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Summary. In studying fluctuations in the size of a blackgrouse (Tetrao tetrix) population, an
autoregressive model using climatic conditions appears to follow the changes quite well. However,
the deviance of the model is considerably larger than its number of degrees of freedom. A widely
used statistical rule of thumb holds that overdispersion is present in such situations, but model
selection based on a direct likelihood approach can produce opposing results. Two further
examples, of binomial and of Poisson data, have models with deviances that are almost twice the
degrees of freedom and yet various overdispersion models do not fit better than the standard model
for independent data. This can arise because the rule of thumb only considers a point estimate of
dispersion, without regard for any measure of its precision. A reasonable criterion for detecting
overdispersion is that the deviance be at least twice the number of degrees of freedom, the familiar
Akaike information criterion, but the actual presence of overdispersion should then be checked by
some appropriate modelling procedure.
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1. Introduction

Blackgrouse (Tetrao tetrix) in the high eastern region of Belgium form a very small popu-
lation that is close to extinction. Biologists have followed them closely for many years. The
numbers of cocks on their mating grounds are counted each spring, with data available for
30 years.

In modelling this population, we are interested to see whether we can obtain an adequate
model for the available data by using only climatic information. If a population is in an
ecologically viable equilibrium, it should be able to adjust to a changing habitat; short-term
variations in weather should be the only major influence on the size of the population. This
can have an immediate effect on the survival of the young, but also a more delayed effect
through the numbers of grouse reaching maturation. To account for the latter, population
levels in the previous 2 years are included in the model because the cocks take 2 years to reach
maturity.

We know that habitat factors, especially variations in the number of foxes as influenced by
changes in methods of rabies control, the activity of poachers and evolution of the plant
habitat in the region over the observation period, have an effect. However, the question is not
whether such variables are missing; we know that they are. The question concerns the
adequacy and appropriateness of a climatic model for describing the observed variations. For
a further discussion of these assumptions, and details on the models and the conclusions, see
Loneux et al. (1997).
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With this goal in mind, the climatic conditions over the 30 years, at key periods of the
reproduction cycle, have been assembled with considerable effort by Mme Loneux, each
variable being chosen for its biological significance. Out of this large collection, the variables
providing the best prediction are shown in Table 1 and the population numbers are plotted in
Fig. 1. The data in Table 1 can also be obtained from

http://www.blackwellpublishers.co.uk/rss/

The best model, using the variables in Table 1 as well as an autoregression on the observed
population numbers lagged 1 and 2 years, is also plotted in Fig. 1. It has a deviance of 29.0
with 18 degrees of freedom (the first two years are not used as a response because of the lag).
The question arises whether overdispersion is present.

To illustrate better the statistical problem, I shall also consider the simpler model with the
least significant variable (x3, total precipitation the previous September) omitted. This model
has a deviance of 39.2 with 19 degrees of freedom, appearing even more clearly to indicate
overdispersion. By a frequentist goodness-of-fit test, there is strong evidence of a lack of fit, but,
by a model selection criterion such as the Akaike information criterion AIC, there is little

