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1 Recall: Monte Carlo integration
2 Importance Sampling
3 Examples of Importance Sampling

(a) Monte Carlo, Monaco (b) Monte Carlo Casino

? Some content and examples from Wasserman (2004)
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Simple illustration: what is π?

Area◦
Area�

=
πr2

(2r)(2r)
=
π

4

Jessi Cisewski (CMU) Importance Sampling



References

Monte Carlo Integration: motivation

I =

∫ b

a
h(y)dy

Goal: evaluate this integral

Sometimes we can find I (e.g. if h(·) is a function from Calc I)

But sometimes we can’t and need a way to approximate I . Monte
Carlo methods are one (of many) approaches to do this.
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The Law of Large Numbers

While nothing is more uncertain than the
duration of a single life, nothing is more certain
than the average duration of a thousand lives.

∼ Elizur Wright

Figure: Elizur Wright (1804 - 1885), American mathematician, the “father of

life insurance”, “father of insurance regulation” (http://en.wikipedia.org)
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Law of Large Numbers

The Law of Large Numbers describes what happens when performing the same
experiment many times.

After many trials, the average of the results should be close to the expected value and
will be more accurate with more trials.

For Monte Carlo simulation, this means that we can learn properties of a random
variable (mean, variance, etc.) simply by simulating it over many trials.

Suppose we want to estimate the probability, p, of a coin landing “heads up”. How
many times should we flip the coin?
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Law of Large Numbers (LLN)

Given an independent and identically distributed sequence of
random variables Y1,Y2, . . . ,Yn with Ȳn = n−1

∑n
i=1 Yi and

E (Yi ) = µ, then for every ε > 0

P(|Ȳn − µ| > ε) −→ 0,

as n −→∞.

Jessi Cisewski (CMU) Importance Sampling



References

Monte Carlo Integration

General idea

Monte Carlo methods are a form of stochastic integration used to
approximate expectations by invoking the law of large numbers.

I =

∫ b

a
h(y)dy =

∫ b

a
w(y)f (y)dy = Ef (w(Y ))

where f (y) = 1
b−a and w(y) = h(y) · (b − a)

f (y) = 1
b−a is the pdf of a U(a,b) random variable

By the LLN, if we take an iid sample of size N from U(a, b), we
can estimate I as

Î = N−1
N∑
i=1

w(Yi ) −→ E (w(Y )) = I
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Monte Carlo Integration: standard error

I =

∫ b

a
h(y)dy =

∫ b

a
w(y)f (y)dy = Ef (w(Y ))

Monte Carlo estimator: Î = N−1
∑N

i=1 w(Yi )

Standard error of estimator: ŜE = s√
N

where

s2 = (N − 1)−1
N∑
i=1

(
w(Yi )− Î

)2
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Monte Carlo Integration: Gaussian CDF example?

Goal: estimate FY (y) = P(Y ≤ y) = E
[
I(−∞,y)(Y )

]
where

Y ∼ N(0, 1):

F (Y ≤ y) =

∫ y

−∞

1√
2π

e−t
2/2dt =

∫ ∞
−∞

h(t)
1√
2π

e−t
2/2dt

where h(t) = 1 if t < y and h(t) = 0 if t ≥ y

Draw an iid sample Y1, . . . ,YN from a N(0, 1), then the estimator
is

Î = N−1
N∑
i=1

h(Yi ) =
# draws < x

N

? Example 24.2 of Wasserman (2004)
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Importance Sampling: motivation

Standard Monte Carlo integration is great if you can sample from
the target distribution (i.e. the desired distribution)

−→ But what if you can’t sample from the target?

Idea of importance sampling: draw the sample from a proposal
distribution and re-weight the integral using importance weights so
that the correct distribution is targeted
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Monte Carlo Integration −→ Importance Sampling

I =

∫
h(y)f (y)dy

h is some function and f is the probability density function of Y

When the density f is difficult to sample from, importance
sampling can be used

Rather than sampling from f , you specify a different probability
density function, g , as the proposal distribution.

I =

∫
h(y)f (y)dy =

∫
h(y)

f (y)

g(y)
g(y)dy =

∫
h(y)f (y)

g(y)
g(y)dy
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Importance Sampling

I = Ef [h(Y )] =

∫
h(y)f (y)

g(y)
g(y)dy = Eg

[
h(Y )f (Y )

g(Y )

]

Hence, given an iid sample Y1, . . . ,YN from g , our estimator of I
becomes

Î = N−1
N∑
i=1

h(Yi )f (Yi )

g(Yi )
−→ Eg

[
h(Y )f (Y )

g(Y )

]
= I
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Importance Sampling: selecting the proposal distribution

The standard error of Î could be infinite if g(·) is not selected
appropriately −→ g should have thicker tails than f (don’t want
ratio f /g to get large)

Eg

[(
h(Y )f (Y )

g(Y )

)2
]

=

∫ (
h(y)f (y)

g(y)

)2

g(y)dy

Select a g that has a similar shape to f , but with thicker tails

Variance of Î is minimized when g(y) ∝ |f (y)|
Want to be able to sample from g(y) with ease
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Importance sampling: Illustration

Goal: estimate P(Y < 0.3) where Y ∼ f

Try two proposal distributions: U(0,1) and U(0,4)
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Importance sampling: Illustration, continued.

If take 1000 samples of size 100, and find the IS estimates, we get
the following estimated expected values and variances.

Expected Value Variance

Truth 0.206 0
g1: U(0,1) 0.206 0.0014
g2: U(0,4) 0.211 0.0075
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Monte Carlo Integration: Gaussian tail probability example?

Goal: estimate P(Y ≥ 3) where Y ∼ N(0, 1) (Truth is ≈
0.001349)

P(Y > 3) =

∫ ∞
3

1√
2π

e−t
2/2dt =

∫ ∞
−∞

h(t)
1√
2π

e−t
2/2dt

where h(t) = 1 if t > 3 and h(t) = 0 if t ≤ 3

Draw an iid sample Y1, . . . ,Y100 from a N(0, 1), then the
estimator is

Î =
1

100

100∑
i=1

h(Yi ) =
# draws > 3

100

? Example 24.6 of Wasserman (2004)
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Gaussian tail probability example?, continued.

Draw an iid sample Y1, . . . ,Y100 from a N(0, 1), then the
estimator is

Î =
1

100

100∑
i=1

h(Yi )

Draw an iid sample Y1, . . . ,Y100 from a N(4, 1), then the
estimator is

Î =
1

100

100∑
i=1

h(Yi )f (Yi )

g(Yi )

where f is the density of a N(0,1) and g is the density of N(4,1)

? Example 24.6 of Wasserman (2004)
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Gaussian tail probability example?, continued.

If take N samples of size 100, and find the MC and IS estimates,
we get the following estimated expected values and variances.

N = 105

Expected Value Variance

Truth 0.00135 0
Monte Carlo 0.00136 1.3× 10−5

Importance Sampling 0.00135 9.5× 10−8
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Extensions of Importance Sampling

Sequential Importance Sampling

Sequential Monte Carlo (Particle Filtering)
−→ See Doucet et al. (2001)

Approximate Bayesian Computation −→ See Turner and Zandt (2012)
for a tutorial, and Cameron and Pettitt (2012); Weyant et al. (2013) for
applications to astronomy
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