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Maximum likelihood

Much of 20th-century statistics dealt with maximum likelihood
estimation:

One begins by specifying a distribution f(x|θ) for the data

This distribution in turn induces a log-likelihood function
L(θ|x), which specifies how likely the observed data is for
various values of the unknown parameters

Estimates can be found by finding the most likely values of
the unknown parameters

Hypothesis tests and confidence intervals can be carried out
by evaluating how the likelihood changes in response to
moving away from these most likely values
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Problems with maximum likelihood in regression

Maximum likelihood estimation has many wonderful properties,
but is often unsatisfactory in regression problems for two reasons:

Large variability: when p is large with respect to n, or when
columns of X are highly correlated, the variance of β̂ is large

Lack of interpretability: if p is large, we often desire a smaller
set of predictors in order to gain insight into the most relevant
relationships between y and X
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Subset selection

Probably the most common solution to this problem is choose
a subset of important explanatory variables based on ad hoc
trial and error using p-values to guide whether a variable
should be in the model or not

However, this approach is impossible to replicate and therefore
to study the statistical properties of

A more systematic approach is to exhaustively search all
possible subsets and then use some sort of criterion such as
AIC or BIC to choose an optimal subset
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Problem #1: Computational infeasibility

One problem with this approach is that the number of “all
possible subsets” grows exponentially with p

With today’s computers, searching all possible subsets is
computationally infeasible for p much larger than 40 or 50

For this reason, modifications such as forward selection,
backward selection, and forward/backward hybrids have been
proposed
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Problem #2: Instability

Another problem is the fact that subset selection is
discontinuous, in the sense that an infinitesimally small
change in the data can result in completely different estimates

As a result, subset selection is often unstable and highly
variable, especially in high dimensions

As we will see, penalized regression allows us to accomplish
the same goals as subset selection, but in a more stable,
continuous, and computationally efficient fashion
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Subset selection pitfalls

It should be pointed out that it is common practice to report
inferential results from ordinary least squares models following
subset selection as if the model had been prespecified from
the beginning

This is unfortunate, as the resulting inferential procedures
violate every principle of statistical estimation and hypothesis
testing:

Test statistics no longer follow t/F distributions
Standard errors are biased low, and confidence intervals falsely
narrow
p-values are falsely small
Regression coefficients are biased away from zero
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Penalized maximum likelihood

A different way of dealing with this problem is to introduce a
penalty: instead of maximizing `(θ|x) = log{L(θ|x}, we maximize
the function

M(θ) = `(θ|x)− λP (θ)

where

P is a function that penalizes what one would consider less
realistic values of the unknown parameters

λ controls the tradeoff between the two parts

The function M is called the objective function
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Penalized maximum likelihood (cont’d)

In regression, we usually think about minimizing a loss function
(usually squared error loss) rather than maximizing likelihood; an
equivalent formulation is that we estimate θ by minimizing

M(θ) = L(θ|x) + λP (θ)

where L here is a loss function (usually a quantity that is
proportional to a negative log likelihood, such as the residual sum
of squares)
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Penalty functions

What exactly do we mean by “less realistic” values?

In the first section of this course, we mean that coefficient
values around zero are more believable than those far away
from zero, and P is therefore a function which penalizes
coefficients as they get further away from zero

The two penalties that we will cover in depth in this section of
the course are ridge regression and the lasso:

Ridge: P (β) =

p∑
j=1

β2j

Lasso: P (β) =

p∑
j=1

|βj |
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Penalty functions (cont’d)

Later in the course, we will use the idea of penalization when
fitting curves to data, to favor simple, smoother curves over
wiggly, erratic ones; here, P is a measure of the “wiggliness”
of the curve

There are also plenty of other varieties of penalization in
existence that we will not address in this course

The all operate on the same basic principle, however: all other
things being equal, we would tend to favor the simpler
explanation over the more complicated one
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The regularization parameter

As mentioned earlier, the parameter λ controls the tradeoff
between the penalty and the fit (loss/likelihood):

When λ is too small, we tend to overfit the data and end up
models that have high variance
When λ is too large, we tend to underfit the data and end up
with models that are too simplistic and thus potentially biased

The parameter λ is called the regularization parameter;
changing the regularization parameter allows us to directly
balance the bias-variance tradeoff

Obviously, selection of λ is a very important practical aspect
of fitting these models
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Bayesian interpretation

From a Bayesian perspective, one can think of the penalty as
arising from a prior distribution on the parameters

The objective function is then (proportional to) the log of the
posterior distribution of θ given the data

By optimizing this objective function, we are finding the mode
of the posterior distribution of θ
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Constrained regression

Yet another way to think about penalized regression is that
they imply a constraint on the values of θ

Suppose we were trying to maximize the likelihood subject to
the constraint that P (θ) ≤ t
A standard approach to solving such problem is to introduce a
Lagrange multiplier; when we do so, we arrive at the same
objective function as earlier
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Penalization and the intercept term

Earlier, we mentioned that penalized regression revolves
around an assumption that coefficient values around zero are
more believable than those far away from zero

Some care is needed, however, in the application of this idea

First of all, it does not make sense to apply this idea to the
intercept, unless you happened to have some reason to think
that the mean of y should be zero

Hence, the intercept is not included in the penalty; if it were,
the estimates would not be invariant to changes of location
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Standardization

A separate consideration is how to make “far from zero” mean
the same thing for all the variables

For example, suppose x1 varied from 0 to 1, while x2 varied
from 0 to 1 million; clearly, a one-unit change in x does not
mean the same for both of these variables

Thus, the explanatory variables are usually standardized prior
to model fitting to have mean zero and standard deviation 1;
i.e.,

x̄j = 0

xT
j xj = n

for all j
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Standardization (cont’d)

This can be accomplished without any loss of generality:

Any location shifts for X are absorbed into the intercept

Scale changes can be reversed after the model has been fit:

xijβj =
xij
a
aβj

= x̃ij β̃j ;

i.e., if we had to divide xj by a to standardize it, we simply
divide the transformed solution β̃j by a to obtain βj on the
original scale
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Further benefits

Centering and scaling the explanatory variables has added benefits:

The explanatory variables are now orthogonal to the intercept
term, meaning that in the standardized covariate space,
β̂0 = ȳ regardless of what goes on in the rest of the model

In other words, if we center y by subtracting off its mean, we
don’t even need to estimate β0
Also, standardization simplifies the solutions; recall from BST
760 that for simple linear regression

α̂ = ȳ − β̂x̄

β̂ =

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2

If we center and scale x and center y, however, then we get
the much simpler expression β̂ = xTy/n
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Standardization summary

To summarize, centering the response and centering and scaling
each explanatory variable to have mean 0 and standard deviation 1
has the following benefits:

Estimates of β are location-scale invariant

Computational savings (we only need to estimate p
parameters, not p+ 1)

Simplicity

No loss of generality, as we can transform back to the original
scale once we finish fitting the model
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