Table 1. Yearly numbers of blackgrouse cocks with the climatic variablest

Year Count X Xy X3 X4 X5 Xg X7

1967 80 —1.4 0.0 51.3 64.9 133.4 101.2 9.5
1968 115 -2.1 —1.4 93.3 143.3 114.1 46.9 9.3
1969 140 —2.6 -2.1 217.5 73.0 94.9 55.8 10.2
1970 165 -3.7 —2.6 423 94.2 106.5 72.7 8.5
1971 198 2.2 —3.7 96.4 62.8 52.9 30.0 10.0
1972 160 —1.6 -2.2 50.2 97.2 149.8 133.8 7.3
1973 118 —1.6 —1.6 115.0 93.3 92.3 25.4 8.1
1974 100 —1.1 —1.6 75.2 102.8 89.7 56.4 11.6
1975 52 —0.2 —1.1 160.1 84.7 85.0 67.9 8.8
1976 42 -2.1 —0.2 108.3 359 61.1 57.3 8.4
1977 81 -1.5 —2.1 72.3 80.4 60.1 34.4 14.3
1978 58 —1.6 -1.5 58.2 103.0 91.5 91.5 10.0
1979 55 -3.6 —1.6 131.8 59.5 522 51.3 6.9
1980 54 0.7 -3.6 28.4 165.2 141.0 81.8 7.6
1981 46 2.7 0.7 53.6 62.8 78.3 52.4 6.6
1982 34 —2.4 —2.7 83.6 104.7 122.0 94.7 7.3
1983 35 —-14 —2.4 67.2 165.4 142.3 140.9 12.7
1984 66 -23 —1.4 138.0 184.4 126.1 229 8.5
1985 40 -34 23 310.1 192.5 119.0 40.9 6.5
1986 50 —4.0 34 71.7 118.7 148.1 139.5 7.9
1987 74 =35 —4.0 95.4 144.2 141.0 136.5 13.3
1988 57 —0.8 -3.5 121.8 136.6 146.5 114.0 8.6
1989 45 0.1 —-0.8 148.2 126.3 115.2 39.7 8.9
1990 53 0.2 0.1 71.9 59.2 59.3 59.3 9.8
1991 42 —1.5 0.2 119.0 56.7 70.5 70.5 8.8
1992 43 —1.1 -1.5 58.4 68.5 103.8 103.5 9.8
1993 55 -14 —1.1 69.2 44.2 97.8 88.4 9.9
1994 47 —-14 —1.4 176.5 73.6 80.5 59.1 8.7
1995 36 0.1 —-14 167.0 139.5 114.5 99.1 11.5
1996 26 -3.1 0.1 104.3 143.7 157.6 127.9 10.3

fx;, average minimum temperature the previous winter; x,, average minimum temperature two
winters before; x;, total precipitation the previous September; x4, precipitation during the four
weeks of the previous year starting May 19th; x;, precipitation during the four weeks of the
previous year starting May 25th; xg, precipitation during the three weeks of the previous year
starting June 1st; x,, minimum temperature during the three weeks of the previous year starting
June 16th.
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Fig. 1. Observed numbers of blackgrouse (e) with the best fitted model (
removed (--«--ee-- )

) and the model with one variable

evidence, if x; were not available for inclusion. Omitting this variable is not a relevant biological
exercise because, if it had been missing, one of the many other available weather variables would
have taken its place almost as well. The question is rather statistical for at least two reasons. A
scientific problem generally requires models incorporating not all available significant
variables, but only those relevant to that problem. As well, the full model contains nine
variables with only 28 usable observations so that overfitting may be a serious consideration and
a simplification reasonable. What is the effect of such omissions on overdispersion?

Corrections for overdispersion are widely used when modelling count data. Some
statisticians, following McCullagh and Nelder (1989), pages 90 and 125, but ignoring their
qualification (‘unless the data or prior information indicate otherwise’), suggest that it is wise to
assume that overdispersion is always present. Cox (1983) showed that the heterogeneity factor
usually provides an adequate correction, without further modelling, unless the data are highly
unbalanced. However, these arguments are based on point estimates of a dispersion parameter,
generally notinvolving an actual probabilistic model for the overdispersion. In contrast, Finney
(1971), p. 72, and Finney (1978), pages 96 and 373, took a more cautious approach, warning
against corrections as a global remedy. The present paper is in the spirit of Finney.

Lindsey (1993) pointed out that overdispersion should only be suspected when counts, i.e.
repeated events on the same units, are being observed. Overdispersion will not occur when
[frequencies, i.e. independent events on different units, are being recorded. Allowing for
overdispersion in the latter case instead of using the available covariates may just be an
excuse for careless modelling, the point made by Finney.

For count data, the standard overdispersion model is the negative binomial distribution,
obtained by assuming that the mean varies randomly in the population, following a gamma
distribution. The corresponding model for binomial overdispersion is the beta—binomial
distribution, derived by assuming that the probability has a beta distribution. Both have simple
analytical forms because they arise from conjugate distributions in the exponential family.

Other mixing distributions can be used, such as the normal distribution (Hinde, 1982).
Overdispersed distributions without a mixture interpretation are also available. Altham
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(1978) has suggested a ‘multiplicative’ binomial model; an analogous model can be derived as
a generalization of the Poisson distribution. Efron (1986) introduced the family of double-
exponential distributions, with appropriate members for binomial and Poisson data. This set
of four possible overdispersion models each for binomial and for Poisson counts provides a
considerable degree of robustness to various forms of overdispersion. When some form of
overdispersion is present, these various models can yield very different results.

One advantage of using true distributions instead of quasi-likelihood or pseudolikelihood
methods is that the relative goodness of fit of various models can be directly compared
through the likelihood function. In this way, the need to correct for overdispersion can be
determined. This paper shows that the commonly used criterion, that the deviance be greater
than its number of degrees of freedom, can yield misleading inferences from a direct
likelihood point of view. Indeed, as we shall also see, this criterion is little used in that one
area, the social sciences, where contingency tables most frequently occur.

