Thus if the regression model is adequate, the expected value of 
both the deviance and Pearson Chi-Square is equal (or close) to 
n-p (both the scaled deviance ≅ 1 or the scaled Pearson Chi-
Square: X2/df≅1), otherwise there could be doubt about validity of 
the model. 
 
If the hypotensions and crampings counted on a subject were 
independent, we would expect to be able to use a Poisson 
distribution as the basis for our model. One important 
characteristic of counts is that the variance tends to increase with 
the average size of the counts. The main feature of the Poisson 
model is that expected value of the random variable Yi (counts of 
hypotensions and crampings)  for subject i is equal to its 
variance:  
 
µ =E(Yi)=Var(Yi) 
 
The Poisson regression is a member of a class of generalized 
linear models, which is an extension of traditional linear models 
that allows the mean of a population to depend on a linear 
predictor through a nonlinear link function and allows the 
response probability distribution to be any member of an 
exponentional family of distributions (McCullagh and Nelder, 
1989).  The PROC GENMOD of SAS can fit wide range of 
generalized linear models. The following SAS statements use 
PROC GENMOD to fit the Poisson regression 
 
log(µi)= log ti + β0 + β1 devicei 
 
 to the HYPO_CRAMP data with DEVICE as the explanatory 
variable: 
 

proc genmod data=Hypo_Cramp; 
class device; 
model count=device/ offset=logt dist=poisson 
link=log;   
run; 

 
Here DIST= option specifies Poisson distribution, LINK= option 
specifies log-linear regression model (which is default for the 
Poisson distribution and can be omitted) and LOGT is an offset 
variable, which was defined in the data step.  An intercept term 
(β0) is included by default in the regression equation. 
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The output from these statements is displayed in Figure 1. 
 
 

The GENMOD Procedure 
 

Model Information 
 

Data Set               WORK.HYPO_CRAMP 
Distribution                   Poisson 
Link Function                      Log 
Dependent Variable              counts 
Offset Variable                   logt 
Observations Used                   70 

 
 

Class Level Information 
 
                Class       Levels    Values 
 

device           2    Control Test 
 
 

Criteria For Assessing Goodness Of Fit 
 
Criterion                 DF           Value        Value/DF 
 
Deviance                  68        446.6673          6.5686 
Scaled Deviance           68        446.6673          6.5686 
Pearson Chi-Square        68        546.9086          8.0428 
Scaled Pearson X2         68        546.9086          8.0428 
Log Likelihood                      298.7626 
 
 
  Algorithm converged. 
 
 

Analysis Of Parameter Estimates 
 
                                Standard       Chi- 
 Parameter       DF  Estimate       Error     Square   Pr > ChiSq 
 
 Intercept        1    0.4224      0.0836      25.51      <.0001 
 device Control   1    0.5668      0.1054      28.92      <.0001 
 device    Test   0    0.0000      0.0000         . 
 Scale            0    1.0000      0.0000      
 
NOTE: The scale parameter was held fixed. 

 
Figure 1. Output from Poisson regression  
 
From  ‘Analysis Of Parameter Estimates’ table of output, we can 
see that variable DEVICE is highly significant (p<.0001), with 
higher rate of hypotensions and crampings for the control group 
as compared to the test group. But the ‘Criteria For Assessing 
Goodness Of Fit’ section of output suggests that, because 
value/df  for both deviance and Pearson Chi-Square statistics is 
much higher than 1, Poisson model is not quite adequate to 
describe the counts of hypotensions and crampings. It also 
suggests that there is a greater variability among counts than 
would be expected for Poisson distribution.  Such extra-variability 
usually arises because the repeated events on a subject not may 
be independent. This is called overdispersion. One of the most 
common reason for data being over-dispersed is that 
experimental conditions are not perfectly under control and thus 
the unknown µi parameters vary not only with measured 
covariates but with latent and uncontrolled factors. 

