4.2a

For Table 3.8 with scores (0, 0.5, 1.5, 4.0, 7.0) for alcohol consumption, ML fitting of the linear
probability model for malformation has output (pictured). Interpret the model parameter
estimates. Use the fit to estimate the relative risk of malformation that compares alcohol
consumption levels 0 and 7.0.

Since the linear probability model for malformation was performed here (presented below), we
can do the parameter estimates interpretations like the following.

#(alcohol) = Pr(mal =1| alcohol) = 3, + f3, * alcohol

(1) B, (intercept): when the alcohol consumption score =0, that is, when the average number of

drinks per day is 0, the probability of being malformation is about ﬂAO =0.0025.

(2) B, (corresponding to alcohol score): when alcohol consumption score is increased by 1 unit

(that is, by 1), the probability of being malformation would be increased by about

~

B, =0.001087 .

The estimated relative risk of malformation that compares alcohol consumption levels 0 to 7.0 is

7T, 0.0025 _0.0025 ~ 0247

r = = —_ ~
™7 A 0.0025+0.001087*%7.0 0.010109




4.7

a. Log(j1) = 1.6094 + 0.5878 x.

A~

Since 8 = log(up / pa), exp(8) = fip / fa = 1.80.
i.e., the mean is predicted to be 80 percent higher for treatment B (In fact,
this estimate is simply the ratio of sample means.)

b. Wald test gives z = .588/.176 = 3.33, 22 = 11.1, (df = 1), P < 0.001.
Likelihood-ratio statistic equals 27.86—16.27 = 11.6 with df = 1, P < 0.001.
There is strong evidence against Hy and a higher defect rate for treatment B.

c. Exponentiate 95% CI for § of 0.588 + 0.196(0.176) to get Wald CI of
exp(0.242,0.934) = (1.27, 2.54).

d. Normal approximation to binomial yields z = (50 — 90)/1/140(.5)(.5) =
—6.76 and very strong evidence against H,

4.8

a. No evidence of overdispersion, since sample variance does not exceed
sample mean for each treatment.

b. Fit is log(f1) = 1.609 + .588z.

c. Fit is log(f1) = 1.946. for both models, but SE = 0.0845 for Poisson
and 0.099 for negative binomial(NB). (For NB, estimated dispersion pa-
rameter = 0.055 > 0, so fits are different.) Wald confidence intervals are
(5.93,8.26) for Poisson and (5.76,8.51) for NB, the slightly wider one for
the NB model reflecting the slight overdispersion for the overall sample.



4.12

Table 4.10 describes survival for 539 males diagnosed with lung cancer. The prognostic factors
are histology (H) and state (S) of disease. The assumption of a constant rate over time is often
not sensible, and this study divided the time scale (T) into two-month intervals and let the
rate vary by the time interval. Let u;;; denote the expected number of deaths and t;;; the
total time at risk for histology i and state of disease j, in the follow-up time interval k.

The main effects model has deviance 43.9. Explain why df=52. Does the model seems to fit
adequately?

In this main effects model, N=7x9=63 and we have totally 11 parameters in the model (1 for
intercept, 2 for histology H, 2 for stage S, and 6 for time scale T). Therefore, the degrees of
freedom is df=N-p=63-11=52. The deviance is 43.9 with df=52, indicating that the model fits
adequately (p-value=0.78, R code is shown below to calculate the p-value).

> pchisg(43.9,df=52, lower.tail=FAL3E)
[1] O0.7803569

For this model, interpret the estimated effects of S, ﬁ; — ﬁi =0.470 (SE = 0.174),

B3 — B35 = 1.324 (SE = 0.152).

Conditioning on the histology and time scale, the estimated death rate on Stage 2 of lung cancer
is about exp(,ézs —ﬂAIS) =exp(0.470) =1.60 (95% Cl: 1.14 — 2.25) times the estimated death
rate on Stage 1 of lung cancer (R code to calculate 95% Cl is shown below).

> § =Stage 2 versus =stage 1

[1] 1.137852 2.250233
Conditioning on the histology and time scale, the estimated death rate on Stage 3 of lung cancer

is about exp(,éf —ﬂAIS) =exp(1.324) = 3.76 (95% Cl: 2.79 — 5.06) times the estimated death

rate on Stage 1 of lung cancer (R code to calculate 95% Cl is shown below).