2. Inferences

Overdispersion is an area where the differences in conclusions between the probability-based
frequentist and Bayesian approaches and the direct likelihood model selection procedures
(Lindsey, 1996, 1999a) can most clearly be seen.

For example, in the social sciences, contingency tables with large frequencies often occur so
that inferences based on a y*-distribution are known not to provide reasonable answers. An
alternative procedure proposed by Raftery (1986a, b) is the Bayesian information criterion
BIC (Schwarz, 1978). It has a direct likelihood interpretation as does the Akaike (1973)
information criterion AIC. The former penalizes the deviance (twice the negative log-
likelihood) by adding p log(n), where p is the number of estimated parameters in the model
and # is the number of events in the contingency table. In a saturated model, this is equivalent
to assuming that overdispersion is only present if the deviance is greater than (N — p) log(n),
where N is the number of cells in the table so that N — p is the number of degrees of freedom.

Similarly, if AIC is used for model selection in contingency tables (Bai et a/. (1992); see also
Burnham et al. (1995) and Buckland et al. (1997)), overdispersion will only be considered
present if the deviance is more than twice the number of degrees of freedom.

Even the traditional rule of thumb is a form of direct likelihood procedure because it does not
take into account the degrees of freedom through a sampling distribution as is usually done in
frequentist methods. It is equivalent to an AIC with the penalty equal to the number of
estimated parameters instead of twice that number. If it is interpreted inappropriately as a
frequentist ‘test’ on the deviance, the criterion that overdispersion is present when the deviance
is larger than the degrees of freedom would reject the null hypothesis of no overdispersion, for
example, at a 42% level with 5 degrees of freedom and at a 48% level with 100 degrees of
freedom. If the average deviance is used as an estimate of overdispersion, a frequentist criterion
at the 5% level would indicate overdispersion when the deviance was greater than 11 with 5
degrees of freedom and greater than 124 with 100 degrees of freedom. Thus the ratio changes
from about 2 to 1.25 as the number of degrees of freedom increases, but it does not reach 1.

Models in the examples to follow will be compared by using a direct likelihood approach
with the negative log-likelihood penalized by adding the number of parameters estimated (a
form of AIC). Smaller values indicate relatively better models. However, the deviances
quoted are the standard two times the difference in negative log-likelihood with respect to the
saturated model.

AIC is used because the author believes that an appropriate sample size should be chosen,
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given some inference criterion, in such a way that a scientifically interesting effect can be
detected; this is not possible with BIC.

3. Models

In all examples below, all of the distributions mentioned above (conjugate, normal mixture,
Altham and Efron) were fitted and all led to the same conclusions about lack of overdispersion.
Only details of the results from the binomial and beta—binomial, Poisson and negative binomial
models are presented.

With y;; events, on the individual indexed by 7 within the group having covariate value j, the
negative binomial distribution is

Pr(y,) = LWi T ) ( 1 )( vy >”"
v yi! (k) \ 1+ 14

with mean y; = kv; and correlation p; = 1/k;, where I'(-) is the gamma function. For a
constant correlation, we can use

var(Yy) = (1 + pp).
However, to obtain the variance proportional to the mean, we can set v; constant to obtain
var(Yy) = pu(l +v)

so that the heterogeneity factor is ¢ =1+ v.
With y;; successes out of ny; trials, and using the same indexing as above, the beta-binomial
distribution is given by

n; \ B(s; + yi, v; +n; — yy)
Pr(y,»,-) — ( j) J y> -] i y

Yij B(Hp Uj)

with k; = (1 — p)m;/p and v; = (1 — p)(1 — 7;)/ p where 7, is the probability of success, p is the
constant correlation among events on a unit and B(-) is the beta function. The variance is

var(Yy) = nym(1 — m){1 + (n; — Dp}

and the heterogeneity factor is approximately ¢ = 1 4+ (n — 1)p where 7 is the average number
of trials.