 

OVERDISPERSION  

 
It is possible to account for overdispersion with respect to the 
Poisson model by introducing a dispersion parameter φ into the 
relationship between the variance and the mean  
 
Var(Yi)=φ µ    

 
This method based on a quasi-likelihood approach, which permits 
estimation of parameters and inferential testing without full 
knowledge of the probability distribution of the data (Wedderburn,  
1974, McCullagh and Nelder, 1989). 
The scale parameter in the  ‘Analysis Of Parameter Estimates’ 
table of output is equal φ .  When  φ=1 we have the ordinary 

Poisson model (scale is fixed to 1 in the Figure 1), and when φ>1 
we have the overdispersed Poisson model. The introduction of 
the dispersion parameter, however, does not introduce a new 
probability distribution, but just gives a correction term for testing 
the parameter estimates under the Poisson model.  The models 
are fit in the usual way, and the parameter estimates are not 
affected by the value of φ, but the estimated covariance matrix is 
inflated by this factor.  This method produces an appropriate 
inference if overdispersion is modest (Cox, 1983) and it has 
become the conventional approach in Poisson regression 
analysis.  
McCulagh and Nelder (1989) suggested to estimate the 
dispersion parameter φ as a ratio of the deviance or the Pearson 
Chi-Square to its associated degrees of freedom.  SAS 
implemented this approach by introducing an option SCALE= in 
the model statement of PROC GENMOD. One can estimate 
dispersion (scale) parameter by either specifying 
SCALE=DEVIANCE (=D, or just DSCALE) or  
SCALE=PEARSON (=P, or just PSCALE) and then  appropriately 
adjust standard errors of regression coefficients. For example, 
the code below uses deviance to account for overdispersion in 
the Hypo_Cramp data  
 

proc genmod data=Hypo_Cramp; 
class device; 
model count=device/ offset=logt dist=poisson 
link=log dscale;   
run; 

 
The results of the fitting the model are displayed in Figure 2. 
 

Criteria For Assessing Goodness Of Fit 
 

Criterion            DF           Value        Value/DF 
 

Deviance                  68        446.6673          6.5686 
Scaled Deviance           68         68.0000          1.0000 
Pearson Chi-Square        68        546.9086          8.0428 
Scaled Pearson X2         68         83.2606          1.2244 
Log Likelihood                       45.4832 
 
 
  Algorithm converged. 
 
 

Analysis Of Parameter Estimates 
 
                                  Standard     Chi- 
 Parameter           DF  Estimate    Error   Square   Pr > ChiSq 
 
 Intercept           1     0.4224   0.2143     3.88      0.0487 
 device   Control    1     0.5668   0.2701     4.40      0.0359 
 device   Test       0     0.0000   0.0000        . 
 Scale               0     2.5629   0.0000      
 
 
NOTE: The scale parameter was estimated by the square root of 
DEVIANCE/DOF. 

 
Figure 2.  Results of Poisson regression, corrected for 
                 overdispersion 
 
We can see from this output that the scaled deviance is now held 
fixed to 1 and scale parameter ( φ ) is estimated as 2.5629 
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= 5686.6 ). The parameter estimates for 

intercept and treatment have not been changed, but their 
standard errors are now inflated by the value of the scale 
parameter and although the treatment effect is still significant 
(p=0.0359), the confidence intervals are much wider, p-values are 
now much higher and significance tests are more conservative 
than those based on the Poisson distribution before adjustment 
for overdispersion. 
 

NEGATIVE BINOMIAL REGRESSION 

 
Another count model, which allows for overdispersion, is the 
negative binomial model (NB). The negative binomial distribution 
can be derived from the Poisson when the mean parameter is not 
identical for all members of the population, but itself is distributed 
with gamma distribution. In other words, the occurrence of 
hypotensions and crampings in each patient is a Poisson process 
with its own parameter µi, but the joint distribution of these 
Poisson processes is no longer Poisson.  Thus NB distribution 
provides one way of modeling heterogeneity in a population.  The 
relationship between variance and mean for NB distribution has 
the form 
 
Var(Yi)= µ  + k µ2 
 
where k  is an additional distribution parameter that must be 
estimated or set to a fixed value.  The NB model is only an 
exponential family when k is known. 
One important characteristic of the NB distribution is that it 
naturally accounts for overdispersion due to its variance is always 
greater (k>0) than the variance of a Poisson distribution with the 
same mean µ.  
For this reason the NB model has greater flexibility in modeling 
the relationship between the expected value and the variance of 
Yi than the highly restrictive Poisson model.  Note that, for small 
k, the NB model approaches the Poisson model.  
Although NB distribution is not in the exponential family, starting 
from version 7 of SAS, PROC GENMOD includes the possibility 
to run NB regression, by specifying option DIST=NB in the model 
statement. SAS is accounting for possible “residual” 
overdispersion by including additional scale parameter φ to the 
relationship Var(Yi)=φ (µ  + k µ2).  
The NB regression model for Hypo_Cramp data is produced in 
Figure 3. 
 