> § =stage 3 wversus stage 1
> erxp(l.324+c(-1,1) *gnorm(0.975) *0.152)
[1] 2.790122 5.062774

et

The model that adds an S x H interaction term has deviance 41.5 with df=48. Test whether a
significantly improved fit results by allowing this interaction.

To test for the significance of the interaction term Sx H, we can do the likelihood-ratio model
comparison as follows.

G*(M,|M,)=43.9—-41.5=2.4 with df =4 (the difference in number of parameters between
M, and M is 4; p-value=0.663), indicating not rejecting the null hypothesis. In other words, no

significant improvement is made by the interaction term.

p.s. M, refers to main effects model and M, refers to the model with interaction term Sx H.



4.14

Refer to Table 14.6. Fit a loglinear model with an indicator variable for race, a) assuming a
Poisson distribution, and b) allowed overdispersion with a quasi-likelihood approach.
Compare results.

(a) Refer to Table 14.6 (textbook page 554). Fit a loglinear model with an indicator variable for
race assuming a Poisson distribution. Part of SAS output table is shown below. Thus, the fitted

model is log(2) =—2.3832+1.7331* race with SE(ﬁ’O) =0.0971 and SE(ﬂA’l) =0.1466

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF | Estimate Standard Error | Wald 95% Confidence Limits | Wald Chi-Square | Pr = ChiSqg

Intercept 1 -2.3832 0.0871 -2.5736 -2.1928 602.05 =.0001
race 1 1.7331 0.1456 1.4455 20204 139.83 =.00M
Scale 0 1.0000 0.0000 1.0000 1.0000

(b) Using the same dataset, fit the same loglinear model but allowing overdispersion with quasi-
likelihood approach. Part of SAS output table is shown below. Thus, the fitted model result is

log(f1) =—2.3832+1.7331* race with SE(f3,) =0.1283 and SE(/3) =0.1937

Analysis Of Maximum Likelihood Parameter Estimates

Parameter | DF | Estimate | Standard Error = Wald 95% Confidence Limits | Wald Chi-Square | Pr > ChiSq

Intercept 1 -2.3832 0.1283 -2.6347 -21317 34488 =.0001
race 1 1.7331 0.18937 1.3536 ZNMET 80.10 =.0001
Scale 0 1.3212 0.0000 1.3212 13212

Compare the results: Coefficient estimates of these two models are the same, but their standard
errors are obviously different. More specifically, the standard errors in quasi-likelihood
approach are larger than those in the ordinary Poisson model because quasi-likelihood approach
multiplies the ordinary standard error estimates by another factor which allows greater
standard errors and then wider confidence intervals.



4.16

For binary data, define a GLM using the log link. Show that effects refer to the relative risk.
Why do you think this link is not often used? [Hint: What happens if the linear predictor takes
a positive value?]

For example, suppose we have the following GLM with log link for binary data.
log(7) =log[Pr(Y =1)]= 5, + X

When X=1, log(r,) = 3, + f5,. When X=0, log(r,) = /5,

Thus, S =log(x,)—log(z,) =10 (ﬂ)=lo RR . In other words, RR =exp(f3) .
1 g\, g\, g . g 1

0

Therefore, for binary data, the GLM with log link like the one shown above would provide an
interpretation of relative risk (RR) using effects (e.g. the effect of covariate X here).

The reason why log link for binary data is not often used is because of the consideration of the
range that probability t could take. Since mtis between 0 and 1, it’s hard to control exp(linear
predictor) to be between 0 and 1.



4.18 Let Y, be a bin(n,, m) variate for group j, i=1, ..., N, with {Y;} independent. For the model that
n;= ... =ny, denote that common value by n. For observations {y}, show that@ = (}}; y;)/
(Xin;). When all n; = 1, for testing this model’s fit in the N x 2 table, show that X?=N. Thus
goodness-of-fit statistics can be completely uninformative for ungrouped data.

Based on the given context, we can write the likelihood and do the calculations as follows.

N N .
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When all ni = 1, we could have the following:
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The key to the last but second step in calculation is y, = y?. Since all n, =1, y, can be either 0

=N

or 1. Thatiswhy y, = y?.
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4.27 f(ylk, p) = F(L(J+y+1) (ﬁik)’“(l — ﬂ__’ik)uf = when £ is known let a(u) = (ﬂ_ik)ﬂ b(y) =

I'(y+k .
F(ﬂcgi{_{'-_y—gl)? and explyQ(p)] = (11 7)) = explylog(1— uﬂc)] = exply log (A7 )] with

the natural parameter Q(p) = log( Thus. this distribution has exponential

ﬁ+h)

family form.
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Problem #9
From what we knew, Y'|A ~ Poi(A), and A ~ Gamma(u, k).