4. Blackgrouse and the climate

The biological problem and the final model were described in Section 1 and the latter
plotted in Fig. 1. Let us now consider the possibility of overdispersion more closely. The
parameter estimates from the Poisson distribution, with and without the least significant
variable x;, are shown in Table 2. The full model has a deviance of 29.0 with 18 degrees of
freedom whereas the simplified model has deviance 39.2 with 19 degrees of freedom. The
increased lack of fit arises primarily from years 1970, 1980, 1984 and 1985, whereas the fit
for 1969 improves. The parameter estimates and standard errors change little when x5 is
removed.
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Table 2. Parameter estimates and standard errors for the two models fitted to the
blackgrouse data by using a Poisson distribution

Parameter Full model Simplified model
Estimate Standard error Estimate Standard error
Intercept 2.9999 0.2035 2.7746 0.1912
Lagl 0.0113 0.0011 0.0106 0.0011
Lag? —0.0039 0.0011 —0.0028 0.0010
X —0.0761 0.0213 —0.0707 0.0215
X, —0.0889 0.0261 —0.0994 0.0263
X3 —0.0015 0.0005 — —
X4 —0.0048 0.0013 —0.0053 0.0013
Xs 0.0080 0.0022 0.0075 0.0023
Xg —0.0085 0.0014 —0.0070 0.0014
X7 0.0822 0.0144 0.0838 0.0143
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Fig. 2. Normed profile likelihood for the heterogeneity factor in the negative binomial model for the blackgrouse
data

Allowing for overdispersion, using any of the distributions described above, hardly
changes the likelihood for either model. For the simplified model, the AICs are 111.8 for the
Poisson, 112.4 and 111.9 for the negative binomial respectively for constant correlation
and for variance proportional to the mean, 112.0 for the double-Poisson, 112.8 for the
multiplicative Poisson and 112.4 for the normal-Poisson distributions. In all cases, the
estimates and standard errors are close to those given in Table 2 for the Poisson distribution.

For the negative binomial distribution, in the simplified model, with the variance propor-
tional to the mean, the heterogeneity factor is estimated to be ¢ = 1 + exp(—0.8932) = 1.41
compared with 39.2/19 = 2.06 from the deviance. The normed profile likelihood for this
parameter of the negative binomial model is plotted in Fig. 2. The profile is very wide, giving no
reason to exclude ¢ = 1; this value is about as likely as the estimate of 2.06 derived from the
average deviance. This confirms the conclusions from the AICs for the various models. Even
with one of the essential available variables eliminated, there is no indication of overdispersion.
We can conclude that climatic factors provide a reasonable description of the data.
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5. Further examples

5.1.  Binomial counts

Crowder (1978) gave two data sets on the germination of seeds in vegetable extracts. In his
second data set, a 2 x 2 factorial lay-out, the two factor variables are type of seed and type of
extract. The deviance for the full model is 33.28 and the Pearson y *-statistic is 31.65 with 17
degrees of freedom, yielding a correction factor of 4/(31.65/17) = 1.4 for the standard errors.

The ratio of the deviance to the degrees of freedom is almost 2, close to indicating
overdispersion by my criterion. In agreement with this, the AIC for the binomial model is
58.9 compared with 58.8 for the beta—binomial model, indicating that this overdispersed
model does not fit better. (A frequentist test can also be constructed; the P-value for rejecting
the null hypothesis of a binomial distribution in favour of the beta—binomial distribution is
0.28.) The estimate of the correlation is p = 0.0124. There is considerable variability in the n;
but their average is about 40 so the maximum likelihood estimate of the heterogeneity factor
is about 1 + 39 x 0.0124 = 1.48 compared with 1.96 from the average deviance. Thus, the
corrections to the standard error are respectively about 1.2 and 1.4.

The parameter estimates and standard errors for the two models are given in Table 3. We
see that the variance inflation factor calculated from the goodness-of-fit statistics overcorrects
the standard errors of the binomial distribution, compared with those from the beta—
binomial distribution. But, in addition, even the larger standard errors of the beta—binomial
distribution are not supported by the data because the simpler binomial distribution fits as
well. In such situations, one generally chooses the simplest model.

The normed profile likelihood for the correlation in the beta—binomial model has a maximum
at 0.0124. Although this point estimate is different from 0, a zero correlation is very plausible,
having a normed likelihood of about 0.5. The correlation estimated from the goodness-of-fit
statistic is about 1/39 = 0.0256, a value that is also plausible according to the normed profile
likelihood (0.65), but a value that is rather far from the maximum likelihood estimate.

If the corrected standard errors were used for inference, we would conclude that the
interaction, and then the seed effect, could be removed from the model. However, the AIC is
61.7 for the binomial model without seed and its interaction, compared with 58.9 for the full
model, given above, and respectively 60.2 and 58.8 for the corresponding beta—binomial
models. From both comparisons, we conclude that the seed effect is necessary in the model.
The same conclusions are obtained if the normal-binomial, double-binomial or multiplic-
ative binomial distributions are fitted.