 

The GENMOD Procedure 
 

Model Information 
 

Data Set                WORK.HYPO_CRAMP 
Distribution          Negative Binomial 
Link Function                       Log 
Dependent Variable               counts 
Offset Variable                    logt 
Observations Used                    70 

 
 

Class Level Information 
 

                 Class       Levels    Values 
 

device           2    Control Test 

 
Figure 3.  Negative binomial regression results 
 
 

 
Criteria For Assessing Goodness Of Fit 

 
  Criterion                 DF           Value        Value/DF 
  Deviance                  68         79.1674          1.1642 
  Scaled Deviance           68         68.0000          1.0000 
  Pearson Chi-Square        68         77.1031          1.1339 
  Scaled Pearson X2         68         66.2269          0.9739 
  Log Likelihood                      365.5844 
 
  Algorithm converged. 
 

Analysis Of Parameter Estimates 
 
                                   Standard    Chi- 
Parameter           DF   Estimate     Error  Square   Pr > ChiSq 
 
Intercept            1     0.4923     0.2168   5.16       0.0232 
device    Control    1     0.5162     0.3068   2.83       0.0925 
device       Test    0     0.0000     0.0000      . 
Dispersion           1     1.1731     0.2643      
 
NOTE: The covariance matrix was multiplied by a factor of 
DEVIANCE/DOF. 

 
Figure 3.   (continued) 
 
We can see that in the case of NB regression, in the ’Analysis Of 
Parameter Estimates’ table PROC GENMOD reports the 
dispersion parameter k (=1.1731), instead of scale parameter 
( φ ) for the ordinary and overdispersed Poisson regressions as 
it is shown in Figures 1 and 2.  The dispersion parameter can be 
set to a fixed value, by using both NOSCALE and 
SCALE=’number’ options in the model statement.  
 
From  ‘Analysis Of Parameter Estimates’ table we can see that 
the treatment effect became non-significant, (p=0.0925) which 
reflects a combination of a decrease of the value of the 
parameter estimate for DEVICE variable and the increase of its 
standard error. From ‘Criteria For Assessing Goodness Of Fit’ 
table we can see that the NB model fits the data very well (the 
deviance is 79.1674 with 68 degrees of freedom) and almost no 
over-dispersion is seen (ϕ=1.1642), compared to the ordinary 
Poisson model.   
 

STATISTICAL INFERENCE  

 
For visual evaluation of the fit, the estimated cumulative 
probability distributions for Poisson and NB models can be 
compared to the observed one. Figure 4 clearly shows that the 
NB model catches the features of the Hypo_Cramp data, 
whereas the Poisson model is inferior.  
 
 Comparison of p-values from outputs 1-3 suggests that our 
conclusions about the associations between the treatment and 
rates of hypotensions and crampings are greatly affected by the 
choice of the model.  Clearly, ignoring over-dispersion in the 
analysis would lead to underestimation of standard errors, and 
consequent over-statement of significance in hypothesis testing. 
Thus we can conclude that using inappropriate model for count 
data can dramatically change a statistical inference. The 
overdispersion must be accounted for by the analysis methods 
appropriate to the data.  In the particular case of Hypo_Cramp 
data the Goodness-of-Fit test suggests that the NB model, 
provides a better account of the probability distribution of the 
individual responses, than the simple Poisson model or Poisson 
model with correction for overdispersion. 
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Figure 4.   The observed and estimated cumulative distribution 
function for Hypo_Cramp data 
 
 

TREND OVER TIME 
 
There is big temptation in a longitudinal study to summarize the 
results in a count. This could describe the question of interest 
well. But it discards all available information about reason of 
overdispersion, or even about any simple trend in the rate of 
events. If the timing of each event is recorded, then, such a trend 
could be taken into account, by choosing an appropriate time unit 
for observation and to count the number of events by each unit in 
each successive period. The idea is to select this time interval 
small enough to reflect a possible time trend. In this way, each 
subject provides a series of counts that can be analyzed by 
Poisson or NB regressions with some function of time as one of 
the covariate.  Correlation between consecutive counts on a 
subject could be taken into account by using the GEE approach 
(see, Diggle, Liang and Zeger (1994)).  In PROC GENMOD such 
analysis could be done, by invoking a REPEATED statement with 
a correspondingly specified covariance structure of the correlated 
counts. 
 