) = A Fly, \)dA
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.. Y marginally follows Negative Binomial distribution, with E(Y') = g = E(A), var(Y) = p +

Poisson model assumes the mean A is fixed, and var(Y') = E(Y) = A

While when A is not fixed, e.g. in this case, A follows a Gamma distribution. Y marginally has Negative
Binomial distribution. If we still assumes Y marginally follows Poisson distribution, as in Poisson model,

overdispersion is included.

Thus Negative Binomial model is a way to handle overdispersion for Poisson.



For a study using logistic regression to determine characteristics associated with remission in
cancer patients, Table 5.11 shows the most important explanatory variable, a labeling index
(LI) that measures proliferative activity of cells after a patient receives an injection of tritiated
thymidine. It represents the percentage of cells that are “labeled.” The response measured
whether the patient achieved remission. Software reports Table 5.12 for a logistic regression
model using L1 to estimate 1t = P(remission).

—=3.7771+0.14491i

According to software output, the logistic regression model is: 7 = [ g2

Show how software obtained & = 0.068 when LI=8

e—3.7771+0.l449><8 B 0.0730

1+673‘7771+0.1449><8 - 1.0730 =0.0680

Using the equation in (1), when li=8, 7 =

Show that T = 0.50 when LI=26.0

if 77=0.50, LI can be solved from the equation in (1):

T
T S

0.1449 0.1449

In

=26.07

Show that the rate of change in 7 is 0.009 when LI=8 and 0.036 when LI=26

From the equation in (1), 7%(8) =0.0680, then the rate of change is:

2—” =0.14497 (1-7) = 0.1449x 0.068 % (1—-0.068) = 0.009
X

o 3TTT1+0.1449x26 ~0.9903

+ e—3.777l+0.1449><26 - 1.9903

From the equation in (1), 72'(26) = 1 =0.4976, then the rate of

A

change is: 2—” =0.14497 (1- 7) = 0.1449x 0.4976 (1 0.4976) = 0.036
X

The lower quartile and upper quartile for LI are 14 and 28. Show that 7 increases by 0.42,
from 0.15 to 0.57, between those values

0.1740

Using the equation in (1), 7%(14) = 1720 1.3233

=0.1482,7(28) = =~

=0.5696, the increase
of 7 is 0.5696-0.1482=0.42.

For a unit increase in LI, show that the estimated odds of remission multiply by 1.16

odds = e’ ="' =1.16



Explain how to obtain the Cl reported for the OR. Interpret.
The 95% Cl for f3 is:

(0.1449-1.96x0.0593, 0.1449-1.96x 0.0593) = (0.0287,0.2611)

Then the 95% Cl for odds ratio is: (60‘0287, e’ ) = (1.0291,1.2984). Since the 95% Cl of odds

ratio does not contain 0, as /i increases, the remission rate is significantly increases.

Construct a Wald test for the effect. Interpret

(0.1449

2
=5.9707 and p-value is
0.0593

se(f3)

0.0145<0.05, which indicates that the effect of /i on the remission rate is significant.

The test statistic of Wald test for /i is: z :( B J =

Conduct a LRT for the effect showing how to construct the test statistic using the -2 log L
values reported

The test statistic of likelihood-ratio = 34.372 — 26.073 = 8.289 and the p-value is 0.0039<0.05.
Therefore the effect of /i on the remission rate is significant.

Show how the software obtained the Cl interval for it reported at LI=8.

R 37771+ i
Let g (ﬂ) = ﬁ(li) = W, then
. og(p 1 I
Dg (ﬂ) = G(B ) = (1+673.777H/§41,‘ )2 @ 3TTTB o g
1

x @ 3TTIH01M98 o () 5()7()

when li =8, Dg(,é):

~ 2
(1 +e 3.7771+0‘1449><8)

then

se{g (ﬂA)} = \/Dg (ﬁ)cov(,@)Dg (ﬂA)
=0.5070x0.003521x0.5070
=0.0301

Then the 95% Cl for (0.0680—1.96><0.0301, 0.0680 + 1.96><0.0301) = (0.0301,0.1270) .