The conclusions to be drawn from these data are ambiguous. The ratio of deviance to
degrees of freedom is close to 2 and the AICs from the binomial and overdispersed distri-

Table 3. Parameter estimates and their standard errors from the binomial and beta—binomial
distributions+

Parameter Binomial model Beta—binomial model
Estimate Standard Corrected Estimate  Standard
error standard error error
Intercept —0.558 0.126 0.176 —0.542 0.164
Seed 0.146 0.223 0.312 0.097 0.274
Vegetable 1.318 0.178 0.249 1.320 0.234
Interaction —0.778 0.306 0.428 —0.798 0.378

+The corrected standard errors have been inflated by using the heterogeneity factor.
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butions are similar, indicating that there might be some lack of fit. None of these four over-
dispersion models may adequately be capturing the variability in these data. For example, a
more heavy-tailed mixing distribution may be necessary because of the great variability
among counts or, preferably, the adequacy of control of the experimental conditions should
be verified.

In contrast, in the first of Crowder’s examples, the factor variable is the dilution of the
extract, with three levels. Here the deviance is 48.22 with 13 degrees of freedom. The binomial
and beta—binomial AICs are respectively 51.8 and 49.2, indicating an improved fit with the
latter model.

5.2. Poisson counts

Lindsey (1993), pages 166—173, analysed data on the numbers of species in the Galapagos
Islands. For the model with a non-linear response surface for area, elevation and distance
from Santa Cruz, the deviance is 21.4, and the Pearson y *-statistic is 21.3, with 11 degrees of
freedom, again indicating substantial overdispersion. However, the AICs for the Poisson and
the negative binomial models are respectively 80.7 and 81.7 indicating a poorer fit for the
latter. The former is better than the saturated model, with a different mean for each island: it
has an AIC of 81.0. (Again, a frequentist test can be constructed for rejecting the Poisson
distribution in favour of the negative binomial, here with a P-value of 0.99.) Here, as for the
blackgrouse, the parameter estimates and standard errors are virtually identical in the two
models. And yet the usual correction to the standard errors would have inflated them by a
factor of 1.4.

For the negative binomial model with the variance proportional to the mean, the
heterogeneity factor is estimated to be virtually 1: ¢ = 1 + exp(—9.36). The normed profile
likelihood for this parameter of the negative binomial model decreases monotonously from
its maximum at this value. The value of ¢ (1.94) estimated from the goodness-of-fit statistic is
relatively implausible, with a normed likelihood of about 0.05.

The same conclusion about the lack of overdispersion is drawn if the normal-Poisson,
double-Poisson or multiplicative Poisson distributions are fitted.

6. Discussion

The above examples indicate that the ‘rule of thumb’ that overdispersion is present if the
deviance is greater than its number of degrees of freedom should be revised so that one only
looks for overdispersion if the deviance is at least twice the number of degrees of freedom.
Such a criterion has a theoretical justification: it is equivalent to comparing the fitted model
with the saturated model by using AIC. However, once the possibility of overdispersion is
determined, more formal methods of model building should be used to check whether it
actually is present and, if so, to account for it. As we have seen in the examples, the usual
point estimate obtained from the deviance may be misleading: the average deviance generally
overestimates the heterogeneity factor, often greatly, compared with the maximum likelihood
estimate from the negative binomial or beta—binomial distribution.

Evidence has accumulated indicating that standard errors are generally not trustworthy for
making inferences from models that are not based on the normal distribution. We see here
that corrections for overdispersion can also make inferences based on them even more
misleading. Inflating standard errors when this is not supported by the data can lead to the
non-detection of real treatment effects. It can also waste resources because experiments are
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conducted with larger sample sizes than necessary because the precision that will be obtained
has been underestimated.

Ad hoc corrections are not acceptable when exact models for overdispersion can be fitted
in a few seconds and various such models compared to check the robustness of results.
Correction using a heterogeneity factor should be replaced by modern modelling techniques,
although situations are not always as simple as in the examples presented here. The
dispersion may vary systematically with the covariates so this will have to be modelled in its
own right. Lindsey (1999b) gives examples where overdispersion only occurs in biologically
extreme conditions, requiring response surface models both for the probability of an event
and for the correlation among events.
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