MIXED MODEL 
 
The mixed model with count data could be fit by using either the 
%GLIMMIX macro or the PROCEDURE NLMIXED. 
%GLIMMIX is described in Little, Milliken, Stroup and Wolfinger 
(1996) and its latest version could be found at the SAS web site.  
Unfortunately, it does not support negative binomial regression 
yet. 
The PROC NLMIXED can fit both Poisson and, starting from SAS 
version 8.1, NB models.  Example 46.4 of the SAS/STAT User’s 
Guide, Version 8 (1999) describes how to fit the Poisson model.  
The PROC NLMIXED statements to fit NB model are as follows  
 

proc nlmixed data=Hypo_Cramp df=67; 
parms beta0 -3 beta1 0.5 log_sig 0.8; 
group=(device=’Test’); 
log_mu=beta0 + beta1*(1-group) + logt + u;  
p=exp(-log_mu)/(exp(-log_mu) + 1); 
model count ~ negbin(1,p); 
random u~normal(0,exp(2*log_sig)) subject=id; 
run; 

 
The PARMS statement identifies the unknown parameters and 
their starting values. The next two statements are SAS 
programming statements specifying the non-linear model and the 
MODEL statement defines the dependent variable and its 
conditional NB distribution given the random effect. There are two 

undocumented features, which should be mentioned here. First, p 
should be expressed as a probability and not just as an  
exp(-log_mu), which should be expected for log-linear model. 
Second, negbin(1,p) defines the NB distribution with fixed 
dispersion parameter k =1.  No other value of k is allowed at the 
present time. 
The RANDOM statement defines the single random effect to be 
u, and the SUBJECT=id defines the clustering variable. The only 
distribution currently available for the random effect is 
normal(m,v), with mean m and variance v.  
Figure 5 shows the part of the output from PROC NLMIXED.  
From  ‘Parameter Estimates’ table we can see that in the case of 
NB regression with dispersion parameter k =1 and normal 
random effect the treatment effect  (beta1) is non-significant 
(p=0.0699). 
 
 
                     The NLMIXED Procedure 

Specifications 
 
     Data Set                               WORK.HYPO_CRAMP 
     Dependent Variable                     count 
     Distribution for Dependent Variable    Negative Binomial 
     Random Effects                         u 
     Distribution for Random Effects        Normal 
     Subject Variable                       id 
     Optimization Technique                 Dual Quasi-Newton 
     Integration Method                     Adaptive Gaussian 
                                            Quadrature 
 
 

Parameter Estimates 
 
                       Standard 
  Parameter   Estimate      Error     DF   t Value   Pr > |t|     
 
  beta0        -3.0384     0.2371     67    -12.82     <.0001      
  beta1         0.5621     0.3051     67      1.84     0.0699      
  log_sig      -0.7947     0.5840     67     -1.36     0.1781      
 
 

  
Figure 4.  Output from PROC NLMIXED 

 

SPARSE DATA 
 
 If the total number of the events in any group is small the large-
sample inference, based on maximizing of the likelihood function 
or use quasi-likelihood equation, may not be valid. In those 
cases, exact Poisson regression is a better approach to get 
regression estimates and p-values that are statistically valid. In 
this method, an exact inference is based on the permutation 
distribution of the sufficient statistic for β  (regression coefficient 
for device variable), unlike asymptotic inference, which is based 
on a large sample distribution of estimated β̂ .  LogXact-4.1® 

software, Cytel Software Corporation (2000), provides this 
capability currently. 
 
The special case is zero number of events in the both treatment 
groups. In this case PROC GENMOD could exit abnormally. 
Even if it does not exit abnormally PROC GENMOD will not 
estimate parameters in the case of Poisson regression and SAS 
will issue the following messages in the LOG window: 

 
WARNING: The specified model did not converge. 
ERROR: The mean parameter is either invalid or at a limit of its 
range for some observations. 

 
In the case of Negative Binomial regression parameters are 
estimated, but they should be disregarded because of the inability 
for model to converge and the mentioned above 
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inappropriateness of the large-sample inference in this case. SAS 
will issue the following messages: 

 
WARNING: The negative of the Hessian is not positive definite. 
The convergence is questionable. 
WARNING: The procedure is continuing but the validity of the 
model fit is questionable. 
WARNING: The specified model did not converge. 
WARNING: Negative of Hessian not positive definite. 

 

 

COUNTS MACRO 
 
The %COUNTS macro for SAS is found in the Appendix. The 
macro produces tables of event rates and statistics summarizing 
results of a two-group comparison. It provides a skeletal structure 
which then can be used in a clinical trial setting. It may easily be 
expanded to provide more extensive and sophisticated output. 
The %COUNTS program is structured as follows: 
 
1. PROC MEANS is used to calculate rates of count events for 

two groups and create a corresponding data set. Then in the 
case of zero counts in both of the groups CALL SYMPUT is 
used to create a global character macro variable &cancel 
with the value ‘CANCEL’ . 