5.14

Refer to the prediction equation logit(7) = —10.071 — 0.509c¢ + 0.458x for model 5.14
using quantitative color and width. The means and sds are ¢ = 2.44 and s=0.80 for color

X = 26.30 and s=2.11 for width. The standardized predictors [e.g., x = (width — 26.30)/2.11],
explain why the estimated coefficients of c and x equal -0.41 and 0.97. Interpret these by
comparing the partial effects of a sd increase in each predictor on the odds. Describe the color
effect by estimating the change in 7T between the first and last color categories at the sample
mean width.

Let 3 be the coefficient of the original covariate x and 3 'the coefficient of standardized

covariate x_, the partial effect before and after standardization should be the same:

5 ,x—)_cJ
2(5'x,) (ﬂ L) p

ofx) _ 5 _ _
ox =h= ox Ox _sx
=p'=Fs,

Therefore, after standardization, coefficient for c is —=0.509x 0.8 = 0.41 and coefficient for x is
0.458x2.11=0.97.

—10.071-0.509x140.458x26.30

7(c=1,x=2630)=— —0.8124

—10.071-0.509x1+0.458x26.30
l+e *

—10.071-0.509x4+0.458x26.30

7(c=4,x=2630)=— — 0.4846

—10.071-0.509x4+0.458x26.30
l+e

As color changes from category 1 to category 4, the satellite rate decreases by 0.8124-
0.4846=0.3278.



5.18

In a study designed to evaluate whether an educational program makes sexually active
adolescents more likely to obtain condoms, adolescents were randomly assigned to two
experimental groups. The educational group was provided to one group but not the other.
Table 5.17 summarizes results of a logistic regression model for factors observed to influence
teenagers to obtain condoms.

Find the parameter estimates for the fitted model using (1, 0) indicator variables for the first
three predictors. Based on the corresponding Cl for the log OR, determind the standard error
for the group effect.

.+ odds ratio = e’ and its 95% CI = (eﬁi"%"‘{ﬂ})

In (95% CI upper limit) -p
1.96

s p= ln(odds ratio), se{f} =

According to the output table, we can compute coefficient of each variable from odds ratio:

ﬂg,p In(4.04) = 1.40, se( 8, } = (log(13.9)-1.4)/1.96 = 0.63

,=In(1.38)=0.32, se{ 3,,,} = (log(13.9)-1.4)/1.96 = 1.14
.. =In(5.82)=1.76, se{ ,,,} = (log(18.28)-1.76)/1.96 = 0.58
ﬂ,np In(3.22)=1.17, se{ B, } = (log(11.31)-1.17)/1.96 = 0.64

ses

Explain why either the estimate of 1.38 for the OR for gender or the corresponding Cl is
incorrect. Show that if the reported interval is correct, 1.38 is actually the log OR and
estimated OR equals 3.98.

According to the result of problem a, se{f, }=1.14, from this result, the lower limit of odds

gen

0321961 — () 1474 = lower limit read from table =1.23 . Therefore, the

ratio should be ¢

odds ratio is wrong. If the reported interval is right, then the odds ratio should be:

. 95070 CI = (OR . 6_1'96 se{ OR 1.96-se{ })

S.OR = \jupper limit x lower limit =+/1.23x12.88 =3.98



5.32

5.34

For an I x 2 contingency table, consider logistic model (5.4)

Given {mr; > 0}, show how to find {f3;} satisfying f; = 0

TT.
Suppose the original model is log1 —=a+p,i=12,..,1

i

let @ =a—f,, .= f,— B3, now the parameter for category lis 5, = 5, — 3, =0.

Prove that 8, = B, = :-- = B, is the independence model. Find its likelihood equation show
~ OS]
that a = loglt[—(zini)]
Based on the conclusion of problem a, we can find { 3, } that satisfies 8, = 3, =...= 3, =0.
N Vi
:>logit(7zl.):a:>7r, =7, =..=T, SRR N :&:Z—’

S & Z"ni :>&=logit{z"yiJ
Yi Zini

Construct the log-likelihood function for the model [logit[(x)] = a + Bx with independent
binomial outcomes of y, successes in ng trials at x=0 and y, successes in n; trials at x=1. Derive
the likelihood equations and show that E is the sample log OR.

7[((.)):)’0/”0 Yo Sﬁ:ln[n‘_y' :”o—yo]
loglt[?r(l)]=a+ﬁ'1:a+lg}:emﬁ _m=y
Vi

”(1): yl/nl

logit[ﬂ(O)]=a+,B-0=a}:>ed -,