2. PROC GENMOD is used to calculate appropriate p-value for 
a two-group comparison. Output delivery System (ODS) 
then is used to output this p-value (p_value variable) to the 
data set ‘pvalue’. In the case of zero counts in both of the 
groups, the macro variable &cancel is used to cancel PROC 
GENMOD run (to avoid possible abnormal exit of PROC 
GENMOD) and to a create data set ‘pvalue’ with a missing 
value of the p_value variable. 

3. combine rates and p-value in one observation 
4. append this observation to the previously created data set 
5. export  resulting data set to the excel spreadsheet for easy 

formatting and incorporating to the report 
 
 
To use the macro, first to invoke the code (e.g., by using 
%include statement or just copy the entire macro to your SAS 
program) and then  issue 
 
%counts(dataset,outcome,dist,scale,offset); 
 
with all the parameters properly substituted.  For example to use 
NB regression to compare rates of hypotension and cramping in 
the test and control groups from data set Hypo_Cramp we will 
need to submit the next statement 
 
%counts(Hypo_Cramp,count,nb,dscale,logt); 
 
Example of the 5-fold application of the macro for 5 different 
adverse events is shown below. 
  
                Test               Control    p-value 
 
Fever 0.94(128/136.6) 0.86(134/155.9) 0.8687 
Pain  0.12(17/136.6)  0.17(26/155.9) 0.5841 
Edema  0.27(37/136.6)  0.38(60/155.9) 0.3119 
Malaise  0.31(43/136.6)  0.28(43/155.9) 0.7836 
Nausea  0.10(14/136.6)  0.23(36/155.9) 0.1456 
 

 
 

APPENDIX 
 
%macro counts(dataset,outcome,dist,scale,offset); 

 
ods listing close; ** Turn off output **; 
 
proc means data=&dataset noprint; 
var &outcome.; 
output out=check00 sum=&outcome.; 
run; 
 
%let cancel=; 
data _null_ pvalue (drop=&outcome.); 
set check00; 
 
if &outcome.^=0 then output _null_ ; 
if &outcome.=0 then do; 
 
call symput('CANCEL','CANCEL'); 
 
P_value=.; 
 
output pvalue ; 
end; 
run; 
 
ods output 
ParameterEstimates=pvalue(where=(Parameter='device' and 
DF=1) rename=(probchisq=P_value)); 
proc genmod data=&dataset. ; 
      class device; 
      model &outcome = device /maxiter=1000 dist=&dist. &scale. 
offset=&offset.; 
run &cancel.; 
 
proc means data=&dataset noprint; by group; 
     var &varname MonthatRisk; 
     output out=countsum sum=&varname Time_At_Risk; 
run; 
 
data &outcome._out; 
retain outcome Test Control Pvalue; 
length outcome $15 Pvalue $13; 
merge  
countsum(where=(group=2) rename=(&outcome =Total2 
Time_At_Risk=TimeAtRisk2)) 
countsum(where=(group=1) rename=(&outcome =Total1 
Time_At_Risk=TimeAtRisk1))   
pvalue (Keep=P_value); 
 
Pvalue=substr(input(P_value,$13.),1,6); 
 
if Total1=. then Total1=0; 
if Total2=. then Total2=0; 
 
Variable="&outcome."; 
 
if .<P_value<0.0001 then Pvalue='<.0001'; 
if P_value=1 then Pvalue='1.0000'; 
 
EventsMonth1=round(Total1/TimeAtRisk1,0.01); 
EventsMonth2=round(Total2/TimeAtRisk2,0.01); 
TimeAtRisk1=round(TimeAtRisk1,0.1); 
TimeAtRisk2=round(TimeAtRisk2,0.1); 
Control=compress(EventsMonth1||'('||Total1||'/'||TimeAtRisk1||')'); 
Test=compress(EventsMonth2||'('||Total2||'/'||TimeAtRisk2||')'); 
 
keep Variable Test Control Pvalue; 
 
proc append force base=countsall data=&outcome._out; 
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proc export data=&outcome._out 
     outfile=”C:\Analysis\counts.xls” 
     dbms=excel2000 replace; 
run; 
 
proc datasets; 
delete &outcome._out pvalue check00; 
 
quit; 
 
ods listing; 
 
%mend counts; 
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